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We present a Bayesian approach to modeling dynamic smoking addiction behavior processes
when cure is not directly observed due to censoring. Subject-specific probabilities model the stochas-
tic transitions among three behavioral states: smoking, transient quitting, and permanent quitting
(absorbent state). A multivariate normal distribution for random effects is used to account for the
potential correlation among the subject-specific transition probabilities. Inference is conducted using
a Bayesian framework via Markov Chain Monte Carlo simulation. This framework provides various
measures of subject-specific predictions, which are useful for policy making, intervention develop-
ment, and evaluation. Simulations are used to validate our Bayesian methodology, and assess its
frequentist properties. Our methods are motivated by, and applied to the Alpha-Tocopherol, Beta-
Carotene (ATBC) Lung Cancer Prevention study, a large (29, 133 individuals) longitudinal cohort
study of smokers from Finland.

Key Words: Cure Model; MCMC, Mixed-effects Model; Prediction; Recurrent Events; Smoking
Cessation.
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1 Introduction

Cigarette smoking continues to be the leading cause of premature morbidity and mortality in the

United States (Samet, 1992; McBride, 1992; CDC, 1997). Intervention efforts to encourage and assist

smokers to quit are an important component of the public health campaign against this epidemic

(Novotny et al. , 1992). The slow progress in reducing the prevalence of smoking in recent years is,

in part, attributable to the high relapse rate (Cui et al. , 2006). Hunt et al. (1971) estimated relapse

rates following treatment for smoking cessation at approximately 80%, while Glasgow & Lichtenstein

(1987) found that between 50% and 75% of smokers who quit following treatment relapse within

one year. Piasecki et al. (2002) conjectured that the poor treatment success rates reflects a lack

of understanding of the dynamic nature of addiction and relapse processes. The goal of this article

is to design, implement, and evaluate the statistical framework of the dynamic process of smoking

cessation.

This problem was originally addressed by Luo et al. (2008) in an application to the Alpha-

Tocopherol, Beta-Carotene (ATBC) Lung Cancer Prevention study. Here, we provide a brief de-

scription of the ATBC dataset as well as a summary of Luo et al. (2008) modeling approach. The

ATBC study is a large (29, 133 individuals) longitudinal cohort study. The individuals were followed

for 5 to 8 years with three follow-up visits per year (i.e., every four months). At each visit, each

individual was queried about health and smoking status since the last visit. Smoking status was

defined by the following question (translated from the Finnish): “Have you smoked since your last

visit?” Individuals were allowed to indicate that during the previous four months, they (1) had not

smoked at all, (2) had smoked but had stopped at some time during the interval, or (3) had smoked

continuously. For the individuals who answered (2), the quit time, and duration of cessation were

unknown. We do not distinguish between (2) and (3), treating them as “smokers since last visit.”

Individuals who answered (1) are treated as nonsmokers since their last visit. Therefore, the smoking

status at each visit is either smoking or nonsmoking.
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The smoking patterns alternate between smoking and nonsmoking states with sojourn time in

each state varying within and between individuals. The smoking status is unknown after censoring.

To describe the full stochastic nature of the smoking addiction pattern, Luo et al. (2008) proposed

a discrete-time mixed-effects model with three states: smoking, transient cessation (temporarily

smoking-free but relapse later), and permanent cessation (lifelong smoking-free), which is a latent

state because of censoring. Rather than dichotomizing each individual as quitter or non-quitter

as is the common practice in epidemiology, Luo et al. (2008) incorporated a “cure” component,

and estimated the cure probability defined as the probability of permanent cessation given a quit

attempt. Random subject-specific transition probabilities among these three states were used to

account for the between-subject heterogeneity. Luo et al. (2008) provided a computationally fast

fitting algorithm using an innovative combination of geometric-like distributions of waiting times

between addiction states and Beta distributions of subject-specific random effects. This combination

resulted in a closed-form marginal likelihood which, though complicated-looking, is easy to maximize

using standard optimization software.

While in this article the stochastic smoking patterns are addressed by the same discrete-time

mixed-effects model with three states as in Luo et al. (2008), we use a different modeling and

inferential framework for random effects to address subject-specific predictions as well as potential

correlation among random effects corresponding to the transitions among three states. We replace

the independent Beta distributions of random effects by a multivariate normal distribution with

non-zero off-diagonal elements in the variance-covariance matrix. Modeling and inference are natu-

rally conducted using a Bayesian framework via Markov Chain Monte Carlo (MCMC) simulation.

This framework provides the joint distribution of vectors of subject-specific measures of the addic-

tion behavior, while incorporating the information in the data according to the rules of probability.

In addition, there is an important computational difference between the current article and Luo

et al. (2008). While we tried to obtain the subject-specific predictions with the approach in Luo
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et al. (2008) using Bayesian inference based on MCMC simulations, we were unable to obtain good

convergence and mixing properties. The multivariate normal distribution assumption used in this

manuscript allows us to circumvent this problem and to account for potential correlation among

random effects. Both these model characteristics are needed for satisfactory inference.

The model enhancements are important, but challenging to implement. Indeed, various measures

of subject-specific predictions, and their associated variability are useful in assisting policy making,

treatment, and intervention assessment. For example, to maximize the use of the limited resources

for smoking control, it may be helpful to categorize the individuals in the ATBC study into multiple

groups, e.g., high, and low propensity for quitting. Various intervention programs could be designed

accordingly to meet the smoking cessation needs of different groups. For the motivated individuals

with high propensity for quitting, consistent counseling may be effective to keep them smoke-free,

while more aggressive treatments could be necessary for the “hard-core” smokers with low propensity

for quitting. Moreover, one could evaluate, and identify the smoking patterns (e.g., the number, and

length of quit attempts), which can greatly increase the propensity for quitting. This provides

valuable guidance for the design, evaluation, and implementation of smoking-control strategies.

This article presents a Bayesian modeling approach to estimate the model parameters, and various

measures of subject-level predictions. Although not as computationally efficient as the modeling

framework in Luo et al. (2008), our algorithm remains feasible using modern computing platforms

and software. For reproducibility of our results, we post our code, simulated data, and results at

www.biostat.jhsph.edu/~ccrainic/webpage/programs/smoking/MCMC_Luo_smoking.zip

In Section 2, we summarize the modeling framework in Luo et al. (2008). In Section 3, we intro-

duce the Bayesian model and inference. In Section 4, we discuss the subject-specific predictions and

evaluations using our modeling framework. A simulation study is used to illustrate the methodology

in Section 5. The proposed methods are applied to the ATBC study dataset in Section 6. Finally,

the article is concluded with discussions in Section 7.
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2 A Stochastic Mixed Model for Addiction Behavior

To illustrate the complexity of the dataset, Figure 1a displays the smoking patterns of four individuals

in the ATBC study. The follow-up visit numbers are shown on the x axis and the individuals’ IDs

are on the y axis. Within the interval between two consecutive visits (i.e., 4 months), the individuals

either smoked (indicated by a shaded area) or did not smoke (indicated by a unshaded area). Some

individuals experienced smoking and nonsmoking periods in an alternating fashion (e.g., individuals

2, 3, and 4), while others never made quit attempts (e.g., individual 1). Although the smoking

patterns are unknown after censoring, the long trailing nonsmoking intervals of some individuals (e.g.,

individuals 2 and 3) suggest the existence of a potential “cured” subpopulation (i.e., individuals who

successfully quit smoking). This type of data arises frequently in medical studies such as infectious

diseases (e.g., ear infection, (Eerola et al. , 2003); Pnc bacteria carriage, (Auranen et al. , 2000);

Hib infection, (Auranen, 2000)), chronic diseases (e.g., epilepsy, (Cowling et al. , 2006); soft tissue

sarcoma, (Huang et al. , 2006)), and substance addiction, where patients make transitions among

several disease states or between the presence or absence of symptoms. After the administration of

various treatments, some patients are cured, and no longer experience disease states or symptoms.

Luo et al. (2008) modeled the data using a 3-state discrete-time stochastic mixed-effects model

with subject-specific transition probabilities denoted by Pij, with j = 1, 2, 3, as illustrated in Fig-

ure 1b. This model distinguishes the transient from the permanent quitting state because the pro-

cesses that describe transient and permanent quitting are likely to be different, and have different

policy making implications. When individual i is in the smoking state, quit attempts are made at the

beginning of each 4 month interval with probability Pi1. Once a quit attempt is made, the individual

may become a permanent quitter with probability Pi3 at the visit following the quit attempt. With

probability 1 − Pi3, the individual enters the transient quitting state, from which he has probability

Pi2 to relapse back to the smoking state in the current interval. Conditional on the random rates

Pij, the transition to the next state is determined only by the current and the previous states. A
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quit attempt is defined as the nonsmoking interval immediately after the smoking intervals. The quit

attempt is a gateway either to permanent or to transient quitting and is not a state in the proposed

stochastic process.

This modeling structure can be described using two types of geometric processes corresponding

to the sojourn time distributions in the smoking and nonsmoking states. The first type (Type I)

of geometric process describes the number of smoking intervals before the next quit attempt. The

second type (Type II) of geometric process models the number of nonsmoking intervals before next

relapse (a relapse is defined as the smoking interval immediately after the nonsmoking intervals),

conditional on being in a transient quitting state. The likelihood for individual i is constructed by

multiplying the likelihood contribution of both types of processes

Li = P Ki1

i1 (1 − Pi1)
Si1P Ki2

i2 (1 − Pi2)
Si2+Nik3 (1 − Pi3)

Ki2+1

+P Ki1

i1 (1 − Pi1)
Si1P Ki2

i2 (1 − Pi2)
Si2Pi3(1 − Pi3)

Ki2, (1)

where Ki1 is the number of quit attempts for individual i, Ki2 is the number of of relapses (unsuccessful

quit attempts), Si1 is the total number of smoking intervals excluding the relapsing intervals, Si2 is the

total number of nonsmoking intervals (excluding the quit attempts) in the Type II geometric process

with observed relapses, Nik3
is the number of trailing nonsmoking intervals (i.e., the nonsmoking

intervals between the final quit attempt and censoring if the last observed interval is neither smoking

nor a quit attempt, and Nik3
= 0 otherwise). For a detailed derivation of the likelihood formulation

in (1), please see Section 2.2 in Luo et al. (2008).

The likelihood in (1) is a sum of products of binomial-like distributions with the transition prob-

abilities Pij being the “success” probabilities. By assuming that Pij have Beta distributions, and

are independent given the covariates, the closed-form of the marginal likelihood can be obtained by

integrating out Pij. The stochastic model and the likelihood formulation in this article are similar to

Luo et al. (2008), but the random effects are modeled using the multivariate normal distribution.

This distribution conveniently accounts for between-subject heterogeneity and within-subject corre-
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lation in the transition probabilities. For individual i (i = 1, . . . , m, where m is the total number

of individuals), let yi denote the outcome variable vector. Corresponding to transition probability

Pij, let Xij denote a p × 1 vector of predictors. Let βj be a p × 1 vector of fixed effects regression

coefficients and let uij be the subject-specific random effects for transition probability Pij. To model

the transition probability vector Pi = (Pi1, Pi2, Pi3) for individual i , we let

gj(Pij; uij) = X ijβj + uij for j = 1, 2, 3, (2)

where gj(·) are some link functions. For example, we let g1(·) and g2(·) be the complementary log-

log link function and let g3(·) be the logit link function. We use the complementary log-log link to

make the transition probabilities between smoking and transient quitting states analogous to hazard

functions in discrete-time proportional hazards model (Kalbfleisch & Prentice, 2002). Note that βj

may be the same or different for different subscripts j and denote by β = (β′
1, β

′
2, β

′
3)

′.

The trivariate random effects vectors ui = (ui1, ui2, ui3)
′ are assumed to be independent and

identically distributed with normal probability density function h(ui;Σ), i.e., ui|Σ ∼ N3(0,Σ), where

ui = (ui1, ui2, ui3)
t and Σ is an unknown 3 × 3 covariance matrix with the (i, j)th entry denoted by

σij. The non-zero off-diagonal elements in Σ can account for the within-individual dependence among

random transition probabilities. With this structure of random effects, the marginal likelihood for

individual i is Li(Φ; yi) =
∫

Li(Pij|ui; βj)h(ui;Σ)dui, where Φ = (β,Σ). This integral cannot be

evaluated analytically as in Luo et al. (2008). To avoid this problem, we use Bayesian inference

based on MCMC posterior simulations.

3 Bayesian Inference

In this section we describe our Bayesian framework. Recall that the model parameters are β and Σ

describing the mean and correlation structure of the transition probabilities, respectively. We used

the following priors βjk ∼ N(0, 100), where j = 1, 2, 3, k = 1 . . . p, and p varies with the model. For

Σ, we use an approach suggested by Moller & Syversveen (1998), which is based on the Cholesky
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decomposition. Let Σ = ΩΩ′, where Ω is a matrix with zero entries above the main diagonal and let

ωi,j be the (i, j)th entry for i ≤ j. Consider a latent random effects vector z i = (zi1, zi2, zi3)
′ with

independent N(0, 1) components. Then ui = Ωzi has mean zero, and variance Σ. This corresponds

to the following linear reparameterization of the random effects ui:

ui1 = ω11zi1; ui2 = ω12zi1 + ω22zi2; ui3 = ω13zi1 + ω23zi2 + ω33zi3. (3)

Note that the entries of the matrix Σ are computed as σjk =
∑j∧k

l=1
ωljωlk, 1 ≤ j, k ≤ 3, where j ∧k =

min(j, k). Non-negativity constraints on ω11, ω22, and ω33 are imposed by assuming Uniform(0, 10)

prior distributions. The prior distributions for ω12, ω13, and ω23 are N(0, 100) to allow for potential

negative correlation in Σ. For notational convenience, let σ = (σ11, σ12, σ13, σ22, σ23, σ33), ω =

(ω11, ω12, ω13, ω22, ω23, ω33), zi = (zi1, zi2, zi3), and ρ = (ρ12, ρ13, ρ23) denotes the pairwise correlation

coefficients among the components in random effects ui. The joint distribution of the data and

parameters is

P (β,Σ) =
m∏

i=1

[
Li(yi;P)

{ 3∏

j=1

p(Pij; βj, ω, zi)P(zi)

}]
P(β)P(ω). (4)

and the full conditionals are detailed in Web Appendix A.

We can substitute (2) and (3) into the above full conditional distributions to get the functions in

terms of βj, ω, and z. The parameters are updated in the following order (β1, ω11), (β2, ω12, ω22),

(β3, ω13, ω23, ω33), and (zi1, zi2, zi3). These full conditionals do not have an explicit form and are

simulated using the single-component Metropolis-Hastings (M-H) algorithm (Metropolis et al. , 1953;

Hastings, 1970; Li, 1988) with a normal proposal distribution centered at the current value and a

small variance. Each parameter or block of parameters is updated in turn by conditioning on all other

parameters (Geman & Geman, 1984; Gelfand & Smith, 1990). The posterior distributions of σ and ρ

are computed from the posterior samples of ω and the posterior distributions of the subject-specific

transition probabilities Pij are computed from the posterior samples of β and ui.

8

http://biostats.bepress.com/jhubiostat/paper153



4 Subject-Specific Predictions and Evaluations

Our model and Bayesian inferential machinery provide straightforward subject-specific prediction

calculation even in very complex, but policy relevant, contexts. For example, given the study data and

model, one might be interested in predicting “who is a permanent quitter two years after censoring”.

Note that the individual who was smoking at censoring has probability zero to be a permanent quitter

at censoring, but nonnegative probability of being a permanent quitter two years after censoring. In

Section 4.1, we show how to calculate the probability of permanent quitting two years after censoring

(we call it 2-year quitting probability and denote it by Pi). In Section 4.2, we describe the predictive

properties of the decision making process based on Pi.

4.1 Subject-Specific Predictions

In this section, we show how to derive the 2-year quitting probability, Pi, which is defined as the

probability that the ith individual who was followed in the study for ni years becomes a permanent

quitter by the end of year ni + 2. For example, for an individual who was followed for five years

in the ATBC study, the 2-year quitting probability is the probability that he becomes a permanent

quitter by the end of year 7.

To compute Pi, the unobserved 2-year (24 months) period that follows the observed smoking

pattern is partitioned into 6 four-month intervals to emulate the design of the ATBC study. To

ensure that permanent quitting happens by the end of the 2-year period, the last two intervals (the

fifth and the sixth) must be nonsmoking. This is because (i) if permanent quitting occurs at or before

the fifth interval, the last two intervals are nonsmoking (e.g., the smoking patterns 1 to 8 in Web

Figure 1); (ii) if the quit attempt occurs at the fifth interval and permanent quitting occurs at the

last interval, the last two intervals are still nonsmoking (e.g., the smoking patterns 9 to 16 in Web

Figure 1). Denoted by SP are the 16 possible smoking patterns for the first four intervals. Web

Figure 1 displays SP indicating that permanent quitting happens at or before the second interval for

pattern 1, at the third interval for pattern 2, at the fourth interval for patterns 3 and 4, at the fifth

9
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interval for patterns 5 to 8, and at the sixth interval for patterns 9 to 16, respectively.

For individual i, the probability that smoking pattern j occurs is

Pi(spj|Pi1, Pi2, Pi3) = P
Ki1j

i1 (1 − Pi1)
Si1jP

Ki2j

i2 (1 − Pi2)
Si2jPi3(1 − Pi3)

Ki2j , (5)

where spj denotes the smoking pattern j. The 2-year quitting probability for individual i is

Pi(quit in 2-year) =
∑

spj∈SP

Pi(spj|Pi1, Pi2, Pi3). (6)

The probability formulation in (5) is slightly different from (1) because it does not contain Nik3
.

This is because permanent quitting occurs in every smoking pattern and there is no need to account

for the probability of observing the same pattern if permanent quitting does not occur. Note that

for pattern j, Ki1j , Si1j , Ki2j , Si2j, Nik3j, and Pi(spj|Pi1, Pi2, Pi3) are different for the individual who

smoked at censoring and for the one who did not smoke at censoring. For example, for pattern 1,

we have Ki11 = 1, Si11 = 0, Ki21 = 0, Si21 = 0, Nik31 = 5, and Pi(spj|Pi1, Pi2, Pi3) = Pi1Pi3 for

the individual who smoked at censoring, but Ki11 = 0, Si11 = 0, Ki21 = 0, Si21 = 0, Nik31 = 6,

and Pi(spj|Pi1, Pi2, Pi3) = Pi3 for the individual who did not smoke at censoring. When Pi1 is small,

Pi1Pi3 � Pi3. This explains why the individual who smoked at censoring has a much smaller 2-year

quitting probability Pi than the individual who smoked at censoring.

4.2 Decision-Making Evaluation

The 2-year quitting probabilities calculated in the previous section are very important predictive

measures and could be used in a decision-making framework. One way to formalize such a framework

could be to categorize the ATBC individuals into two groups, e.g., permanent quitters and non-

permanent quitters. A reasonable decision rule could be to fix a particular probability threshold (i.e.,

p0), and predict that individuals are permanent quitters if Pi > p0 and are non-permanent quitters

if Pi ≤ p0. To study the properties of this classification procedure we investigate the effect of various

thresholds on its sensitivity and specificity. Sensitivity is defined as Sens(Q, p0) = 1

Q

∑
i∈Q I{Pi > p0},

where Q is the set of the true permanent quitters. Sensitivity is the frequency with which the
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procedure correctly identifies the permanent quitters (true positive) using the probability threshold

p0. Similarly, the specificity is defined as Spec(Q, p0) = 1

|M\Q|

∑
i∈M\Q I{Pi ≤ p0}, where M is set of

all individuals, and M\Q denotes the set of non-permanent quitters, and |M\Q| is the cardinality of

the set M\Q. Specificity is the frequency with which the procedure correctly identifies the individuals

who are non-permanent quitters (true negative) using the probability threshold p0. The threshold p0

could be anything between 0 and 1, but some insight into reasonable values can be obtained using

simulations, as described in Section 5.

5 Simulation Study

In this section, we evaluate the performance of our methodology using simulations. To start with,

we consider data generating processes that are straightforward to explain, but complex enough to

capture the main features of the data. We consider the case when all processes depend only on

one binary covariate Xi, e.g., the baseline insomnia symptom. Because the prevalence of insomnia

at baseline is around 20% in the ATBC study, the covariate Xi is simulated independently from

a Bernoulli distribution with success probability .2 for i = 1, . . . , m, where m = 10, 000 and for

N = 100 simulated datasets. After the covariate for individual i is generated, the smoking pattern

is generated using the following algorithm.

1. Simulate the number of follow-up visits independently from a N(14.7, 5.82) distribution (this

is an approximation of the empirical distribution of number of visits in the ATBC study).

2. Simulate independently ui ∼ N(0,Σ) with

Σ =




.09 −.01 −.12
−.01 .16 .05
−.12 .05 .25


 .

We make this choice of Σ to approximate the results in the ATBC study.

3. Simulate Pij using (2) with β1 = (.186,−1.217)′, β2 = (−1.031, 1.217)′ and β3 = (.405,−2.603)′.

4. Conditional on smoking in the last interval, simulate the number of smoking intervals before
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the next quit attempt via the Type I geometric process with success probability Pi1.

5. With probability Pi3, the individual becomes a permanent quitter, all the remaining intervals

are nonsmoking and the simulation for individual i is finished.

6. With probability 1 − Pi3, the individual enters a transient quitting state. The number of

nonsmoking intervals before the next relapse is simulated from the Type II geometric process with

succes probability Pi2.

7. Repeat until the smoking pattern is generated for each individual.

Using the Bayesian methodology described in Section 3, we obtain the joint distributions of all

model parameters given the data. For each simulated dataset, we run five parallel chains using

initial values that are over-dispersed. For each of the five chains, we run 100, 000 simulations. The

first 20, 000 simulations of each chain are discarded, and inference is based on the remaining 80, 000

simulations from each chain. The MCMC convergence and mixing properties are assessed by visual

inspection of the chain histories of many parameters of interest. Web Figure 2, 3, and 4 display the

histories of 12 parameters of interest from three randomly selected chains for one of the simulated

datasets. These plots indicate reasonable convergence and mixing properties, even though, for clarity,

we only display every 500th simulation. Similar good chain properties have been noted in all other

examples presented in this article.

Simulation results are reported in Web Table 1. The row labeled “EST” provides the average of

the posterior means from 100 simulated datasets. The row labeled “SE” provides square root of the

average of the variances. The nominal 95% credible intervals of parameters (e.g., σ11) are obtained

from the 2.5% and 97.5% percentiles of the posterior distributions of the parameters (denoted by σ̂2.5
i11

and σ̂97.5
i11 for simulated dataset i). The coverage probabilities of these intervals (displayed in the row

labeled “Coverage probability”) are calculated as
∑N

i=1
I(σ̂2.5

i11 ≤ σ11 ≤ σ̂97.5
i11 )/N , where I(·) denotes

the indicator function. Results in Web Table 1 indicate that bias is negligible and the credible interval

coverage probabilities are reasonably close to the nominal level of 95 percent.
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To predict who is a permanent quitter two years after censoring, we use the threshold method

described in Section 4 and calculate the sensitivity and specificity functions. To gain some insight into

how the variability of the estimated Pij change the results, we substitute into (5) and (6) either the

true Pij generated in Step 3 of the simulation algorithm or the estimated Pij from MCMC samples.

Figure 2 displays the means and the 2.5% and 97.5% percentiles for sensitivity and specificity

at each threshold p0. The means and the percentiles are obtained using the 100 simulated datasets.

Figure 2 clearly shows the trade-off between sensitivity and specificity. When the threshold p0 is

less than .5, the sensitivity and specificity using the estimated Pij (solid line with dash-dot lines for

the percentiles) and using the true Pij (solid line with dashed lines for the percentiles) agree very

closely, e.g., the sensitivity remains at about .9 while the specificity plateaus at about .7. When p0

varies between .5 and .8, the results using the estimated Pij deviate markedly from the ones using

the true Pij, and show larger variability. These larger deviation and variability are partially due

to higher statistical variability of the estimated Pij. Moreover, low sensitivity is traded off for high

specificity in this range of thresholds, p0. When p0 > .8, the sensitivity gradually reaches zero and

the specificity gradually reaches one. When a threshold p0 ∈ [.3, .5] is selected, one could obtain

roughly .9 average sensitivity and .7 average specificity using the estimated Pij. In this range of

thresholds p0, the sensitivity and specificity results using the estimated Pij and using the true Pij

line up almost perfectly. This figure provides insight on the range of thresholds when the classification

and decision-making are of scientific interest.

6 Application to the ATBC Study

6.1 Parameter estimation and interpretation

In this section, we apply the proposed methodology to the ATBC dataset. For all results in this

section we use five parallel chains with overdispersed initial values with respect to the posterior,

and run each chain for 150, 000 simulations. The first 50, 000 simulations are discarded, and the

parameter estimates are based on the remaining 100, 000 simulations from each chain.
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Hosted by The Berkeley Electronic Press



First, we fit a simplified model with only one binary covariate, presence of the insomnia symptom

at baseline. Web Table 2 provides the posterior means, standard deviations and 95% credible intervals

for some of the parameters of interest. A negative sign for the insomnia effect indicates a smaller

probability of having a certain event. For example, the individuals with insomnia are less likely

to make a quit attempt than those without. After the quit attempt is made, the estimated odds

ratio of permanent cessation is .748 (i.e., exp(−.29); 95% CI: [.571, .970]) comparing the individuals

with insomnia to those without. These results are consistent with those in Luo et al. (2008) both

in direction and magnitude. While expected given the large sample size, it is reassuring that the

different structure of random effects does not have a more serious impact on our marginal inferences.

Web Table 2 also shows a high negative correlation between ui1 and ui3, i.e., ρ13 = −.93. We provide

more insight into this at the end of this section.

Second, we fit a richer model with the following eight covariates: age, years of smoking, cigarettes

per day, alcohol consumption (g/day), inhalation (yes/no), and factor 1, 2, and 3 obtained from a

factor analysis on the 16 baseline symptoms. The 16 baseline symptoms are: anxiety, depression,

poor memory, difficulty concentrating, fatigue, poor appetite, insomnia, headache, back ache, walking

pain in knees, joint ache, muscle ache, walking pain in hips, leg cramps, nocturnal restless legs, and

cutaneous itching. The covariates age, years of smoking, cigarettes per day, alcohol consumption are

centered and standardized. For interpretability of results, note that factors 1 and 2 are heavily loaded

on psychological and chronic medical conditions symptoms, respectively. Factor 3 is heavily loaded

on insomnia and walking pain, but it only explains 6.6% of the total variance. The history plots of

the chains for the model parameters are omitted because of space limit, but the mixing property of

the chains are comparable to the ones in the simplified model.

The rows labeled Pi1 in Table 1 display the results of modeling the probability of making quit

attempts. A negative sign of a parameter β indicates a smaller probability of having an event, i.e.,

making a quit attempt. Therefore, we conclude that older individuals have higher probability of
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making quit attempts, while years of smoking, cigarette, and alcohol consumption are negatively

associated with the probability of making quit attempts. The rows labeled Pi2 in Table 1 show the

results of modeling the probability of relapsing for the transient quitters, conditional on making a

quit attempt and being in a transient quitting state. We conclude that the individuals who smoked

more cigarettes per day take longer to relapse when they are in a transient quitting state. This is

unexpected, but consistent with results in Luo et al. (2008). Finally, the rows labeled Pi3 in Table 1

provide the results of modeling the probability of being a permanent quitter, conditional on making

a quit attempt. We conclude that the odds ratio of permanent cessation for an increase of 8.4 years

of smoking history (i.e., one standard deviation) is 1.160 (i.e., exp(.148); 95% CI: [1.036, 1.309]),

holding other covariates fixed. In addition, individuals with psychological symptoms (factor 1) have

significantly smaller probability of quitting permanently. The odds ratio of permanent quitting for one

unit increase in factor 1 is .890 (i.e., exp(−.115); 95% CI: [.787, .998]), holding other covariates fixed.

The results in Table 1 are consistent with Table 6 in Luo et al. (2008) with respect to the direction,

size, and significance of covariates, e.g., age, year of smoking, cigarette, and alcohol consumption in

modeling Pi1, cigarette consumption in modeling Pi2, and factor 1 in modeling Pi3. However, our

modeling results show a significant positive association between years of smoking and probability of

permanent quitting, while Luo et al. (2008) reports an insignificant negative association.

Web Table 2 and and Table 1 display high negative correlation between Pi1 and Pi3 (ρ13), and

relatively high positive correlation between Pi2 and Pi3 (ρ23). We now provide some insight into

why these correlations may occur. Consider first ρ̂13. Note that there are 1, 974 (6.8%) long-term

sustainers, i.e., individuals who did not smoke for at least 10 consecutive visits (40 months) and

sustained until censoring. These long-term sustainers, in our model, are most likely to be permanent

quitters, and contribute the most to estimating the parameters of Pi3. Among them, 1899 (96.2%)

made only one quit attempt, indicating why high Pi3 (long trailing nonsmoking intervals) might be

so highly associated with small Pi1 (few quit attempts). Consider next ρ̂23. Note that there are
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1, 188 (4.1%) relapsers, i.e., individuals who had at least one quit attempt but did not have a trailing

nonsmoking interval. These relapsers, in our model, are most likely to have a small Pi3. We count

the number of nonsmoking intervals before an observable relapse (take average if multiple relapses

occurred) for every relapser. Relapsers had an average smoke-free interval of 2.6 visits (10.4 months)

before next relapse. This relatively long smoke-free interval before relapsing indicates small Pi2.

Therefore, the association of small Pi2 and small Pi3 might lead to a high correlation coefficient ρ23.

6.2 Subject-Specific Predictions in the ATBC Study

In this section, we provide more insight into our model’s ability to provide subject-specific estimates

and predictions in the ATBC study conditional on the observed covariates and smoking patterns.

Figure 3 displays the smoking patterns of seven individuals in the ATBC study, who had 20 visits

before censoring and no baseline insomnia symptoms. These individuals had different numbers of

quit attempts and various sojourn time distributions in the smoking and nonsmoking states. Table 2

presents the number of nonsmoking intervals (in the column labeled “NS”) and quit attempts (in the

column labeled “QA”) for all seven individuals. Using the results of the simplified model, we calculate

the subject-specific posterior means of the transition probabilities Pij for these seven individuals. In

addition, we report the subject-specific 2-year quitting probability, Pi, as illustrated in Section 4.

These estimates are displayed in columns 4 to 7 in Table 2. For reference, the last row of Table 2

presents the population means of the numbers of nonsmoking intervals and quit attempts and Pij

and Pi of all individuals in the ATBC study.

Table 2 reveals how the smoking patterns change the subject-specific probabilities among the

individuals with identical numbers of visits and covariates. For examples, more quit attempts cor-

respond to a higher Pi1 (e.g., .014 in individual 1 vs. .123 in individual 7). Among the individuals

with the same number of quit attempts, we conclude that (1). earlier quit attempts correspond to

increased Pi1 (e.g., .026 in individual 3 vs. .055 in individual 4; and .066 in individual 5 vs. .095 in

individual 6); (2). the existence of a trailing nonsmoking interval corresponds to greatly increased
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Pi3 (e.g., .783 in individual 3 vs. .424 in individual 4; and .443 in individual 5 vs. .260 in individual

6); (3). the existence of a trailing nonsmoking interval also corresponds to increased 2-year quitting

probability Pi (e.g., .796 in individual 3 vs. .105 in individual 4). As a last point, among individuals

with the same length of a trailing nonsmoking interval, the ones with previous quit attempts have

smaller Pi3 and Pi than those without (e.g., individual 2 vs. 3). Intuitively, the individuals with

more unsuccessful quit attempts are more likely to be transient quitters in the trailing nonsmoking

interval because this interval tends to be a recurrence of the previous unsuccessful quit attempts.

7 Discussion

In this article, we introduce a computationally feasible Bayesian framework for the analysis of smoking

cessation patterns with a latent cure state. This framework provides various subject-specific predic-

tions by modeling the stochastic smoking behavior as a function of covariates and random effects.

The approach expands the functionality of the framework proposed in Luo et al. (2008) by account-

ing for the correlations among subject-specific transition probabilities. It also provides additional

insight into the relations among the dynamic smoking and quitting processes. We show how subject

specific transition probabilities, Pij, vary with smoking patterns across individuals, which provides

useful prognostic information for efficient development, targeting and evaluation of interventions.

Our cure model is based on unobserved states (permanent quitting) that are identified through

weak assumptions. Thus, it is reasonable to study the stability of parameter estimates to departures

from the model assumptions and to potential nearly unidentified parameters Li et al. (2001). In

particular, we evaluate the effect of using various link functions and parametric assumptions on the

random effects. The size of effects and scientific interpretation under different link functions (e.g.,

logit and probit links) are basically unchanged. Moreover, Luo et al. (2008) used independent

Beta distributions for the random effects and obtained essentially similar scientific results. It is

important to note that, in practice, it is hard to match the flexibility of the multivariate normal
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random effects assumption. For example, inducing correlation in a non-normal multivariate vector

is theoretically possible, but computationally challenging. This is also the reason why we do not

attempt to implement correlated nonparametric distributions of random effects.

Bayesian inference via MCMC simulations can be implemented and produces reliable and repro-

ducible results for complex addiction behavior data (see the software posted on the link in Section 1).

However, model fitting is computationally intensive. For example, it takes around 5.1 seconds to com-

plete one sampling cycle for one of the datasets simulated in Section 5 on a PC (Dell workstation XPS

Gen3, Pentium 4 3.6 Ghz dual processers, 2G RAM). It would take about 142 hours to get 100, 000

samples for a single MCMC chain. In contrast, it takes the Beta random effects methods proposed by

Luo et al. (2008) only about 4 minutes to get the estimates. The large difference in computational

time is due to the explicit function of the model parameters in Luo et al. (2008). Even though our

implementation is slower, the models and inferences in this article produce inferential results that

could not be obtained by the faster approach of Luo et al. (2008), e.g., subject-level predictions and

residual correlation inferences.

Supplementary Materials

Web Appendix, Tables, and Figures referenced in Sections 3 to 6 are available under the Paper

information link at the Biometrics website http://www.biometrics.tibs.org.
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Figure 1: (a) Sample profiles of some smoking patterns from the ATBC study. Shaded regions indicate
reported smoking and unshaded regions indicate reported nonsmoking. (b) Transition among three
states.
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Figure 2: The means and the 2.5% and 97.5% percentiles for sensitivity and specificity from 100
simulated datasets. The results from the true Pij is displayed as a solid line with dashed lines for the
percentiles. The results from the estimated Pij is displayed with a solid line with dash-dot lines for
the percentiles.
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Table 1: The posterior means (PM), standard deviations (SD)and 95% credible intervals (CI) of the
parameters from (2) for 8 covariates in the ATBC dataset

Models Parameters PM SD 95% CI
lower upper

Pi1

Intercept −4.366 .027 −4.419 −4.314
age∗ .208 .017 .175 .243
Years Smoked∗ −.281 .015 −.312 −.251
cigarettes/day∗ −.301 .016 −.333 −.269
alcohol∗ −.199 .018 −.235 −.163
factor1 .023 .015 −.006 .052
factor2 −.001 .014 −.029 .027
factor3 .017 .013 −.009 .042
inhale .006 .029 −.052 .063

Pi2

Intercept −.380 .237 −.817 .118
age −.015 .064 −.138 .111
Years Smoked −.010 .055 −.115 .100
cigarettes/day∗ −.152 .057 −.267 −.042
alcohol .121 .076 −.031 .267
factor1 −.027 .054 −.133 .077
factor2 −.055 .054 −.162 .048
factor3 .074 .051 −.028 .173
inhale .032 .108 −.178 .247

Pi3

Intercept 2.505 .222 2.098 2.984
age .055 .067 −.079 .188
Years Smoked ∗ .148 .060 .035 .269
cigarettes/day .032 .064 −.096 .156
alcohol −.003 .075 −.151 .141
factor1∗ −.116 .061 −.239 −.002
factor2 −.109 .060 −.228 .005
factor3 .074 .051 −.025 .174
inhale −.020 .117 −.248 .208

σ

σ11 .884 .044 .802 .973
σ12 −.184 .116 −.427 .026
σ13 −1.869 .178 −2.253 −1.555
σ22 1.139 .223 .768 1.638
σ23 1.193 .470 .415 2.282
σ33 4.675 .975 3.101 6.950

ρ

ρ12 −.180 .107 −.390 .027
ρ13 −.926 .034 −.982 −.851
ρ23 .504 .128 .235 .732

NOTE: ∗ represents statistical significance.
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Figure 3: The smoking patterns of seven individuals in the ATBC study.

Table 2: The number of nonsmoking (NS) intervals, the quit attempts (QA), the posterior means of
Pij, for j = 1, 2, 3, and the 2-year quitting probability Pi for seven individuals displayed in Figure 3.
The last row is the population means of the numbers of NS intervals and QAs and also Pij and Pi of
all individuals in the ATBC study

Individuals NS QA Pi1 Pi2 Pi3 Pi

1 0 0 .014 .512 .891 .061
2 11 2 .075 .276 .356 .389
3 7 1 .026 .492 .783 .796
4 7 1 .055 .221 .424 .105
5 7 2 .066 .391 .443 .483
6 7 2 .095 .296 .260 .106
7 7 3 .123 .332 .202 .244

Population mean 1.646 .253 .021 .496 .827 .192
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