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1. Introduction

Medical tests for diagnosis of disease are often based on the comparison of some biologic

measurement to some threshold. In evaluating the utility of a particular test and thresh-

old, it is common to consider its sensitivity (the probability that a truly diseased patient

has a “positive” test exceeding the threshold) and the specificity (the probability that a

truly healthy patient has a “negative” test in which the measurement does not exceed the

threshold). However, the optimal threshold for any such biologic measurement depends on

the prevalence of disease in the screened population and costs associated with incorrect

diagnoses. It is thus common to compare two diagnostic tests with respect to their receiver

operating characteristic (ROC) curves: plots of the relationship between the true positive rate

(the sensitivity) and the false positive rate (FPR) (one minus the specificity) as the choice of

threshold varies. When the ROC curve for one diagnostic test is uniformly greater than the

ROC curve for another diagnostic test, the use of the first test will tend to engender lower

costs from misdiagnosis no matter the magnitude of costs assigned to each type of diagnostic

error and no matter the prevalence of disease in the screened population. As a measure of the

tendency for the ROC curve for one test to dominate another in this manner, it is common

for investigators to consider the area under each ROC curve (AUC) Diagnostic tests with the

larger AUC are deemed superior. However, when the ROC curve of a test does not dominate

that of another test, the AUC may not be a good measure to use for the comparison of two

tests. Other measures, such as the partial area under the ROC curve within some range of

acceptable specificity or sensitivity (pAUC), or some weighted average of the ROC curve

(wAUC), should be used instead (see Zhou et al., 2002 for a more complete discussion).

Scientific studies designed to compare the utility of two diagnostic tests will typically

use samples of diseased and healthy subjects as defined by some gold standard. Statistical

analysis of the resulting data will focus on whether any difference in AUC (pAUC, or wAUC)
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is statistically significant. Statistical methods for comparing ROC curves might be parametric

(e.g., the binormal model of Dorfman and Alf, 1969), semiparametric (Cai and Pepe, 2002),

or nonparametric (Hanley and McNeil, 1982; Wieand et al., 1989). Molodianovitch, et al.

(2005) provided a comprehensive study on nonparametric approaches for comparing AUCs.

In scientific studies that evaluate diagnostic tests, human experimentation raises issues

related to ethics and efficiency. Interim analyses conducted at one or more times during the

accrual of data in such studies can greatly improve the ability to address those ethical and

efficiency issues. Such group sequential monitoring of clinical trials is commonplace, but the

use of sequential sampling when evaluating diagnostic tests has not received much attention

to date. Mazumdar & Liu (2003) provided a parametric sequential method for testing the

equality of two AUCs when the observations in the healthy and diseased populations follow

normal distributions (the “binormal model”). Zhou et al. (2007) proposed a nonparametric

method for sequentially comparing AUCs. Mazumdar (2004) provided a general guideline

for performing sequential tests for diagnostic accuracy studies based on AUCs.

Sequential tests are particularly valuable for comparative diagnostic trials in medical

imaging modalities. Commonly used imaging procedures include Computed Tomography

(CT) and Positron Emission Tomography (PET). However, CT scanners expose the subjects

to ionizing radiation from a series of X-rays. In PET, subjects have to undergo the injection

of radioactive isotopes in order for their regions of interest to be measured. Unnecessarily

exposing the subjects in the scientific study to an inferior diagnostic procedure is clearly

undesirable. Furthermore, unnecessarily delaying the identification of a beneficial diagnostic

test does a disservice to those patients who are not participating in the scientific study, but

would benefit from more accurate diagnosis. As both PET and CT are expensive procedures

costing as high as thousands of dollars per subject, unnecessarily prolonging a study also

diverts resources from better uses.
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Wieand, Gail, James and & James (1989) introduced wAUC estimators and the subse-

quent WGJJ statistic for comparing two ROC curves is the difference between two wAUC

estimators. The contribution made by this article is that we show a sequentially computed

modification of this WGJJ statistic has approximately uncorrelated increments covariance

structure by deriving its asymptotic properties using a basic theorem in empirical process

theory, therefore, allowing the use of all popular group sequential methods introduced in

Jennison & Turnbull (2000). One advantage of wAUC estimators over parametric AUC

estimators in Mazumdar & Liu (2003) is that the wAUC estimator is distribution-free and

includes a large family of statistics in diagnostic tests, such as non-parametric estimators of

AUC, partial AUC, and the sensitivity at a specified specificity. The wAUC estimator also

includes the AUC estimator in Zhou et al. (2007) as a special case.

The paper is organized as follows. In Section 2 we show that after a specific transformation

the WGJJ statistic is a Brownian motion process as information time grows, therefore, it can

be applied in sequential tests. In Section 3 we describe the design and monitoring procedure

for comparing the wAUC’s in group sequential designs. In Section 4 we describe the use in

ROC curve analysis of a sequential semiparametric estimator based on proportional hazard

models. In Section 5 we carry out simulations to investigate the efficiency of these estimators

under various settings. The nonparametric method is illustrated in Section 6 in the setting

of lung cancer diagnosis and some discussion is presented in Section 7.

2. Asymptotic distribution of sequential WGJJ statistic

Suppose we have measurements from two diagnostic tests on m diseased subjects and n

healthy subjects, where all subjects are totally independent. Denote the measurements from

test � (� = 1, 2) on the ith diseased subject as X�i and the corresponding measurements

on the jth healthy subject as Y�j. Define joint cumulative survivor distribution functions

(X1i, X2i) ∼ F̄ (x1, x2) for the diseased population’s measurements and (Y1j, Y2j) ∼ Ḡ(y1, y2)
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for the healthy population’s measurements. Further define marginal survivor distributions

X�i ∼ F̄�(x) and Y�j ∼ Ḡ�(y).

Without loss of generality, we assume that measurements tend to be larger for diseased

subjects than for healthy subjects. A receiver operating characteristic (ROC) curve for the �th

test can be expressed as a plot of sensitivity (Pr(X�i > c) = F̄�(c)) versus false positive rate

(FPR), or 1 minus the specificity (Pr(Y�j > c) = Ḡ�(c)) as the threshold c varies over the real

numbers. Equivalently, we can define the ROC curve for test � as ROC�(u) = F̄�

(
Ḡ−1

� (u)
)
,

where 0 � u � 1, noting that in this parameterization u corresponds to the FPR.

Wieand et al. (1989) proposed comparing two ROC curves on the basis of the weighted

area under the ROC curve Ω� =
∫ 1

0
[F̄�(Ḡ

−1
� (u))]dW (u), with a probability measure W (u)

defined on the FPR, u, for u ∈ (0, 1). Included in this class of accuracy measures are the

area under the curve (AUC) (when W (u) = u for 0 < u < 1), the partial area under the

curve (pAUC) between FPRs u1 and u2 (when W (u) = u for 0 < u1 � u � u2 � 1), and the

sensitivity at a given level of specificity u0 (when W (u) is a point mass at u0).

In particular, Wieand et al. (1989) considered a nonparametric estimator based on empiri-

cal survivor distribution functions ˆ̄F�(x) and ˆ̄G�(y). Two diagnostic tests are then compared

using the difference Δ in two wAUC estimators as estimated by

Δ̂ = Ω̂1 − Ω̂2 =

∫ 1

0

{
ˆ̄F1(

ˆ̄G−1
1 (u))

}
dW (u) −

∫ 1

0

{
ˆ̄F2(

ˆ̄G−1
2 (u))

}
dW (u). (1)

In Wieand et al. (1989)’s paper, they derived the asymptotic property of Δ̂. However, their

proof was complicated. The use of modern empirical theory can greatly simplify the proof.

Here we re-derive the asymptotic distribution of Δ̂ in Theorem 1 by applying Lemma 3.9.27

of Van der Vaart & Wellner (1996) to the derivative of the functional composition, because

the estimator Ω̂� can be written as the sum of two independent Brownian bridges. The proof

of Theorem 1 is provided in the Appendix.

THEOREM 1. Under mild regularity conditions, when m/n → λ < ∞ as m,n → ∞, the
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difference Δ̂ = Ω̂1 − Ω̂2 satisfies

√
m(Δ̂ − Δ)

D−→ N (0, vX + λvY ),

where vX and vY are given in the Appendix.

The approximate variance σ2
Δ of Δ̂ is then σ2

Δ = vX/m + vY /n and can be estimated by

substituting the corresponding empirical estimates in vX and vY in Equation (A.1) in the

Appendix. Using the above distributional theory, we can make statistical inference about

Δ by using the nonparametric estimator Δ̂ with its approximately (large sample) normal

distribution, N (Δ, σ2
Δ). In particular, hypothesis tests of H0 : Δ = Δ0 can be based on the

normalized statistic Z = (Δ̂−Δ0)/σ̂Δ. In the presence of large sample sizes and the absence

of early stopping, the Z statistic has the approximately standard normal distribution under

H0. The use of this statistic in the group sequential setting is described in the next section.

3. Use of the WGJJ statistic under group sequential sampling

3.1 Stopping Rules

We consider now a group sequential sampling plan involving up to J analyses of the accruing

data. At the time of the jth analysis, we have diagnostic test data available on the first mj

diseased subjects and the first nj healthy subjects. From these data available at the jth

analysis, we compute for the �th diagnostic test the empirical survivor distribution functions

ˆ̄F�j(x) and ˆ̄G�j and wAUC estimators Ω̂�j. These interim estimates are then used to compare

ROC curves using interim contrast Δ̂j, its standard error σΔj, and the interim normalized

statistic Zj = Δ̂j/σΔj.

We consider a group sequential sampling plan defined by up to four boundaries −∞ �

aj � bj � cj � dj � ∞ at each of the J analyses. In order to uniquely define a stopping rule,

we demand for j < J that either aj < bj or cj < dj (or both) and that at least one of the

four boundaries are finite. It is also typical that we obtain termination with a finite sample
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size by ensuring that aJ = bJ and cJ = dJ for some finite (but possibly random) choices of

J , mJ , and nJ .

Sequential sampling proceeds by starting at analysis j = 1. At the jth analysis, mea-

surements on the first mj diseased subjects and nj healthy subjects are used to compute

the interim statistic Zj. If Zj � aj, bj < Zj < cj, or Zj � dj, the study is stopped without

accruing more subjects. Otherwise, the study accrues sufficient subjects to be able to proceed

to analysis j + 1. We define group sequential statistic (M̃, Z) by M̃ = min{1 � j � J : Zj �∈

(aj, bj]∪ [cj, dj)} and Z = ZM̃ . In the setting of comparing ROC curves, we would most often

decide that diagnostic test 1 is superior, approximately equivalent, or inferior to diagnostic

test 2 according to whether Z � dM̃ , bM̃ < Z < cM̃ , or Z � aM̃ , respectively.

When frequentist statistical inference is the ultimate goal, it is common to ensure that

the experimentwise error is controlled at a desired level (e.g., in a two sided hypothesis test

choose stopping boundaries to ensure Pr(bM̃ < Z < cM̃ |H0) = 1 − α for a desired type

I error α). The dimensionality of the boundary space is typically reduced through the use

of a boundary shape function which defines a relationship between the exact value of the

stopping boundaries aj, bj, cj, dj and the statistical information available at the jth analysis

(which is typically 1/σ2
Δj in the case of an approximately normally distributed statistic). For

purposes of sample size calculation, the boundary shape function typically specified in terms

of the proportion τj of maximal statistical information available at each analysis (in the case

of approximately normally distributed statistics τj = σ2
Δj/σ

2
Δj). Commonly cited boundary

shape functions include the O’Brien-Fleming, the triangular test boundary, and the Pocock

boundaries (see Jennison & Turnbull, 2000).

The statistical literature is replete with alternative strategies for choosing stopping bound-

aries appropriate for particular scientific and statistical settings (see Jennison & Turnbull,

2000; Emerson, Kittelson, & Gillen, 2007a, b). Almost all of that statistical literature,
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and all three of the commercially available statistical software capable of implementing the

general methods (S+SeqTrial, PEST, EaSt), presume a particular covariance structure for

the statistics Z1, Z2, . . . , ZJ . In this covariance structure, the statistical information accrued

between two successive analyses is independent of all prior information accrued, and it is

thus commonly referred to as an “independent increment” covariance structure (Jennison &

Turnbull, 2000, Chapter 11).

The use of the WGJJ statistic in the sequential comparison of ROC curves is greatly

facilitated by showing that the statistic has an “independent increment” structure. We let Ij

denote the statistical information at the jth analysis, and τj = Ij/IJ denote the proportion

of maximal information as before. Define B(τj) =
√

τjIjΔ̂j, which is an asymptotically

unbiased estimator for
√

τjIjΔ = τj

√
IJΔ = with asymptotic variance var(B(τj)) = τj.

THEOREM 2. For j < k, cov(B(τj), B(τk)) = τj.

The proof is provided in the Appendix. Thus B(τj) behaves asymptotically like a Brownian

motion process with a drift parameter θ, where θ = Δ
√

IJ . The WGJJ estimator can then

be readily accommodated by standard group sequential software.

3.2 Sample size determination

In a wide variety of statistical models, the maximal number ÑJ of sampling units needed is

estimated by ÑJ = δ2
αβV/Δ2

1, where 1/V is the (average) statistical information contributed

by a single sampling unit, Δ1 is the difference between Ω�’s under the alternative hypothesis

to be detected with statistical power 1−β in a level α hypothesis test, and δαβ is the design

alternative in some standardized version of the test. For instance, in a fixed sample (no

interim analyses, J = 1) two-sided hypothesis test of the difference in weighted AUCs having

equal sample sizes, ÑJ might be the sample size to be accrued in each group, Δ1 = Ω1 −Ω2

might be the difference between group means under the design alternative, V = σ2
Δ is the
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variance, and δαβ = z1−α/2 + zβ. This same formula can be used in a group sequential test,

providing that the value of δαβ specific to the selected stopping rule is used.

With pilot data, it is trivial to nonparametrically calculate the variance of the WGJJ statis-

tic from Equation (2). However, if the pilot study is not yet available, we will nevertheless

need parametric distribution assumptions to obtain the variance of the WGJJ statistic based

on the formula in Equation (2). This means that we will have to guess explicit distributional

models and parameters in the models. In the following context, we will discuss a method

to obtain conservative sample sizes based on the conjectured values of AUCs without either

having a pilot data or specifying model parameters.

We denote the WGJJ statistic for AUCs as ΔA. ΔA is then the difference between two

Wilcoxon statistics, Ω̂A
1 and Ω̂A

2 . Hanley & McNeil (1982) showed that an estimated AUC had

a smaller variance under negative exponential models than under normal or gamma distri-

butions, therefore, a more conservative sample size under negative exponential distribution.

More importantly, the advantage of using negative exponential distributions rather than nor-

mal or gamma distributions is that we can derive the variance of Ω̂A
� solely from hypothesized

values of AUCs , ΩA
� , without prespecified parameters. Sample sizes for two diagnostic arms

can then be calculated without knowing the parameters in negative exponential distributions

as stated in the following theorem.

THEOREM 3. Under mild regularity conditions, as m/n → λ when m,n → ∞, the

variance v2
A of ΔA is then given by v2

A = var(Ω̂A
1 ) + var(Ω̂A

2 ) − 2ρ

√
var(Ω̂A

1 )var(Ω̂A
2 ), where

var(
√

mΩ̂A
� ) = λQ1� + Q2� − (λ + 1)(ΩA

� )2, with Q1� = ΩA
� /(2−ΩA

� ), Q2� = 2(ΩA
� )2/(1 + ΩA

� )

and ρ, the correlation between two AUCs.

Proof. With finite sample sizes m and n, we have

var(Ω̂A
� ) =

[
ΩA

� (1 − ΩA
� ) + (m − 1){Q1� − (ΩA

� )2} + (n − 1){Q2� − (ΩA
� )2}] /mn.

Thus, as m,n → ∞, it is true that var(
√

mΩ̂A
� ) → λQ1� + Q2� − (λ + 1)(ΩA

� )2.
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Nonparametric and Semiparametric Group Sequential Methodsfor Comparing Accuracy of Diagnostic Tests 9

Denote Ṽ� to be the right side of the above equation. Consider a null hypothese, H0 : ΔA = 0

and the alternative two-sided hypothesis, HA : ΔA �= 0 with Type I error α and power 1− β

at the conjectured AUC values, ΩA
1 and ΩA

2 . Using a general formula in Zhou et al. (2002,

Section 6.2), the required fixed sample sizes for the diseased and healthy subjects, denoted

as Mf and Nf respectively, can be derived by

Mf = λNf =
(Z1−α/2

√
(2 − 2ρ)Ṽ1 + Z1−β

√
Ṽ1 + Ṽ2 − 2ρ

√
Ṽ1Ṽ2)

2

(ΩA
1 − ΩA

2 )2
. (2)

A special case with λ = 1 and ρ = 0 is given in Hanley and McNeil (1982). Subsequently,

the maximum sample sizes Mg for the diseased subjects and Ng for the healthy subjects

can be derived for the O’Brien-Fleming test, the triangular test, and the Pocock test by

Mg = λNg = δ2
αβ,g/δ

2
αβ,fMf , where δ2

αβ,g/δ
2
αβ,f is the sample size ratio between a fixed sample

design and a sequential design. We can also get the maximum sample sizes Me and Ne for a

more flexible error spending function design (Lan & DeMets, 1983) by Me = λNe = θ2
e/θ

2
fMf ,

where θf and θe are the drift values for a fixed sample design and a group sequential design,

respectively.

Not restricted to the two-sided hypothesis test mentioned above, the sample size can be

determined for any stopping rule in Section 3.1. These test methods were incorporated in

S+SeqTrial (2000) developed by Emerson and others. Their software provides a compre-

hensive tool for designing, monitoring, and analyzing clinical trials using group sequential

methods. The independent increment covariance structure of the WGJJ statistic ensures

its ready accommodation by the software. In S+SeqTrial, we can specify the type of group

sequential design in S+SeqTrial, then plug in the conjectured value for a wAUC, with its

variance, the desired power and type I error to obtain the total size without calculating both

fixed sample size and the ratio λ.
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4. Semiparametric partial AUC estimator

When the measurements of diagnostic tests are from exponential distributions or other

power-law distributions, the proportional hazard model assumption is satisfied (for a real

example, see Sanchez-Marin and Padilla-Medina, 2006). We can then use a semiparametric

estimator for comparing correlated AUCs under proportional hazard models. Let Z�i = 1 if

the ith subject is diseased, 0 otherwise, under the �th diagnostic test with � = 1, 2. Now

the �th test of the ith subject has a hazard function λ�i(t) = λ�0(t)exp{γ�Z�i}, where λ�0(t)

is a baseline hazard function and γ�’s are parameters in the Cox regression. The resulting

ROC curve for the �th test takes on the form of ROC�(u) = uexp(γ�). Its AUC is given by

ΩA(γ�) = 1/{exp(γ�) + 1}, and its partial AUC between a and b, 0 < a < b � 1, is given

by ΩpA(γ̂�) = {bexp(γ̂�)+1 − aexp(γ̂�)+1}/{exp(γ̂�) + 1}. If 0 = a < b � 1, the partial AUC is

ΩpA(γ̂�) = bexp(γ̂�)+1/{exp(γ̂�) + 1}. The covariate-adjusted estimator γ̂� is obtained from the

marginal Cox regression model for the �th test. The asymptotical property of γ̂�’s is shown

in Wei et al. (1989) by

n1/2(γ̂1 − γ1, γ̂2 − γ2)
D−→ N(0, v1Σ

γv2),

where v� = var(γ̂�) and Σγ is the correlation matrix of n1/2(γ̂1 − γ1, γ̂2 − γ2).

THEOREM 4. As m,n → ∞, the estimated AUC (or partial AUC) difference, Δ(γ̂1, γ̂2),

satisfies

n1/2(Δ(γ̂1, γ̂2) − Δ(γ1, γ2))
D−→ N(0, v2

p),

where

v2
p =

⎛
⎜⎝ (Ω)′(γ1)

−(Ω)′(γ2)

⎞
⎟⎠

′

Σγ

⎛
⎜⎝ (Ω)′(γ1)

−(Ω)′(γ2)

⎞
⎟⎠ .

Its proof in a general survival model framework is provided in the Appendix. Consequently,

the sequential versions of our semiparametric proportional hazard AUC or pAUC estimators
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have asymptotically independent increments. Thus, it is straightforward to incorporate the

semiparametric estimators in the group sequential designs. Our estimator is also easily

adapted for sequentially testing survival outcome measurements from two diagnostic tests.

The covariance matrix Σγ between γ�’s can be consistently estimated using a sandwich

estimator (Wei et al., 1989) by Σ̂γ = nv̂1W1W
′
2v̂2, where v̂� is the estimated variances for γ̂�,

and W� is the residual vector calculated from the marginal proportional hazard model for

the �th test.

5. Finite-sample property

In this simulation study, we investigated the finite sample performance of the sequential

WGJJ statistic and the previously described semiparametric procedure both in a fixed sample

test (J = 1), a three-group sequential test (J = 3), a four-group sequential test (J = 4) and a

five-group sequential test (J = 5). We also included a common binormal parametric approach

for comparisons among these three methods. The null hypothesis of equal AUCs was set to

be true and the nominal type I error was set to be 0.05 for two-sided tests. We simulated

bivariate normal (Binorm) , bivariate lognormal (Bilog) and bivariate exponential (Biexp)

data as outcome measurements for two diagnostic tests. The bivariate normal models had

the forms of (X1, X2) ∼ N((11, 1), Σ1) and (Y1, Y2) ∼ N((10, 0), Σ2), where

Σ1 =

⎛
⎜⎝ 1

√
2ρ

√
2ρ 2

⎞
⎟⎠ and Σ2 =

⎛
⎜⎝ 2

√
2ρ

√
2ρ 1

⎞
⎟⎠ , with ρ = 0.5.

The AUCs were thus the same from the formula of AUC under binormal models (Zhou

et al., 2002): AUC = Φ{(μ1 − μ0)/(
√

σ2
1 + σ2

0)}, where (μ1, σ1) and (μ0, σ0) are the

normal parameters in diseased and healthy groups, respectively. The bivariate lognormal

models had the forms of exp(X1, X2) and exp(Y1, Y2) for the diseased and healthy subjects,

respectively. The AUCs under simulated lognormal models were also equal, since ROC curves

Hosted by The Berkeley Electronic Press



12 Biometrics, 000 0000

are invariant to monotone transformations. Equal numbers of diseased and healthy subjects

were considered in the simulation, i.e., m=n=(50, 100, 200).

The bivariate exponential random variables were simulated using an algorithm in Gumbel

(1960). The Gumbel’s distribution had the form H(x, y) = H1(x)H2(y)[1+4ρ{1−H1(x)}{1−

H2(y)}], where ρ ∈ [−0.25, 0.25]. We set ρ to be 0.25. Bivariate exponential random variables

were simulated with the marginal survival functions exp(−β�1x) and exp(−β�2y) for diseased

and healthy subjects respectively, where � = 1, 2, denotes the types of tests. In the simulation,

(β11, β12, β21, β22) = (1, 2, 2, 4). Since the AUCs under these exponential distributions are

given by exp(γ�) = β�1/β�2, two resulting AUCs should be the same.

Under each of the above model assumptions, 1000 random variables were simulated and

three methods including sequential WGJJ statistic, semiparametric method and parametric

binormal method were fitted to the simulated data. The Z statistics were then calculated

based on estimated parameters and their variances. The rejection rates were obtained by

comparing the Z statistics with corresponding test boundaries under either the fixed sample

design or sequential designs. Table 1 gives the rejection rates of all three methods with a

nominal level 0.05 under both Pocock’s (POC) and O’Brien & Fleming’s (OBF) criterions.

In the fixed sample test, the WGJJ statistic gives the rejection rate close to the nominal

level under all model specifications for sample sizes in both groups as small as 50, while the

parametric binormal method greatly inflates rejection rates when the true underlying distri-

bution is bivariate lognormal, and deflates rejection rates when the underlying distribution

is in fact bivariate exponential. Under the setting of group sequential designs, the WGJJ

statistic also give correct rejection rates regardless of underlying distribution models. When

the underlying distributions are misspecified, the parametric and semiparametric methods

inflate the rejection rates further compared with their fixed-sample counterparts. In addition,

with proportional hazard model correctly specified, the semiparametric method performs well
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for both the fixed sample design and the sequential designs. In summary, the nonparametric

approach based on the WGJJ statistic is robust to model specifications and it performs as

well as parametric approach under correct model assumptions. Moreover, the nonparametric

approach has excellent small-sample performance, which makes it a well-suited method for

conducting group sequential diagnostic trials.

[Table 1 about here.]

6. Examples

6.1 An illustration for sample size determination

We used binormal and biexponential models to illustrate how to determine maximum sample

sizes in the fixed sample design and group sequential design using the WGJJ statistic for

AUC and partial AUC estimators, which are denoted as ΔA and ΔpA, respectively. The

equally-spaced symmetric two-sided error spending (Kim & Demets, 1992) test with the error

spending function f(τ) = min(ατ, α) was used with power 0.8 and type I error α = .05.

6.1.1 Under bivariate normal model assumption. Suppose the binormal distribution of

the test outcomes is given by (X1, X2) ∼ N((μ1, μ2), Σ), (Y1, Y2) ∼ N((0, 0), Σ), where

covariance matrix Σ had common variances 1 and covariances 0.5. We let λ = 1, equivalent

to disease prevalence 0.5. Since the distributions were known, we were able to obtain the

exact variance of ΔA or ΔpA from the results in Equation (A.1) in the Appendix. Under the

specified test setting, we obtained sample sizes Ng from the results in Section 3.2. Here, the

drift value θe = 2.96 for a sequential design and θf = 2.80 for a fixed sample design can be

calculated using aforementioned softwares. The sample sizes Nf for the fixed sample design

can then be computed. The results for ΔA are presented in Table 2. We also found that the

sample sizes given by Equation (2) under the same test setting are slightly more than those
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in Table 2. This ensures that without the pilot data or prior knowledge of the distributions,

the sample size computed by Equation (2) can serve as a conservative initial guess.

To investigate how accurate these sample sizes are in maintaining the required power, we

used several relatively large sample sizes in Table 2, such as size 929 (AUC 0.75 vs AUC

0.70), size 634 (AUC 0.85 vs 0.80) and size 91 (AUC 0.85 vs AUC 0.70) in a three group

design. We simulated 1000 data sets under each binormal setting, and computed the number

of times that the null hypothesis of equal AUCs was rejected. The resulting powers under

aforementioned sample sizes were then 80.3%, 79.5% and 78.7%, respectively. They were

close to the nominal level 80%.

[Table 2 about here.]

Suppose now we are interested in comparing partial AUCs for the false positive rate less

than 0.6. For our range of false positive rate, it can be calculated that the partial AUC is

between 0.18 and 0.6 (Zhou et al., 2002, Section 4). Table 2 also gives maximum possible

sample sizes for testing the difference between partial AUCs.

These two sets of illustrations gave examples of deriving the maximum sample sizes for

three-group sequential designs if the distributions of test outcomes are assumed known. In

fact, given a specified power and a type I error, available softwares such as S+SeqTrial,

PEST and EaSt can compute sample size ratios for Pocock, OBF, and error spending tests.

If the required sample size for the fixed sample test is available, the maximum sample size for

any sequential test can be derived by multiplying a specified constant ratio related to that

sequential test. In the case that the models are unknown, if the pilot data is available, then

the consistent estimates of vX and vY are obtained by plugging in the empirical distributions

and quantiles and substituting the empirical estimates of r1(u) and r2(u) in Equation (A.1)

in the Appendix, respectively.

At the first glance of Table 2, one may notice that the maximum sample sizes of the group
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sequential test are larger than those of the fixed sample test. This is because these maximum

sample sizes only occur in the worst scenario when group sequential tests are carried all

the way to the end. Often sequential tests terminate earlier before the maximum number of

subjects are recruited. Therefore, looking at expected sample sizes reveals the advantage of

sequential trials. We calculated the expected sample sizes with the specified error spending

test for the three group test. The fact that the expected sizes are about 81% of those of the

fixed sample test ensures the early stopping of the group sequential design.

6.1.2 Under bivariate exponential model assumption. A bivariate exponential distribution

in Gumbel (1960) was used to calculate the variance of the WGJJ estimator and that

of the newly proposed semiparametric estimator. The Gumbel’s distribution has the form

H(x, y, ρ) = H1(x)H2(y)[1 + 4ρ(1−H1(x))(1−H2(y))], where ρ ∈ [−0.25, 0.25]. Here ρ was

set to be 0.25 in this simulation study. For diseased and healthy groups, bivariate exponential

random variables had marginal survival function of exp(−β�1x) and exp(−β�2y) for test 1

and 2. We let β12 = β22 = 1. The values of β11 and β21 corresponded to the AUCs (or pAUCs)

in Table 3. We let λ = 1 in the sample size calculation with the specified test setting. Not

surprisingly, the nonparametric and semiparametric methods give the same sample sizes

when comparing AUCs or pAUCs. The maximum possible sample sizes are listed in Table 3

for AUCs and partial AUCs.

[Table 3 about here.]

6.2 Sequential lung cancer diagnostic trial

Lung cancer is one of the most common cancers in the world and is the leading cause of

cancer death in the United States. The lung cancer is categorized into two types: small cell

and non-small cell. The non-small cell lung cancer is the most common type which is only

curable with surgery in its early stages. Computed Tomography (CT) and Positron Emission
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Tomography (PET) are both the pre-operative scanning tests for the staging of non-small cell

lung cancer. CT, a traditional diagnostic tool, does not perform well to differentiate between

benign and malignant lesions. PET, a new scanning technique, provides higher resolution

image with detailed view of regions of interest. But the results of PET are usually affected

by muscle and inflammatory activities, which are considered to be factors of imprecision

locations of abnormalities. Comparing the diagnostic performance of these two techniques is

of extensive interest of radiologists (Lardinois et al., 2003; Silvestri et al., 2003). The gold

standard in these tests is pathology results from biopsy specimens.

The staging accuracy of non-small cell lung cancer is usually between 52% and 85% for

CT and between 81% and 96% for PET (Lardinois et al., 2003; and Silvestri et al., 2003).

Consider testing the null hypothesis of equal AUCs against the two-sided alternative with

power 0.8 and significance level 0.05. A possible initial alternative is likely to be 15% which

is difference between 70% for CT and 85% for PET. If an investigator is interested in a

nonparametric AUC estimator, corresponding to two-sample Wilcoxon statistics (Hanley &

McNeil, 1983), as an accuracy measure in a fixed sample lung cancer trial to compare CT

and PET, the maximum sample size is 81 under power 0.8, type I error 0.05 under the

binormal assumption according to Table 2. If the outcome measurements are assumed to

be from bivariate exponentials, totally 109 subjects in both arms would be required from

Table 3. However, as mentioned in the Introduction, these diagnostic methods are expensive

and carries some safety risks. While carrying out clinical trials to compare CT and PET,

the results need to be monitored repeatedly to ensure that human subjects are not exposed

to inferior scanning techniques. In negative trials that show equivalence of the accuracy

of CT and PET, the trials need to be terminated early and the subjects can be switched

to compare CT with other scanning techniques which involves combining CT and PET,

or recently developed Magnetic Resonance Imaging technique. If PET is found to be more
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accurate than CT in the early interim analysis, it means that PET scan in staging the

non-small cell lung cancer could be preferred over CT scan and should be performed more

frequently in lung cancer diagnosis.

Suppose we want to design a three-group error spending test with the error spending

function f(τ) = min(ατ, α). The equally-spaced symmetric two-sided test with significance

level 0.05 and power 0.8 would need maximum possible sample sizes of 91 and 62 under

binormal and biexponential assumptions, respectively, based on the results from Table 2.

In this test, the boundaries for the normalized AUC statistic, Zj, can be calculated as

(c1 = −b1 = 2.39, c2 = −b2 = 2.29, c3 = −b3 = 2.20). During the comparative diagnostic

trial, Zj is computed at the jth interim analysis and compared with these critical boundaries.

A significant Zj gives early evidence that CT is different from PET, and the better imaging

method should be adapted in detecting lung cancer. If there is no significance and we have

not finished the trial on all patients, we will continue recruiting more patients until there

is significant evidence in the next analysis. After all patients are scanned, if there is still

no significant evidence to support the alternative hypothesis, a conclusion will be made

that CT has the same diagnostic ability as PET, and cheaper CT scanning technique can

be recommended for non-small cell lung cancer diagnosis. Since we already noted that the

expected sample sizes under sequential tests would be as low as 81% of that under the fixed

sample test, the early stopping on the average is ensured by group sequential tests.

AUC is an excellent accuracy measure if two ROC curves do not cross each other. However,

when ROC curves cross, they may have similar AUCs but different partial AUCs over a range

of specificities. Suppose a investigator is interested in whether there is a difference between

partial AUCs of CT and PET over the false positive rate less than 0.6. In this trial, the

WGJJ statistic then becomes the difference between the nonparametric estimators of partial

AUCs over high specificities. An initial guess of partial AUCs is 40% for CT and 55% for
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PET, respectively. With power 0.8, type I error .05 and disease prevalence 0.5, a fixed sample

trial would require 48 patients under the binormal assumption and 55 patients under the

exponential assumption according to Tables 2 and 3, respectively.

If a three-group error spending test is decided for the trial, the maximum possible sample

sizes for both arms would be 54 and 62 under binormal and biexponential assumptions,

respectively, based on the results in Tables 2 and 3. The boundaries of three stages for

the normalized partial AUC differences are also (c1 = −b1 = 2.39, c2 = −b2 = 2.29, c3 =

−b3 = 2.20). Similar as comparative diagnostic trial based on AUC, the normalized test

statistic Zj based on partial AUC is computed based on accruing patients at the jth stage

and corresponding decision will be based on whether Zj crosses the boundaries. Note the

maximum possible sample sizes are smaller for the sequential trials comparing partial AUCs

than those for AUCs. This is due to the fact that partial AUC estimator is less variable than

AUC estimator.

To the best of our knowledge, no actual trials in diagnostic medicine have been conducted

sequentially. To illustrate the details of calculations of monitoring decisions, we simulated a

set of simple hypothetical outcomes from PET and CT scans in aforementioned lung cancer

diagnostic trials. Suppose an investigator has decided to conduct a three-group sequential

trial to compare the accuracy of CT and PET procedures. Under the binormal assumption,

the maximum possible sample size was initially 91 in total based on the 80% power and

0.05 type I error. We simulated binormal data as measurements from 30 subjects at the first

look. We then calculated interim contrast Δ̂1 = 0.0259, its standard error σΔ1 = 0.0673, and

the interim normalized statistic Z1 = Δ̂1/σΔ1 = 0.3848. Since Z1 fell within the boundary

(c1 = −b1 = 2.39), we continued with the second look at 30 more simulated measurements. At

the second look, we calculated interim contrast Δ̂2 = 0.1469, its standard error σΔ2 = 0.0534,

and the interim normalized statistic Z2 = Δ̂2/σΔ2 = 2.7510 from all 60 subjects. Now Z2
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was outside the boundary (c2 = −b2 = 2.29), thus we stopped recruiting more subjects and

came to a conclusion that PET has better accuracy to stage lung cancer than CT.

7. Discussion

In this article, we described that after modification the sequential WGJJ statistic behaves

like the Brownian motion process, therefore, can be readily implemented using standard

statistical software. The WGJJ statistic includes a large family of nonparametric estimators

in comparative diagnostic tests, offering great modeling flexibility. We also proposed a semi-

parametric method for comparing two diagnostic tests based on multivariate proportional

hazard models. With correct model specification, the semiparametric method can allow

survival outcome measurements in the presence of censoring.

Calculating sample size is an important issue when performing group sequential trials.

We illustrated an example of sample size determination based on binormal distribution

assumptions. If a pilot study is available, sample sizes can be empirically determined from

our results. Otherwise, conservative sample size can be determined with the knowledge of

the AUCs and their correlation from Equation (2).

Both nonparametric AUC and partial AUC estimators, as special cases of the WGJJ

statistics, were illustrated in sequential lung cancer trials for comparing the staging accuracy

of non-small cell cancer. Accurate staging diagnosis could guide surgery to help prolong

patients’ life or even cure the patients at early stages of lung cancer, one of top killer diseases.

Therefore, designing comparative trials for the accuracy of scan imaging techniques is rather

important at this point, and our nonparametric estimator provides a robust and efficient way

to sequentially compare techniques in their staging ability. Other examples may be found on

clinincaltrials.gov, which is a website developed by the National Institutes of Health and the

Food and Drug Administration to provide information for federally and privately supported

clinical trials. One ongoing trial is titled as “Comparison of Cardiac Computed Tomographic
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Angiography (CTA) to Tc-99m Single Photon Emission Computed Tomography (SPECT)”

with the purpose of comparing the accuracy of CT and SPECT. In this trial, diagnostic

tests are expensive, and the patients’ disease status are obtained before tests. These are

good logistics for implementing our sequential methods in this trial.

As a final note, in diagnostic imaging trials the results are usually immediately available.

The patients’ disease status are obtained before tests or shortly after tests. These provide

good logistics for conducting sequential diagnostic trials. However, sometimes in biomarker

studies it may take a long time to verify true disease status. Also, one may want to look at

Youden index or find ”optimal” thresholds in addition to comparing diagnostic tests. It will

be our future topics to develop proper sequential designs for these issues.

Supplementary Materials

Web Appendix is available under the Paper Information link at the Biometrics website

http://www.biometrics.tibs.org.
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Table 1: Type I error with the nominal level α = 0.05 in the group sequential designs

m WGJJ statistic Parametric Semiparametric

(n) Binorm Bilog Biexp Binorm Bilog Biexp Binorm Bilog Biexp

Fixed sample design (J = 1)
50 6.9% 6.6% 5.6% 4.7% 12.0% 0.8% 31.5% 30.4% 5.5%
100 4.5% 6.0% 6.2% 4.1% 21.6% 1.4% 81.2% 80.7% 5.6%
200 5.6% 6.4% 4.0% 4.0% 37.5% 0.8% 88.6% 90.6% 5.5%

Three-group sequential design (J = 3)
OBF 50 4.3% 5.2% 5.2% 5.0% 30.1% 1.0% 77.0% 75.8% 6.6%

100 4.2% 3.3% 3.7% 2.3% 43.8% 0.4% 98.3% 97.4% 6.1%
200 4.7% 5.9% 6.4% 4.5% 62.9% 1.5% 100.0% 100.0% 5.3%

POC 50 5.5% 6.7% 5.7% 4.4% 26.1% 0.8% 69.7% 66.8% 6.8%
100 5.3% 4.5% 5.0% 3.3% 41.4% 0.3% 96.5% 95.5% 6.5%
200 4.7% 6.0% 6.5% 4.1% 60.6% 1.3% 100.0% 100.0% 5.0%

Four-group sequential design (J = 4)
OBF 50 4.7% 3.6% 5.3% 4.2% 33.8% 0.4% 92.5% 92.8% 6.6%

100 4.3% 4.6% 5.2% 3.9% 52.4% 1.0% 100.0% 99.6% 6.5%
200 5.8% 4.8% 5.4% 4.1% 72.6% 0.3% 100.0% 100.0% 4.9%

POC 50 4.5% 6.2% 6.0% 3.4% 30.8% 0.7% 88.7% 87.6% 6.2%
100 5.4% 3.6% 5.8% 4.9% 48.0% 1.2% 99.9% 99.0% 6.1%
200 4.8% 5.1% 5.7% 3.8% 69.4% 0.5% 100.0% 100.0% 5.3%

Five-group sequential design (J = 5)
OBF 50 4.9% 4.5% 5.8% 3.9% 40.8% 0.5% 97.4% 97.4% 5.7%

100 4.4% 5.6% 4.7% 5.1% 60.4% 0.6% 100.0% 99.8% 5.3%
200 4.5% 4.5% 5.7% 3.5% 78.8% 0.4% 100.0% 100.0% 5.0%

POC 50 5.9% 5.2% 6.0% 4.1% 35.5% 0.7% 95.2% 94.7% 5.3%
100 4.4% 5.9% 5.1% 3.1% 55.6% 1.2% 100.0% 99.8% 5.0%
200 5.4% 5.4% 6.0% 3.8% 75.9% 1.4% 100.0% 100.0% 5.0%

The rejection rate with 1000 realizations. The 95% prediction interval is (5.0% ± 1.4%).
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Table 2: Maximum possible number of subjects in both arms for testing ΔA or ΔpA in three-
group analysis (and fixed sample analysis) with 1−β = 0.80 and α = 0.05 under the bivariate
normal distribution

ΔA = ΩA
1 − ΩA

2

ΩA
1 \ΩA

2 0.750 0.800 0.850 0.900 0.950 0.975
0.700 929 (832) 217 (195) 91 (81) 49 (44) 32 (29) 28 (25)
0.750 NA 793 (710) 182 (163) 76 (68) 43 (38) 36 (32)
0.800 NA 634 (568) 143 (128) 62 (55) 48 (43)
0.850 NA 456 (408) 103 (92) 68 (61)
0.900 NA 267 (239) 116 (103)
0.950 NA 416 (372)

ΔpA = ΩpA
1 − ΩpA

2

ΩpA
1 \ΩpA

2 0.350 0.400 0.450 0.500 0.550 0.575
0.300 732 (655) 174 (156) 72 (65) 38 (34) 24 (21) 20 (18)
0.350 NA 675 (604) 156 (140) 64 (57) 35 (31) 28 (25)
0.400 NA 573 (513) 129 (116) 54 (48) 41 (36)
0.450 NA 436 (390) 97 (87) 62 (56)
0.500 NA 273 (244) 115 (103)
0.550 NA 505 (452)
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Table 3: Maximum possible number of subjects in both arms for testing ΔA or ΔpA in three-
group analysis (and fixed sample analysis) with power 1 − β = 0.80 and α = 0.05 under the
bivariate exponential distribution

ΔA = ΩA
1 − ΩA

2

ΩA
1 \ΩA

2 0.750 0.800 0.850 0.900 0.950 0.975
0.700 1244 (1113) 293 (262) 122 (109) 65 (58) 39 (35) 32 (28)
0.750 NA 1094 (979) 253 (226) 104 (93) 54 (49) 42 (37)
0.800 NA 914 (818) 206 (184) 83 (74) 58 (52)
0.850 NA 705 (631) 152 (136) 90 (80)
0.900 NA 461 (412) 180 (161)
0.950 NA 975 (872)

ΔpA = ΩpA
1 − ΩpA

2

ΩpA
1 \ΩpA

2 0.350 0.400 0.450 0.500 0.550 0.575
0.300 852 (763) 203 (182) 84 (76) 44 (39) 26 (24) 21 (19)
0.350 NA 785 (703) 183 (164) 75 (67) 39 (35) 30 (27)
0.400 NA 680 (609) 154 (138) 62 (55) 43 (39)
0.450 NA 539 (482) 117 (104) 69 (62)
0.500 NA 362 (324) 142 (127)
0.550 NA 781 (699)
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