
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

A Note on Empirical Likelihood Inference of
Residual Life Regression

Ying Qing Chen∗ Yichuan Zhao†

∗Division of Biostatistics, School of Public Health, University of California, Berkeley,
yqchen@stat.berkeley.edu
†Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia,

dz2007@gmail.com
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper153

Copyright c©2004 by the authors.



A Note on Empirical Likelihood Inference of
Residual Life Regression

Ying Qing Chen and Yichuan Zhao

Abstract

Mean residual life function, or life expectancy, is an important function to char-
acterize distribution of residual life. The proportional mean residual life model
by Oakes and Dasu (1990) is a regression tool to study the association between
life expectancy and its associated covariates. Although semiparametric inference
procedures have been proposed in the literature, the accuracy of such procedures
may be low when the censoring proportion is relatively large. In this paper, the
semiparametric inference procedures are studied with an empirical likelihood ra-
tio method. An empirical likelihood confidence region is constructed for the re-
gression parameters. The proposed method is further compared with the normal
approximation based method through a simulation study.



1 Introduction

A mean residual life function, m(t), t ≥ 0, is the expected remaining life given survival to t.

Suppose T is a failure time, then m(t) = E(T − t | T > t). It is an important function in

economics, actuarial sciences, reliability and survival analysis to characterize life expectancy.

Oakes and Dasu (1990) proposed a class of semiparametric models called the proportional

mean residual life model, as an alternative to the widely used Cox proportional hazards

model, to study the association between m(t) and its associated covariates. The Oakes-Dasu

model directly models the distribution of residual life and carries appealing interpretation in

life expectancy. Specifically, an Oakes-Dasu proportional mean residual life model usually

assumes that

m{t | Z(t)} = m0(t) exp{βTZ(t)}, (1)

where m(·) are mean residual life functions, Z(·) are p−vector covariates and β are associated

parameters. In a semiparametric version of this model, m0(·) is usually unspecified. When

a model satisfies both the proportional hazards and the proportional mean residual life

assumptions, its underlying distributions belong to the Hall-Wellner class of distributions

with linear mean residual life functions (Oakes & Dasu, 1990).

When there is no censoring, estimation procedures were developed in Maguluri and Zhang

(1994). When censoring presents, Chen and Cheng (2004) recently developed quasi-partial

score estimating equations for the regression parameters. Nevertheless, these large-sample

normal approximation based estimation methods tend to have poor performance when the

sample size is relatively small or the censoring proportion is relatively large. In this short

note, we instead consider empirical likelihood method to estimate the parameters in model

(1), as it is a powerful nonparametric method. In general, the empirical likelihood method

has unique features, such as range respecting, transformation-preserving, asymmetric con-

fidence interval, Bartlett correctability, and better coverage probability for small sample

(Owen, 2001). In analysis of censored survival times, for example, empirical likelihood was

used to derived pointwise confidence intervals for survival function with right censored data

as early as in 1975 (Thomas & Grunkemeier, 1975).
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In this short note we use the simple estimating equations in Chen and Cheng (1994) to

construct an empirical likelihood-ratio based confidence region. The proposed confidence

region and main asymptotic result are in Section 2. Results from a moderate simulation

are in Section 3 to compare our method with normal approximation based method. Some

alternative estimation method is discussed in Section 4.

2 Main results

In addition to the failure time T , let C be the potential censoring time. Conditional on the

p−vector covariate Z, T and C are assumed to be independent. Suppose that the observed

data set consists of n independent copies of (Xi,∆i, Zi), i = 1, . . . , n, where Xi = min(Ti, Ci)

and ∆i = I(Ti ≤ Ci). Here, I(·) is indicator function. Denote Yi(t) = I(Xi ≥ t) and

Ni(t) = I(Xi ≤ t)∆i. Let 0 < τ = inf{t : pr(X > t) = 0} < ∞.

As derived in (2004), the following estimating equations can be used to estimate the

parameter β in model (1):

U(β) =
n∑

i=1

∫ τ

0

{Zi − Z(t)}{m̂0(t;β)dNi(t)− Yi(t) exp(−βTZi)dt} = 0, (2)

where Z(t) =
∑n

i=1 Yi(t)Zi/
∑n

i=1 Yi(t) and

m̂0(t;β) =

[
exp

{
−
∫ t

0

∑
i dNi(t)∑
i Yi(t)

)

}]−1 ∫ τ

t

exp

{
−
∫ u

0

∑
i dNi(s)∑
i Yi(s)

} ∑
i Yi(u) exp(−βTZi)∑

i Yi(u)
du.

Denote β̂ and β∗ the estimated and true parameter of β, respectively. Then as shown in

Chen and Cheng (2004), under the regularity conditions, the random vector

n1/2(β̂ − β∗)
D→ N(0, A−1V A−1),

where A and V can be consistently estimated by their empirical estimators,

Â =
1

n

n∑
i=1

∫ τ

0

{Zi(t) − Z(t)}⊗2Yi(t) exp(−β̂TZi)dt, and

V̂ =
1

n

n∑
i=1

∫ τ

0

{Zi(t) − Z(t)}⊗2Yi(t)m̂0(t; β̂){exp(−β̂TZi)dt + dm̂0(t; β̂)},
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respectively. Thus an asymptotic 100(1 − α)% confidence region for β based on the above

normal approximation is given by

R1 = {β : n(β̂ − β∗)TÂV̂ −1Â(β̂ − β∗) ≤ χ2
p(α)}, (3)

where χ2
p(α) is the upper α-quantile of the chi-square distribution with degrees of freedom p.

Apparently the accuracy of R1 mainly depends on the large-sample normal approximation

and also the proportion of censoring. For relatively small sample size or large censoring

proportions, its accuracy may be compromised.

Now consider the empirical likelihood approach, instead. For i = 1, 2, . . . , n, we define

Wi =

∫ τ

0

{Zi − Z(t)}{m̂0(t;β∗)dNi(t)− Yi(t) exp(−βT
∗ Zi)dt},

and summarize the following results in Chen and Cheng (2004) as a lemma.

Lemma 1. Under regularity conditions in Chen and Cheng (2004), (i) n−1/2
∑n

i=1 Wi
D→

N(0, V ), and (ii) n−1
∑n

i=1 WiW
T
i →V in probability.

Thus the associated empirical likelihood is

L(β∗) = sup

{
n∏

i=1

pi :
∑

pi = 1,
n∑

i=1

piWi = 0, pi ≥ 0, i = 1, . . . , n

}
.

Let p = (p1, . . . , pn)T be a vector of probabilities such that
∑n

i=1 pi = 1, where pi ≥ 0,

i = 1, 2, . . . , n. Since
∏n

i=1 pi attains its maximum at pi = 1/n, the empirical likelihood ratio

at the true value β∗ is then

R(β∗) = sup

{
n∏

i=1

npi :
∑

pi = 1,
n∑

i=1

piWi = 0, pi ≥ 0, i = 1, . . . , n

}
.

By using Lagrange multipliers, we have

− 2 log R(β∗) = 2

n∑
i=1

log {1 + λTWi} , (4)

where λ satisfies the equation
1

n

n∑
i=1

Wi

1 + λT Wi
= 0. (5)
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Suppose that {Zi(t)} are uniformly bounded by a constant. Now define

Vi =

∫ τ

0

{Zi − µZ(t)}m∗(t)dMi(t),

where µZ(t) is the limit of Z(t) as n → ∞. Then E|Vi|2 < ∞. According to the proof of

Lemma 3 in Owen (1990), we have max1≤i≤n |Vi| = op(n
1/2). Note

Wi =

∫ τ

0

{
Zi − Z(t)

}
m∗(t)dMi(t) + op(1).

By the martingale representations of Vi and Wi, we can prove that |Vi − Wi| = op(1). Then

we have

max
1≤i≤n

|Wi| = op(n
1/2), and (6)

1

n

n∑
i=1

|Wi|3 = op(n
1/2). (7)

Let λ = ρθ, where ρ ≥ 0 and |θ| = 1. Recall Γn = 1/n
∑n

i=1 WiW
T
i = V + op(1), where

V is the limit of 1/n
∑n

i=1 WiW
T
i . Let σp > 0 be the smallest eigenvalue of V . Then,

θΓnθ ≥ σp+op(1). According to Lemma 1, 1/n |∑n
i=1 Wi| = Op(n

−1/2). By (6), the equations

in (5) and the argument used in Owen (1990), we know that

|λ| = Op(n
−1/2). (8)

Consider a Taylor expansion to the right-hand side of (4),

− 2 log R(β∗) = 2
n∑

i=1

{
λT Wi − 1

2
(λT Wi)

2

}
+ rn, (9)

where |rn| = Op(1)
∑n

i=1 |λTWi|3. Hence, by (7), |rn| = Op(1)|λ|3
∑n

i=1 |Wi|3 = op(1). Fur-

thermore, since

1

n

n∑
i=1

Wi

1 + λTWi
=

1

n

n∑
i=1

Wi

(
1 − λTWi +

(λTWi)
2

1 + λTWi

)

=
1

n

n∑
i=1

Wi −
(

1

n

n∑
i=1

WiW
T

i

)
λ +

1

n

n∑
i=1

Wi(λ
TWi)

2

1 + λTWi
= 0,

it follows that

λ =

(
n∑

i=1

WiW
T

i

)−1 n∑
i=1

Wi + op(1). (10)
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Similarly, we have

n∑
i=1

λTWi

1 + λTWi
=

n∑
i=1

(λTWi) −
n∑

i=1

(λTWi)
2 +

n∑
i=1

(λTWi)
3

1 + λTWi
= 0. (11)

Since
n∑

i=1

(λTWi)
3

1 + λTWi
= op(1), (12)

we know that
∑n

i=1(λ
TWi)

2 =
∑n

i=1

∑n
j=1 λTWi + op(1). As a result, the following is true

−2 log R(β∗) =
n∑

i=1

λTWi + op(1)

=

(
n−1/2

n∑
i=1

Wi

)T(
n−1

n∑
i=1

WiW
T

i

)−1(
n−1/2

n∑
i=1

Wi

)
+ op(1)

= χ2
p.

Hence we establish a theorem as:

Theorem 1. Assume {Zi(t)} are uniformly bounded by a constant. Then −2 log R(β∗)

converges in distribution to χ2
p, where χ2

p is a chi-square distribution with degrees of freedom

p.

According to this theorem, an asymptotic 100(1−α)% empirical likelihood confidence region

for β is thus constructed as

R2 = {β : −2 log R ≤ χ2
p(α)}, (13)

where χ2
p(α) is defined before.

3 Simulations

A small-scale simulation is conducted to compare the performance of the empirical likelihood

procedure with the normal approximation procedures. In Chen and Cheng (2004), their

simulations were conducted for relatively large sample size with relatively small proportion

of censoring. In order to compare the results, we adopt a similar simulation setup as theirs.

That is, we consider two covariates for each subject, Z1 and Z2, respectively, with Z1 being
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Table 1: Summary of simulation studies: 95% nominal coverage probabilities of normal

approximation and empirical likelihood method

β∗ = (0, 0)T β∗ = (1, 1)T

n Censoring % Method Z1 Z2 Z1 Z2

50 25% Normal 0.873 0.882 0.865 0.852

50 25% EL 0.932 0.937 0.940 0.935

50 50% Normal 0.797 0.804 0.811 0.817

50 50% EL 0.917 0.922 0.934 0.925

200 25% Normal 0.952 0.944 0.942 0.958

200 25% EL 0.957 0.955 0.956 0.947

200 50% Normal 0.957 0.942 0.938 0.947

200 50% EL 0.944 0.952 0.949 0.933

Normal, normal approximation method; EL, empirical likelihood method.

binary of 0 and 1 and Z2 being uniform on [0,1]. The baseline mean residual life function

is t + 1, corresponding to a Pareto distribution with survival function of 1/(t + 1)2. Failure

times are generated according to model (1), with true parameters of β to be (0, 0)T and

(1, 1)T, respectively. Independent censoring times are generated from uniform on [o, c], with

different c selected to result in 25% and 50% of censoring, respectively. The sample size for

each simulation is 50, and 200, representing relatively small and large samples, respectively.

The simulation results are tabulated in Table (1). Each entry of the table is based on 1,000

simulated data sets. As shown in the table, both of the methods work reasonably well with

right coverage probabilities of 95% when sample size is relatively large. But for sample size,

the normal approximation method apparently has relatively larger under-coverage, while the

empirical likelihood method has better coverage.

4 Discussion

In this short note, we use an empirical likelihood method to construct confidence regions

for the parameters in the proportional mean residual life model. This method is shown to
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be relatively more accurate in coverage probabilities in small sample size, compared with

the normal approximation method in Chen and Cheng (2004). As seen in the develop-

ment, the empirical likelihood method was applied to the estimating equations proposed by

Chen and Cheng (2004). In fact, an empirical likelihood estimator for β can be obtained as

β̃ = argmaxβ{R(β)}, which can be further shown

n1/2(β̃ − β∗)
D→ N(0, A−1V A−1).

In addition, empirical likelihood method can be extended to the weighted version of estimat-

ing equations straightforwardly as well. The efficient estimator of β would be obtained by

choosing the optimal weight function.

In fact, the empirical likelihood method can be used to construct confidence regions with

an alternative approach, although it involves estimation of censoring distribution. Consider

a synthetic variable T̃ (G, t) = Sc(t)X∆/Sc(X), for t > 0, where Sc(·) is the survival function

of censoring distribution. Then

E{T̃ (t;Sc) | X > t;Z} = ET

[
EC

{
Sc(t)TI(C ≥ T )

Sc(T )

∣∣∣∣C > t;Z

}∣∣∣∣T > t;Z

]
= ET

[{
Sc(t)TSc(T | C > t)

Sc(T )

}∣∣∣∣T > t;Z

]
= E(T | T > t;Z).

Thus, the following estimating equations can be used to estimate m0(t) and β jointly:

n∑
i=1

Yi(t)
{
T̃i(t; Ŝc) −m0(t) exp(βTZi)

}
= 0, (14)

n∑
i=1

∫ τ

0

Yi(t)Zi

{
T̃i(t; Ŝc) − m0(t) exp(βTZi)

}
dt = 0, (15)

where Ŝc is some consistent estimator of Sc, such as the Kaplan-Meier estimator when the

censoring is considered as homogeneous. By plugging in (15) with (14), thus the following

estimating equations can be used to estimate β:

n∑
i=1

∫ τ

0

Yi(t)T̃i(t; Ŝc)
{
Zi − Z(t)

}
dt = 0.

Thus similar empirical likelihood method proposed previously should apply to construct

alternative confidence regions. When censoring is heterogenous across individual subjects,

more model assumptions are then needed to use this approach.

8
Hosted by The Berkeley Electronic Press



References

Chen, Y. Q. & Cheng, S. (2004), Semiparametric regression analysis of mean residual

life with censored survival data, Biometrika, in press.

Cox, D. R. (1972), Regression models and life-tables (with discussion), J. R. Statist. Soc.

B, 34, 187–220.

Maguluri, G. & Zhang, C. H. (1994), Estimation in the mean residual life regression

model, J. Roy. Statist. Soc. Ser. B, 56, 477–489.

Oakes, D. & Dasu, T. (1990), A note on residual life, Biometrika 77, 409–410.

Owen, A. (1990), Empirical likelihood and confidence regions, Ann. Statist. 18, 90–120.

Owen, A. (2001), Empirical Likelihood, New York: Chapman & Hall/CRC.

Thomas, D. R. & Grunkemeier, G. L. (1975), Confidence interval estimation for

survival probabilities for censored data, J. Amer. Statist. Assoc. 70, 865–871.

9
http://biostats.bepress.com/ucbbiostat/paper153


	text.pdf.1089300946.titlepage.pdf.emky3
	viewcontent-61.pdf

