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Semiparametric Quantitative-Trait-Locus
Mapping: I. on Functional Growth Curves

Ying Qing Chen and Rongling Wu

Abstract

The genetic study of certain quantitative traits in growth curves as a function of
time has recently been of major scientific interest to explore the developmental
evolution processes of biological subjects. Various parametric approaches in the
statistical literature have been proposed to study the quantitative-trait-loci (QTL)
mapping of the growth curves as multivariate outcomes. In this article, we view
the growth curves as functional quantitative traits and propose some semiparamet-
ric models to relax the strong parametric assumptions which may not be always
practical in reality. Appropriate inference procedures are developed to estimate
the parameters of interest which characterise the possible QTLs of the growth
curves in the models. Recently developed multiple comparison testing procedures
are applied to locate the statistically meaningful QTLs. Numerical examples are
presented with simulation studies and analysis of real data.



1 Introduction

To study the developmental process of biological subjects, the repeated measurements of

certain quantitative trait are often collected over time. For instance, in Kenward (1987),

the repeated measures on the weight of cattle are collected at ten two-week intervals till

the final measurement at one week after the tenth interval. These repeated measurements

are often considered as some underlying random functional growth curves observed at a set

of the point processes over time. Similar to the single measurement of quantitative trait,

the entire growth curves as functional-valued traits may be inherently controlled by genetic

factors (Kirkpatrick and Heckman, 1989; Pletcher and Geyer, 1999).

There has been growing interest in scientific research to map the quantitative-trait-loci

(QTL) for the functional-valued growth curves, {Y (t); t ≥ 0}, say, to study the potential

genetic association with the developmental processes. To analyse these growth curves, the

heterogeneity of the repeated measurements of the same subject has to be considered. That

is, the repeated measurements of one subject are usually considered to be correlated with

each other. Parametric approaches have been proposed and studied in literature (Ma, et al.,

2002; Wu, et al., 2002).

In general, these approaches impose certain parametric assumptions on both the mean

and the covariance structures of the functional quantitative traits. For example, the models

may assume the mean of the growth curves, µ(t), say, are of special shapes, such as the

sigmoidal logistic functions:

µ(t) = EY (t) =
α1

1 + α2 exp(−α3t)
,

where α = (α1, α2, α3)
T are the parameters governing the logistic functions, as in Wu, et al.

(2002). Here, T denotes the transpose of a vector or matrix. If different parameter esti-

mates are obtained from the observed data for different genotypes at a putative QTL, then

this QTL is identified as a potential genetic location to moderate the growth curves. For

the covariance structure, some error distributions, such as the zero-mean Gaussian or au-

toregressive processes, have to be assumed as well. All these assumptions enable the usual
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maximum-likelihood-based approaches, such as the EM-algorithms, to be straightforwardly

implemented, although the inferences on the estimates are often lacked.

There are, however, challenges embedded with these parametric approaches. These para-

metric assumptions determine the ultimate estimates, and different selections of the para-

metric functions may thus lead to different conclusions on the QTL’s. For example, instead

of using the logistic functions to model the mean structure, there are alternative shapes such

as exponential or saturating functions (Niklas, 1994). In some situations, there is even no

prior information on a clear choice of µ(t). For another example, although the usual Gaus-

sian and the autoregressive processes yield explicit likelihood functions to be maximized,

their stationary assumptions may not be appropriate for the growth curves.

To avoid such difficulties with the stringent parametric assumptions, one approach is by

way of the semiparametric modeling. For example, the semiparametric model proposed by

Zeger and Diggle (1994) may be used to model Y (t):

Y (t) = µ0(t) + βTZ(t) + ε(t), (1)

where µ0(·) is some unknown baseline function, Z(t) be the p−vector covariates of potential

genotypes and other phenotypic variables, and β ∈ B ⊂ Rp are the p−vector parameters.

Here, ε(·) are assumed to be the zero-mean Gaussian processes. The model (1) generalizes

the linear regression models with time-specific intercepts at each distinct time t > 0 to the

ones with the baseline function of µ0(·) in continuous time. With the unknown µ0(·), it

gains more flexibility to model the mean functional trait. In addition, the covariates Z(t)

are not limited to the subject’s genotypes but include all possibly observed phenotypic or

environmental factors that may potentially confound the genetic association. In fact, a more

general semiparametric model by Lin and Ying (2001) is proposed to model the marginal

mean of µ(·) only:

E{Y (t) | Z(s), 0 ≤ s ≤ t} = µ0(t) + βTZ(t). (2)

In addition to maintaining the flexibility in the mean structure, this model allows the co-

variance structure and the distributional form of errors to be unspecified, and can be easily

extended to the functional qualitative traits of binary or categorical types.
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In this article, we will use some semiparametric mean response models in the QTL anal-

ysis of the functional growth curves and further develop appropriate inference procedures

in identifying the potential QTLs. The new methodologies may overcome the disadvantage

of the current parametric models by allowing more flexibility in both mean and covariance

structure, and hence the final estimates may be more robust to the potential model mis-

specification. Some recently developed multiple comparison procedures will be adapted to

evaluate the parameter estimates for detecting the statistically meaningful QTLs. In the

rest of the article, the methods will be presented in §2. In §3, the method will be applied to

the QTL mapping of the diameters of the forest trees. Some issues related to the proposed

methodologies are discussed in §4. Technical proofs are collected in the Appendix.

2 Methods

2.1 Genetic design

In this article, we use a standard backcross design to illustrate the proposed statistical

methodologies. As discussed later, the methodologies can be further extended to more

complex designs, such as an F2 or full-sib design. The backcross design is initiated with two

contrasting homozygous inbred lines. There are assumed two genotypes at a specific locus

on the genome. A marker-based genetic linkage map is constructed and aims to the QTL

identification affecting the time-dependent functional trait. Suppose there are n progeny

subjects in the data set. The functional traits are considered as the random curves denoted

by {Yi(t); i = 1, 2, . . . , n, t ≥ 0}. In reality, the whole curves are usually not observed at every

single t, but the repeated measurements are observed for the ith subject, (Yi1, Yi2, . . . , Yimi),

i = 1, 2, . . . , n, say. They can be considered as the random growth curve observed at a set

of time points of (Ti1, Ti2, . . . , Ti,mi), i.e., Yij = Yi(Tij), j = 1, 2, . . . ,mi.

For a pleiotropic QTL that affects the functional trait Y (t), it is assumed to be brack-

eted by two flanking genetic markers, Pl and Pl+1, with two genotypes of (Alal, Alal) and

(Al+1al+1, Al+1al+1) at each marker, respectively, l = 1, 2, . . . , L − 1, with L being the total

number of markers on the genome. Therefore, there are four combinations of possible geno-
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types for the flanking markers of the progeny at Pl and Pl+1: (Alal, Al+1al+1), (Alal, al+1al+1),

(alal, Al+1al+1) or (alal, al+1al+1), which are denoted as Ml,i = 1, 2, 3 or 4, respectively. Sup-

pose that there are two possible alleles for the genotype that determines the functional trait,

Q and q. They segregate in the backcross population with two different genotypes of Qq and

qq of complete penetrance in phenotypes. Denote Gi the genotype indicator of 1 being Qq

and 0 being qq. Additional observed phenotypic covariates and environmental factors are

denoted as (p − 2)−vector Ri(t). Let Z l,i(t) = (Ml,i, Gi, Ri(t))
T.

2.2 Statistical models

In a well-planned study, the observed data of Y i = (Yi1, Yi2, . . . , Yi,mi)
T’s are often collected

at a pre-determined set of observation times of (Ti1, Ti2, . . . , Ti,mi). In reality, however, the

observations times may be irregular or even random. Consider Ni(t) =
∑mi

j=1 I(Tij ≤ t),

which is the counting process for the ith subject’s observation times. Here I(·) is the indicator

function. Similar to the assumptions in Cheng and Wei (2000), E{Ni(t)} = Ω(t), where Ω(·)
is unspecified. In addition, there is usually a follow-up time or censoring time for Yi(·), Ci,

say. The Ci’s are assumed to be noninformative such that

E{Yi(t) | Z i(s), 0 ≤ s ≤ t, Ci} = E{Yi(t) | Z i(s), 0 ≤ s ≤ t}.

Denote ∆i(t) = I(Ci ≥ t) as the “at-risk” indicator.

To model the functional trait Yi(·), we consider the following models to relate Yi(t) and

its covariates Zi(t):

E{Yi(t) | Z i(s), 0 ≤ s ≤ t} = µ0(t) + βGGi + βT

RRi(t), (3)

where µ0(·) is unspecified smooth function and β = (βG, β
T

R)T are parameters. This model

assumes that the genetic effect at any putative QTL is additive, regardless of the flanking

markers. This assumption can be relaxed to include the scenarios when the marker loci can

be QTL as well, by introducing the interaction terms between Gi and Ml,i. In fact, when

Ri(·) are not included in the model, µ(·) itself becomes the mean function for Gi = 0, i.e.,

the mean function for the genotype qq. In this case, the magnitude of βG characterises the
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genetic effect on the functional trait due to the different genotypes of Qq and qq. If βG > 0,

that means the genotype Qq is associated with a positive change in the functional trait from

the genotype of qq, while otherwise it is associated with a negative change. Thus, βG can

be used to make inference on the QTL, if the magnitude of its estimate is unusually large.

When the Ri(t) are included in the model, the parameter βG measures the genetic effect

adjusted for the potentially heterogeneous environmental factors or the observed phenotypes

other than the functional trait of interest.

To model the genetic effect as multiplicative, the functional growth curves can be first

log-transformed, and then the same additive mean structure is applied:

E{log Yi(t) | Z i(s), 0 ≤ s ≤ t} = µ0(t) + βGGi + βT

RRi(t). (4)

In model (4), exp(βG) thus characterises the multiplicative effect due to the different geno-

types at the QTL. These models, similar to the one by Lin and Ying (2001), only model the

mean structure of the functional trait, while leaving the dependence structure completely

unspecified. Its semiparametric feature of the unspecified baseline function would allow the

models to embrace much broader classes of functions with different shapes.

In reality, the exact genotype of a progeny subject,Gi, is usually unknown. Its probability

distribution, however, depends on the two-locus genotype of the flanking markers and the

QTL position in the marker interval. Assume that the recombination fractions between the

marker Pl and the potential QTL, the potential QTL and the marker Pl+1 and the markers

Pl and Pl+1 are rl1, rl2 and rl, respectively. Then some straightforward calculations show

that the joint probability distribution is determined for all the potential genotypes listed

as in Table 4. Furthermore conditional on the genotypes of the bracketing markers, the

probability distribution of Gi is listed in Table 2 as well.
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2.3 Estimation procedures

As discussed previously, the exact genotypes of G is not known and neither does its location

on the genome. However, given the configuration of the flanking markers, the marginalised

model of (3) over Gi is,

E{Yi(t) |Ml,i, Ri(s), 0 ≤ s ≤ t} = µ0(t) + βGp
G

l,i + βT

RRi(t).

Let νi(t) = βGp
G
l,i +βT

RRi(t). Furthermore, denote the true parameters in the aforementioned

models as their respective counterparts with the subscript “∗.” For instance, the true pa-

rameters of βG and βR are βG∗ and βR∗, respectively. Let Xi(t) =
∫ t

0
[Yi(s) − νi(s)}]dNi(s),

then

E{dXi(t) |Ml,i, Ri(s), 0 ≤ s ≤ t, Ci} = ∆i(t)dΩµ(t),

where dΩµ(t) = µ0∗(t)dΩ(t) and Ω(t) = E{Ni(t)} as defined previously. Let Mi(t) = Xi(t)−∫ t

0
∆i(s)dΩµ(s). Then Mi(·;β∗) are the zero-mean stochastic processes. As pointed out in

Lin and Ying (2001), the following estimating equations generalise the normal equations of

the least-squares in the linear regression models, and can be used to estimate the parameters

in the proposed model (3),

n∑
i=1

∫ τ

0

∆i(t)Ψ(t)ϕi(t)dMi(t) = 0, (5)

where Ψ(·) is the positive weight function which converges uniformly to a deterministic

function ψ(t) ∈ [0, τ ], τ is some upper limit of the observation times, and ϕi(t) are the

smooth functions of the same dimensions as β such that ϕi(t) are measurable with respect

to {Z i(s), Ci; 0 ≤ s ≤ t, i = 1, 2, . . . , n}. For instance, ϕi(·) can be chosen as Z i(·) and some

of its nonlinearly related functionals.

In addition to the unknown parameters of β in (5), the infinite-dimensional function of

Ωµ(·) is also unknown. An estimator of the Breslow-type, however, can be obtained for Ωµ(·),

Ω̂µ(t) =

∫ t

0

∑n
i=1 dXi(s)∑n
i=1 ∆i(s)

,

which is unbiased to Ωµ(t). Let M̂i(t) = Xi(t) −
∫ t

0
∆i(s)dΩ̂µ(s). Replace the Mi(·)’s in (5)

and thus result in
∑n

i=1

∫ τ

0
∆i(t)Ψ(t)ϕi(t)dM̂i(t) = 0. Straightforward algebra further leads

7
Hosted by The Berkeley Electronic Press



to

E(β) =
n∑

i=1

∫ τ

0

∆i(t)Ψ(t) {ϕi(t)− ϕ̄(t)} dXi(t) = 0, (6)

where ϕ̄(t) =
∑n

i=1 ∆i(t)ϕi(t)/
∑n

i=1 ∆i(t). Assume that β̂ is the solution in (6).

Let ν ′i(t) be the derivative of νi(t), i = 1, 2, . . . , n. Then −n−1E ′(β∗) goes to

B = E

[∫ τ

0

∆1(t)ψ(t){ϕ1(t)− ϕ̄∗(t}ν′1(t)TdΩ(t)

]
,

where ϕ̄∗(t) is the limit of ϕ̄(t) almost surely, as n→ ∞. Since the elements in ϕi(·) are not

linearly related, B is nonsingular. Thus under mild conditions, the solutions to E(β) = 0

are strongly consistent as n → ∞ as shown in the Appendix. If the total variation of ϕi(·),
i = 1, 2, . . . , n, are bounded, it is true that

n−1/2E(β∗) � n−1/2

n∑
i=1

∫ τ

0

∆i(t)ψ(t){ϕi(t) − ϕ̄∗(t)}dMi(t;β∗).

By the Central Limit Theorem, it is shown in the Appendix that n−1/2E(β∗) is asymptotically

normal with mean zero and the variance-covariance matrix,

Σ = E

[∫ τ

0

∆1(t)ψ(t){ϕ1(t) − ϕ̄∗(t)}dM1(t)

]⊗2

,

where a⊗2 denotes aaT. In addition, a Taylor’s expansion of E(β̂) at β∗ yields that n1/2(β̂−β∗)
is asymptotically equivalent to {−E ′(β∗)/n}−1 · n−1/2E(β∗). As a result of the Appendix, it

is true that β̂ are consistent, and

n1/2(β̂ − β∗) → N(0, B−1ΣB−1)

in distribution in a neighbourhood of (β∗), where B and Σ can be approximated by their

empirical counterparts,

B̂ = n−1
n∑

i=1

∫ τ

0

∆i(t)Ψ(t){ϕi(t) − ϕ̄(t)}ν′i(t)TdNi(t), and

Σ̂ = n−1
n∑

i=1

[∫ τ

0

∆i(t)Ψ(t){ϕi(t) − ϕ̄(t; β̂)}dM̂i(t; β̂)

]⊗2

,

respectively.
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The estimating equations used in the weighted estimating equations of (6) are somewhat

ad hoc, although the estimators defined in the equations carry the appealing statistical

properties such as consistency and asymptotic normality. It is desirable to choose an optimal

weight function to minimize the variance among the estimators. With an application of

Cauchy-Schwarz inequality, it is straightforward to see that such choice is 1/var{Y (t)−ν(t)},
which is the essentially the diagonal elements in the variance-covariance matrix of Y (·).
Hence the optimal choice of ψ(·) would improve the efficiency. In addition, as pointed out

in Wang and Wang (2001), the efficiency should be further improved if the weight function

can be selected among the bivariate functions of Φ(s, t) to account for the covariance of

(Y (s), Y (t)) for different s > 0 and t > 0.

To estimate the baseline µ(·), it is natural to consider the estimator of

µ̃(t) = Ȳ (t) − ν̄(t; β̂),

where Ȳ (t) =
∑n

i=1 ∆i(t)Yi(t)/
∑n

i=1 ∆i(t) and ν̄(t;β) =
∑n

i=1 ∆i(t)νi(t;β)/
∑n

i=1 ∆i(t), re-

spectively. This is the pointwise average of Yi(t)−νi(t) when ∆i(t) = 1, i.e., the subjects are

still “at risk.” When the observation times are observed in a continuous time scale, some

smoothing technique has to be implemented to obtain a reasonable estimate. In Lin and Ying

(2001), a simple singleton nearest neighbour smoother was used. This approach may not be

the most efficient. But it has advantage “in non-linear, non-Gaussian situations” without

constructing explicit smoothers (Rice, 2003). To improve efficiency, however, more sophis-

ticated smoothing techniques such as the one by Capra and Müller (1997) can be can be

adapted to estimate µ(·). Specifically, consider the time interval [0, τ ] is partitioned into L

consecutive equidistant intervals: (tl−1, tl), with l = 1, 2 . . . , L → ∞ and t0 = 0. Assume

the smoothing parameter h such that h→ 0 and n∗h→ 0, as n∗ → 0, where n∗ is the total

number of observation time points. Then a smoothed estimate of µ̃(·) is

µ̂(t) = arg min
a0,a1

[
L∑

l=1

K

(
t− tl
h

)
{µ̃(tl) − a0 − a1(tl − t)}2

]
.

HereK(s) = 1−s2, if |s| ≤ 1, and 0 otherwise. Other smoothers including higher-order kernel

smoothers or local fitting with high-order polynomials can be also used under the necessary
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conditions of linearity, consistency and consistency with needed rate in Capra and Müller

(1997).

2.4 Multiple comparison procedures in QTL detection

The regression models and their estimation are proposed mainly to evaluate the association

between the genotypes and the functional quantitative trait at a putative locus bracketed by

one specific pair of markers. To detect the QTLs, the following null hypotheses would be used:

Hl,0 : βG = 0, for l = 1, 2, . . . , L. Specifically for the lth pair of markers, two statistics can be

used: one is the difference statistic of Dn,l = n1/2(β̂G,l − 0), and the other is its standardized

version of Tn,l = n1/2(β̂G,l − 0)/σl,n, where σn,l/
√
n is the estimated standard error of β̂G,l.

When the testing procedure is repeated at every 1 or 2 cM on a map bracketed by two

consecutive markers throughout the entire linkage map, L multiple-comparison procedures

are thus conducted.

A common approach to identify the amount of support for a QTL at a particular map

position is often by graphically displaying the likelihood ratio test statistics as a function

of the map position of a putative QTL (Lander and Bostein, 1989). However, given the

semiparametric framework of our models, the underlying distributional form of the errors

are usually not assumed, and it is thus almost impossible to obtain the usual likelihood maps

or profiles to construct the linkage map. In fact, when a large number of hypothesis testing

are performed, the rate of false QTL claims usually needs to be controlled. Conventional

approaches, such as the ones discussed in Hochberg and Tamhane (1987), are mainly aimed

to controlling the so-called family-wise error rate (FWER), i.e., the probability of at least

one false QTL claim when there is no QTL bracketed by any pair of markers in the entire

linkage map. When certain proportion of markers to be tested actually depart from their

corresponding null hypotheses, these procedures are often conservative and less powerful, as

discussed extensively in literature. An important alternative has been developed to focus on

the control of the so-called false discovery rate (FDR), which is the expected false positive

rate of the rejected hypotheses, since the work by Benjamini and Hochberg (1995). There

are both Frequentist and Bayesian FDR-based approaches. Yet most of them rely on the
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Table 3: Error types in QTL multiple comparisons

QTL not claimed QTL claimed Total hypotheses tested

No QTL existed U V L0

QTL existed T S L − L0

Total claims L − R R L

assumptions of the independence among the test statistics, although certain specific form of

dependence may be allowed.

In the QTL detection, the independence assumption does not always hold, given the

same set of observations of the functional quantitative traits being repeatedly used in the

semiparametric models. In this section, we adapt the framework recently constructed by

Pollard and van der Laan (2003), Dudoit, et al. (2003), and van der Laan, et al. (2003a,

2003b) to the test statistics on the QTL parameter. In this framework, two kinds of Type

I error rate, θn, are considered: the generalized family-wise error rate (gFWER) and the

proportion of false QTL claims of the rejected hypotheses (PFP). A gFWER(k) is the prob-

ability of allowing at least k false claims for some k+1 ≥ 0, while a PFP(κ) is the probability

of false claims larger than some κ in (0,1) among the total rejections. Consider the nota-

tions used in Benjamini and Hochberg (1995), as seen in Table 3. Then the gFWER(k) and

PFP(κ) are actually pr{V ≥ k + 1} and pr{V/R > κ}, respectively. Compared with the

definitions of the FWER and FDR, it is not difficult to find that

FWER = gFWER(0), and FDR = E(V/R) =

∫ 1

0

PFP(κ)dκ,

respectively. For a prespecified α-value, it is said to be of finite sample control if θn ≤ α,

whereas it is of asymptotic control if limn→∞ θn ≤ α. Usually α is chosen to be 0.05.

Let Dn = (Dn,1,Dn,2, . . . ,Dn,L)T and Tn = (Tn,1, Tn,2, . . . , Tn,L)T, respectively. Assume

that P is the underlying data generating distribution. Denote Qn,D(P ) and Qn,T(P ) the joint

distributions of Dn and T n with limiting distributions of QD(P ) and QT(P ), respectively.

Then the distributions of V is determined by the corresponding Qn,D(P ) and Qn,T(P ). Since

P is usually unknown, it needs to be estimated to ensure appropriate control of gFWER(k)

and PFP(κ) in the QTL detection under the null distributions of Q0,D(P ) and Q0,T(P ),

11
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respectively. Since

Dn,l = n1/2(β̂G,l − βG∗,l) + n1/2βl,G = D∗
n,l + n1/2βG∗,l, and

Tn,l =
n1/2(β̂G,l − βG∗,l)

σl,n
+
n1/2βG∗,l

σl
· σl

σn,l
= T ∗

n,l +
n1/2βG∗,l

σl
· σl

σn,l
,

it is therefore true that

D∗
n,l

L→ N(0, VD(P )) and T ∗
n,l

L→ N(0, ρT(P )),

where VD(P ) is the covariance matrix and ρT(P ) is the correlation matrix. Thus according

to the Theorem 2 in Dudoit, et al. (2003), the bootstrapping algorithm such as the following

can be used to estimate the null distribution:

Algorithm 1.

1. Obtain a bootstrapping set of samples as {(Y b
i , Z

b
i), i = 1, 2, . . . , n};

2. Compute Db
n and T b

n, respectively;

3. Repeat Step 1 and 2 for a total of B times;

4. Compute the sample mean and the sample variance for each element in Db
n and T b

n;

5. Compute

D∗,b
n,l =

√
min{1, 1/v̂ar(Db

n,l)}{Db
n,l − Ê(Db

n,l)}, and

T ∗,b
n,l =

√
min{1, 1/v̂ar(T b

n,l)}{T b
n,l − Ê(T b

n,l)},

respectively.

6. Compute the empirical distributions of D∗,b
n,l and T ∗,b

n,l for b = 1, 2, . . . , B.

After the null distribution Q0 is estimated, there are two procedures to choose actual

cutoffs, βc
G = (βc

G,1, β
c
G,2, . . . , β

c
G,L)T, say, to decide the rejection regions for Dn,l and Tn,l,

l = 1, 2, . . . , L, namely, single-step common-quantile and single-step common-cutoff, to con-

trol the FWER. For the single-step common-quantile procedure, the cutoffs can be selected

12
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as the common quantile of the marginal distributions of the estimated Q0. For the single-step

common-cutoff, the common cutoff can be selected as inf{c : θn(R | Q0) ≤ α}. Furthermore,

their adjusted p-values can be computed as p̃n,l = inf{α : l ∈ Sn(α)}, l = 1, 2, . . . , L, where

Sn = {l : Tn,l > cl(α)} (Pollard and van der Laan, 2003).

Based on the aforementioned control of FWER, there are augmentation procedures to

select additional rejections to control the gFWER and PFP (van der Laan, et al., 2003b).

Specifically, the augmentations are done in the following algorithm:

Algorithm 2 :

1. Sort the adjusted FWER p-values as

p̃n,(1) ≤ p̃n,(2) ≤ . . . ≤ p̃n,(L),

where (·) defines a permutation of {1, 2, . . . , L}. Then the rejected null hypotheses of

Sn consist of {l : p̃n,l ≤ α} or {(l) : l = 1, 2, . . . , R};

2. Additional rejections are selected as {(l) : l = R+ 1, . . . , R+ k}, for k = k0 of a given

0 ≤ k0 ≤ L−R in the gFWER-control, and for k = max{0 ≤ l ≤ L−R : l/(l+R) ≤ κ}
of a given κ in FPF -control, respectively.

Thus the adjusted p-value for controlling the gFWER(k) is calculated as p̃n,(l−k)I(l > k), and

the adjusted p-value for controlling the PFP(κ) is calculated as inf{α : {l−R(α)}/l ≤ κ}.

3 An example

A study of forest tree growth was conducted at a forest farm in Xuzhou City of Jiangsu

Province in China since the Spring of 1988. The study materials used in the study were

derived from the triple hybridization of Populus (poplar). As described in Wu, et al. (1992),

a Populus deltoides clone (designated I-69) was used as a female parent to mate with an

interspecific P. deltoides × P. nigra clone (designated I-45) as a male parent to produce the

hybrids Euramerica poplar, P. euramericana. A total of 450 one-year-old rooted three-way
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hybrid seedlings were planted at a spacing four by five meters in the forest farm. The total

stem heights and diameters are measured and collected at the end of each of the 11 growing

seasons.

The genetic linkage maps based on the pseudo-test backcross design were constructed

using 90 randomly selected genotypes of the 450 hybrids with random amplified polymor-

phic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and intersimple

sequence repeats (ISSRs), see Yin, et al. (2002). These parent-specific maps consist of the

19 largest linkage groups for each parent parental map. They amount to 19 pairs of chromo-

somes. To contrast with previously reported results in Wu, et al. (2002), we also choose the

linkage group 10 of the P. deltoides parental map to detect statistically meaningful QTLs

that potentially affect the diameter growth of the forest trees with the proposed methodolo-

gies.

In Wu, et al. (2002), it was observed that most of the growth curves might display sig-

moidal shape for the phenotypes, such as the diameter, as function of time, i.e., the years.

The plot of the observed curves is reproduced in Figure 1(a). Two logistic functions of dif-

ferent set of parameters were chosen to model the functional quantitative traits linked to the

possible genotypes. When the growth curves are log-transformed, as shown in Figure 1(b),

they mostly share similar shape and are also parallel, which may suggest that the assumption

of common baseline function and the additive differences among the curves are reasonable

in the semiparametric model (3). Thus we use E[log{Yi(t)} | Zi] = µ0(t) + βGGi to estimate

the QTL parameter βG for each of the two consecutive markers. By applying the multiple

comparison procedures, it was found that the null hypotheses of no QTL was rejected at

the first pair of markers, with an adjusted p-value of 0.01, which is highly significant for a

potential QTL located between the markers of CA/CCC-640R and CG/CCC-825. This is

consistent with the finding reported in Wu, et al. (2002) using both fixed and random effects

model.
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Figure 1: Growth curves of the diameters of forest trees
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4 Discussion

The methodology proposed in this article is a type of regression interval mapping (Lander and Bostein,

1989; Haley and Knott, 1992). In general, there are two advantages of regression interval

mapping: the first, the interval mapping uses more information from the consecutive mark-

ers, which can be more precise to determine the QTL, and the other advantage of regression

mapping is that the statistical analysis is straightforward and involves less computing bur-

den than the conventional maximum likelihood mapping. Our approach has two additional

features. The first one is that the quantitative trait is no longer viewed as one-dimensional

outcome but a functional curve, such as the growth curves discussed before. In fact, there are

other examples of functional traits may be of important scientific interest as well, such as the

CD4 dynamics of HIV-infected patients, or the blood pressure of hypertensive patients. The

second feature is the semiparametric framework of our methods, which does not assume the

explicit structure of the errors. In fact, there has been effort by Zou, et al. (2003) to develop

rank-based regression approaches to deal with the unknown symmetric error distributions,

although their methods are still limited to the one-dimensional outcomes.

Our methodologies can be easily extended to several other occasions. For examples,

one such occasion is the so-called Composite Interval Mapping. In the interval mapping,

although it has greater advantage than the single marker mapping, it may be still biased if

multiple QTLs are linked to the marker or the interval between the markers. To extend the

proposed methods to the Composite Interval Mapping (Zeng, 1994) for the functional traits,

consider

E{Y (t) | Z(t)} = µ0(t) + βGG+
K∑

k=1

βkGk,

where Gk are the markers selected for genetic background control. This would adjust for the

effect of other potential QTLs outside the interval containing the putative QTL of interest.

Another occasion is to extend the methodologies to more complex design such as the F2-

design. Specifically, the conditional probabilities of three genotypes at a QTL bracketed by

two markers are determined in Table 3. Using this table, we can derive similar marginalised

model and hence to estimate the parameter βG to determine the potential existence of a
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Table 4: Conditional probabilities of genotype indicator G at a QTL bracketed by markers Pl

and Pl+1 in an F2 population. When rl1 or rl2 is relatively small, rl1 + rl2 approximates rl.

Marker type Marker genotypes Conditional probabilities

Ml Pl Pl+1 pG
l = pr{G = −1} pG

l = pr{G = 0} pG
l = pr{G = 1}

1 AlAl Al+1Al+1
(1−rl1)

2(1−rl2)
2

(1−rl)2
2rl1rl2(1−rl1)(1−rl2)

(1−rl)2
r2

l1r2
l2

(1−rl)2

2 AlAl Al+1al+1
(1−rl1)

2(1−rl2)rl2
(1−rl)rl

rl1(1−rl1){r2
l2+(1−rl2)}2

(1−rl)rl

r2
l1rl2(1−rl2)
(1−rl)rl

3 AlAl al+1al+1
(1−rl1)

2r2
l2

r2
l

2rl1rl2(1−rl1)(1−rl2)
r2

l

r2
l1(1−rl2)

2

r2
l

4 Alal Al+1Al+1
rl1(1−rl1)(1−rl2)

2

rl(1−rl)
{r2

l1+(1−rl1)
2}rl2(1−rl2)

rl(1−rl)
rl1(1−rl1)r

2
l2

rl(1−rl)

5 Alal Al+1al+1
2rl1rl2(1−rl1)(1−rl2)

r2
l +(1−rl)2

{(1−rl1)
2+r2

l1}{(1−rl2)
2+r2

l2}
r2

l +(1−rl)2
2rl1rl2(1−rl1)(1−rl2)

r2
l +(1−rl)2

6 Alal al+1al+1
rl1(1−rl1)r

2
l2

rl(1−rl)
{(1−rl1)

2+r2
l1}rl2(1−rl2)

rl(1−rl)
rl1(1−rl1)(1−rl2)

2

rl(1−rl)

7 alal Al+1Al+1
r2

l1(1−rl2)
2

r2
l

2rl1(1−rl1)(1−rl2)
r2

l

(1−rl1)
2r2

l2
r2

l

8 alal Al+1al+1
r2

l1rl2(1−rl2)
rl(1−rl)

rl1(1−rl1){r2
l2+(1−rl2)2}

rl(1−rl)
(1−rl1)

2rl2(1−rl2)
rl(1−rl)

9 alal al+1al+1
r2

l1r2
l2

(1−rl)2
2rl1(1−rl1)rl2(1−rl2)}

(1−rl)2
(1−rl1)

2(1−rl2)
2

(1−rl)2

putative QTL.

In general, it is complicated to use multiple comparisons to determine the threshold of

the test statistics. The Wald’s test statistics with the usual pointwise significance levels are

not adequate due to the genome-wise scanning of the makers. Our choice of multiple com-

parison approach are mainly for the dense map (Lander and Bostein, 1989). For sparse map

in which the markers are sparse and widely separated, the marker intervals can be consid-

ered as independent approximately. Then the usual Bonferroni correction may be suffice to

explore the potential QTLs. Unlike the permutation tests proposed in Churchill and Doerge

(1994), the multiple comparison procedures used in this article do not involve specific choice

of the null distribution and more protected from any misspecifications of the underlying

distributions.
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Appendix A: Asymptotics

A.1. Weak of Convergence of n−1/2E(·;β∗)

Our proof follows an extension of the Appendix 2 in Cheng and Wei (2000). Denote B(t) =∑n
i=1

∫ t

0
∆i(s)Ψ(s)dMi(s) and Bϕ(t) =

∑n
i=1

∫ t

0
∆i(s)Ψ(s)ϕi(s)dMi(s). Then E(β∗) = Bϕ(τ )−∫ τ

0
ϕ̄(t)dB(t). For any t > 0, B(t) and Bϕ(t) are sums of independently and identically dis-

tributed zero-mean terms. By the Central Limit Theorem, n−1/2(B(t),Bϕ(t)) converges in

distribution to a zero-mean Gaussian process, (W(t),Wϕ(t)), say.

Assume that ϕi(·), i = 1, . . . , n, are of bounded variation. Moreover, without loss of

generality, ϕi(·) are assumed to be non-negative. Then the individual terms of B(·) and

Bϕ(·) can be written as sums of monotone functions in t and hence “manageable.” Thus

n−1/2(B(t),Bϕ(t)) converges weakly to (W(t),Wϕ(t)), as n → ∞ (Pollard, 1990, p.38 and

p.53). By the strong embedding theorem in Shorack and Wellner (1986, p.47), there exists an

induced probability space such that (n−1/2B(t), n−1/2Bϕ(t), n−1
∑n

i=1 ∆i(t), n
−1

∑n
i=1 ∆i(t)ϕi(t))

converges almost surely. By the Lemma 8.2.3 in Chow and Teicher (1988, p.265) coupled

with the Helly’s theorem in Serfling (1980, p.352), it is true that

n−1/2

∫ t

0

n∑n
i=1 ∆i(s)

dB(s) →
∫ t

0

1

E∆1(s)
dW(s) and n−1/2

∫ t

0

ϕ̄(s)dB(s) →
∫ t

0

ϕ̄∗(s)dW(s)

almost surely and uniformly in t. The weak convergence of n−1/2E(β∗, θ∗) thus follows in the

original probability space, due to their convergence almost surely to Wϕ(τ )−∫ τ

0
ϕ̄∗(s)dW(s)

in the induced probability. The calculation of the variance-covariance matrix is thus straight-

forward.
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