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Linear Life Expectancy Regression with
Censored Data

Ying Qing Chen and Su-Chun Cheng

Abstract

Life expectancy, i.e., mean residual life function, has been of important practi-
cal and scientific interests to characterise the distribution of residual life. Regres-
sion models are often needed to model the association between life expectancy
and its covariates. In this article, we consider a linear mean residual life model
and further developed some inference procedures in presence of censoring. The
new model and proposed inference procedure will be demonstrated by numeri-
cal examples and application to the well-known Stanford heart transplant data.
Additional semiparametric efficiency calculation and information bound are also
considered.



1 Introduction

Suppose that failure time T is nonnegative random variable on a probability space {Ω,F ,P}.
Its mean residual life function is defined as m(t) = E(T − t | T > t), for t ≥ 0. When

covariates are present, the proportional mean residual life model by Oakes & Dasu (1990)

can be used to study the association between m(t) and the covariates, Z, say,

m(t | Z) = m0(t) exp(βTZ), (1)

where m(·) are mean residual life functions, Z are p−vector covariates and β are associated

parameters. In its semiparametric version, m0(·) is unspecified. Compared with the widely

used Cox proportional hazards model, it directly models the mean residual life functions and

thus has appealing interpretation in terms of life expectancy. Nevertheless, β can be also

interpreted in terms of the reciprocal of hazard function projected onto FT(t) = σ{T > t},
due to the fact that m(t) = E {λ(T )−1 | T > t}, where λ(·) denotes the associated hazards

function. To estimate β in (1), Maguluri & Zhang (1994) and Oakes & Dasu (2003) studied

some estimation procedures when there is no censoring. Recently, Chen & Cheng (2004)

developed quasi partial score estimating equations when censoring presents.

Since m(t) = E(T | T > t)− t, for t ≥ 0, the shape of m(t) has an embedded constraint,

i.e., m(t) + t is monotonically nondecreasing. In the Oakes-Dasu model, however, m(t |
Z) + t = m0(t) exp(βTZ) + t may not satisfy this constraint for an arbitrary β ∈ �p, unless

m0(·) itself is monotonically nondecreasing, as pointed out in Oakes & Dasu (1990). A

monotonically nondecreasing m0(·), although plausible mathematically, may not be always

consistent with the aging process, for example, of human life. To cope with this constraint,

we instead consider a linear mean residual life model,

m(t | Z) = m0(t) + βTZ. (2)

It is apparent the additive structure in model (2) complies with the embedded constraint.

In practice, the parameter β in the linear model can be interpreted as average difference
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in life expectancy per unit change in covariate. When Z is binary of 0 or 1 as treatment

indicator in a randomised clinical trial, for example, β can be considered as treatment effect

measure in life expectancy due to different treatment assignments. Furthermore, notice that

E(T | Z) = m0(0) + βTZ is implied by the linear model (2). It thus closely relates to

the standard linear model in Miller (1976) and Buckley & James (1979), which assume that

T − γ0 − γT
1 Z have common zero-mean distribution with E(T | Z) = γ0 + γT

1 Z.

To apply the new linear model in real applications, it is desirable of m0(·) to be unspecified

without restrictive parametric assumptions. More challenge occurs as the survival outcomes

are often censored. The rest of this article aims to developing and studying some inference

procedures for the new linear model. The proposed methodologies are demonstrated by

numerical examples. Additional semiparametric model efficiency and information bound are

also considered.

2 Inference procedures

Suppose that there are n independent subjects in a data set. Let Ti and Ci be the failure and

censoring times, respectively, for i = 1, 2, . . . , n. The data set consists of {(Xi,∆i, Zi); i =

1, 2, . . . , n}, where Xi = min(Ti, Ci), ∆i = I(Ti ≤ Ci) and Zi are covariates, respectively.

Given Zi, Ti and Ci are assumed independent. Their actual observed values are denoted by

corresponding lower cases. Without confusion in notations, subscripts may be occasionally

suppressed. Denote N(t) = I(X ≤ t,∆ = 1) and Y (t) = I(X ≥ t).

2.1 Estimation of baseline function

Since the baseline residual life function in model (2) is preferred to be unspecified, we first

develop an estimator for m0(t) as if β is known. Consider the filtration defined by Ft =

σ{Ni(t), Yi(t), Zi, i = 1, 2, . . . , n}. Then E{dN(t) | Ft−} = Y (t)dΛ(t | Z), where Λ(·)
denotes the cumulative hazard function. Applying the inversion formula in Oakes & Dasu
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(1990) to the linear model, we know that the survival function of T with covariate Z is,

S(t | Z) =
m0(0) + βTZ

m0(t) + βTZ
exp

{
−

∫ t

0

du

m0(u) + βTZ

}
.

As a result, {m0(t) + βTZ}dΛ(t | Z) = {1 + m′
0(t)}dt. Thus, the following equation can be

used to estimate m0(·),
n∑

i=1

{m0(t) + βTzi}dNi(t) =
n∑

i=1

Yi(t){1 + m′
0(t)}dt,

which is in fact

− m0(t)

∑
i dNi(t)∑
i Yi(t)

+ dm0(t) =

∑
i {βTzidNi(t) − Yi(t)dt}∑

i Yi(t)
. (3)

Let ŜNA(t) = exp{− ∫ t

0

∑
i dNi(u)/

∑
i Yi(u)} and dQ(t;β) = Y (t)dt − βTZdN(t), respec-

tively. Here, ŜNA(t) would reduce to the usual Nelson-Aalen estimator for the survival

function if Z are identical. Then the equation (3) is indeed a first-order ordinary differential

equation which yields a closed-form solution of

m̂0(t;β) = ŜNA(t)−1

∫ τ

t

ŜNA(u)

∑
i dQi(u;β)∑

i Yi(u)
.

As a result, dm̂0(t) = m̂0(t)
∑

i dNi(t)/
∑

i Yi(t) −
∑

i{Yi(t) − βTzidNi(t)}/
∑

i Yi(t). When

β = β0 is the true value, m̂0(t) is consistent of m0(t), similar as in Chen & Cheng (2004).

Here τ = sup{t : pr(X > t) > 0} < ∞ to avoid technical discussion on the right-hand tail of

censored data, and ∆ would be redefined as 1 for the last observation to ensure meaningful

m̂0(·) by the convention in Reid (1981) and James (1986).

2.2 Extended Buckley-James estimation

As noted previously, the new linear model is closely related to the standard linear regression

model. We first consider a Buckley-James estimation procedure (Buckley & James, 1979),

as it has been demonstrated to be a reliable estimation procedure in linear regression models

with censored data (Miller & Halpern, 1982; Lin & Wei, 1992). Let α(T,Z;β) = Z{T −
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m0(0) − βTZ} and ξ(X,∆, Z;β) = ∆α(X,Z;β) + (1 − ∆)E{α(T,Z;β) | T > X,Z}. Then

E(ξ | Z) = E(α | Z) = 0, which leads to the unbiased estimating equations of

g1(β) =

n∑
i=1

ξ(xi, δi, zi;β) = 0, (4)

as in the Buckley-James procedure for standard linear regression model. However, both

α(T,Z) and E{α(T,Z) | T > X} depends on the unknown m0(·) in (4). In the linear

regression model, Buckley & James (1979) required that the residuals of T − m0(0) − βTZ

would share an identical distribution, which was estimated by the Kaplan-Meier product-

limit estimator. However, this is not necessarily true in the linear mean residual life model.

It is thus not appropriate to use the self-consistency representation of the Kaplan-Meier

estimator by Efron (1967) to simplify g1(β). Instead we extend the Buckley-James procedure

in model (2) with the proposed baseline estimator in the preceding section.

Consider a natural estimator of α(T,Z;β) by defining α̂(T,Z;β) = Z{T −m̂0(0)−βTZ},
and E{α(T,Z;β) | T > X,Z} by

Ê{α(T,Z;β) | T > X,Z} = −Ŝ(X | Z)−1

∫ τ

X

α̂(u,Z;β)dŜ(u | Z),

respectively. Here, Ŝ(t | Z) = {m̂0(0)+βTZ}{m̂0(t)+βTZ}−1 exp[− ∫ t

0
{m̂0(u)+βTZ}−1du].

Thus the actual estimating functions of β are:

ĝ1(β) =
n∑

i=1

ξ̂(xi, δi, zi;β) =
n∑

i=1

[
δiα̂(xi, zi;β) + (1 − δi)Ê {α(T, zi;β) | T > xi}

]
. (5)

Denote β̂BJ the solution to ĝ1(β) = 0. With some straightforward algebra,

∂m̂0(t;β0)

∂β
= ŜNA(t)−1

∫ τ

t

ŜNA(u)

∑
j ZjdNj(u)∑

j Yj(u)
= −µZ(t) + op(1),

where µZ(t) = E {ZS(t | Z)} /E {S(t | Z)}. Thus, ∂α̂(T,Z;β0)/∂β = −Z{Z − µZ(0)}T +

op(1). Denote µ̂Z(·) be the empirical estimator of µZ(·). Then, ∂Ŝ(t | Z;β)/∂β can be

consistently estimated by

Ŝ(t | Z;β)Z

[
Z − µ̂Z(0)

m̂0(0) + βTZ
− Z − µ̂Z(t)

m̂0(t) + βTZ
−

∫ t

0

{Z − µ̂Z(u)}du

m̂0(u) + βTZ

]T

,
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and ∂Ê{α(T,Z;β) | T > X,Z}/∂β estimated by

Ŝ(t | Z;β)−1

∫ τ

X

Z{Z−µZ(u)}TdŜ(u | Z;β)− Ŝ(t | Z;β)−1

∫ τ

X

α̂(u,Z;β)d

{
∂Ŝ(u,Z;β)

∂β

}

+Ŝ(t | Z;β)−1Z

[
Z − µ̂Z(0)

m̂0(0) + βTZ
− Z − µ̂Z(t)

m̂0(t) + βTZ
−

∫ t

0

{Z − µ̂Z(u)}du

m̂0(u) + βTZ

]T ∫ τ

X

α̂(u,Z;β)dŜ(u | Z;β).

Thus −n−1∂ĝ1(β0)/∂β goes to

D1 = −E
[
∆∂α̂(X,Z;β0)/∂β + (1 − ∆)∂Ê {α(T,Z;β0) | T > X,Z} /∂β

]
,

as n → ∞. In addition, by a Multivariate Central Limit Theorem, n−1/2ĝ1(β0) approaches

to a zero-mean normal distribution with variance-covariance of V1 = E {∆α̂(X,Z;β0)
⊗2} +

E[(1 −∆)Ê {α(T,Z;β0) | T > X,Z}⊗2], asymptotically. Following an application of Taylor

expansion, β̂BJ has asymptotic normality as

n1/2(β̂BJ − β0)
D→ N(0,D−1

1 V1D
−1
1 ),

given D1 is nonsingular, as n → ∞. Here D1 and V1 can be estimated by their empirical

estimators of

D̂1 = n−1
n∑

i=1

δi
∂α̂(xi, zi; β̂BJ)

∂β
+ (1 − δi)

∂Ê
{
α(T, zi; β̂BJ) | T > xi, zi

}
∂β

 , and

V̂1 = n−1

n∑
i=1

[
δiα̂(xi, zi; β̂BJ)

⊗2 + (1 − δi)Ê
{
α(T, zi; β̂BJ) | T > xi, zi

}⊗2
]

.

Apparently, α̂(·) is an ad hoc choice of the estimating functions, the estimators obtained are

thus not necessarily efficient. In fact, one possibly more efficient choice might be

α̂(T,Z;β) =
∂ log f(T | Z;β)

∂β
= −Z

[
1

m̂0(t) + βTZ
−

∫ t

0

{1 + m̂′
0(u)}du

{m̂0(u) + βTZ}2

]
, (6)

where f(·) is density functions of failure time T . The efficient estimation would be considered

more in §2.4 where the semiparametric information bound of model (2) is further studied.
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2.3 Quasi partial score estimation

An alternative estimation procedure is by way of constructing estimating functions similar

to those of partial score functions of the Cox proportional hazards model. Notice that the

estimating functions of

g2(β) =
n∑

i=1

∫ τ

0

zi

[
dNi(t) − Yi(t){1 + m′

0(t)dt}
m0(t) + βTzi

]
are unbiased at β = β0. Thus it is natural to use the following estimating functions by

plugging in the estimator of m̂0(·):

ĝ2(β) =
n∑

i=1

∫ τ

0

zi

[
dNi(t)− Yi(t){1 + m̂′

0(t)dt}
m̂0(t) + βTzi

]
.

Straightforward algebra shows the above functions are indeed
n∑

i=1

∫ τ

0

{zi − z(t)}
{

dNi(t)− Yi(t)dt

m̂0(t) + βTzi

}
,

where z(t) =
∑

i [Yi(t)zi/{m̂0(t) + βTzi}] /
∑

[Yi(t)/{m̂0(t) + βTzi}]. Let β̂QP be the solution

such that ĝ2(β̂QP) = 0. Then by standard counting processes arguments, n−1/2ĝ2(β0) con-

verges to a zero-mean normal with the variance-covariance matrix that can be consistently

estimated by

V̂2 = n−1
n∑

i=1

∫ τ

0

Yi(t){zi − z(t)}⊗2{1 + m̂′
0(t)}

m̂0(t) + β̂T
QPzi

dt.

Furthermore, −n−1∂ĝ2(β0)/∂β goes to the matrix that can be consistently estimated by

D̂2 = n−1

n∑
i=1

∫ τ

0

Yi(t){zi − z(t)}⊗2{1 + m̂′
0(t)}dt.

Thus the inference on β̂QP can be made by the fact that n1/2(β̂QP − β0) converges weakly to

a zero-mean normal with the variance-covariance matrix estimated by D̂−1
2 V̂2D̂

−1
2 , due to a

Taylor expansion.

To improve the efficiency for estimators of quasi partial score estimating equations, a

common approach is to include weight function as in
n∑

i=1

∫ τ

0

W (t) {zi − z(t)}
{

dNi(t) − Yi(t)dt

m̂0(t) + βTzi

}
= 0, (7)
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where W (·) converges to a deterministic function of w(·). Thus the variance-covariance of

the estimator obtained by solving (7) can be estimated by D̂−1
2w V̂2wD̂−1

2w , where

V̂2w = n−1

n∑
i=1

∫ τ

0

Yi(t)W (t)2{zi − z(t)}⊗2{1 + m̂′
0(t)}

m̂0(t) + β̂T
QPzi

dt, and

D̂2w = n−1

n∑
i=1

∫ τ

0

Yi(t)W (t)2{zi − z(t)}⊗2{1 + m̂′
0(t)}dt.

By applying a Cauchy-Schwarz inequality, the optimal weight function should be then in the

form of 1/{m0(t) + βTZ} to minimize the variance of the weighted estimator of β.

2.4 Semiparametric information and efficient estimation

Although efficient estimation of model (2) has been conjectured in previous sections, its semi-

parametric information bound can be alternatively calculated by considering the parametric

submodels,

m(t | Z) = m0(t) + θTη(t) + βTZ, (8)

where θ and β are p−vector parameters, and m0(·) and η(t) are fixed functions, as in Lai &

Ying (1992) and Lin & Ying (1994). Then its associated loglikelihood function of (βT, θT)T

is

l(β, θ) =
n∑

i=1

{∫ τ

0

log λ(t | Zi)dNi(t) − Yi(t)λ(t | Zi)dt

}

=
n∑

i=1

[∫ τ

0

log

{
m′

0(t) + θTη′(t)
m0(t) + θTη(t) + βTZi

}
dNi(t) − Yi(t)

{
1 + m′

0(t) + θTη′(t)
m0(t) + θTη(t) + βTZi

}
dt

]
.

Then

∂l(β, θ)

∂β

∣∣∣∣
β=β0,θ=0

= −
n∑

i=1

∫ τ

0

Zi

m0(t) + βT
0 Zi

[
dNi(t) − Yi(t){1 + m′

0(t)}dt

m0(t) + βT
0 Zi

]
∂l(β, θ)

∂θ

∣∣∣∣
β=β0,θ=0

=
n∑

i=1

∫ τ

0

{
η′(t)

1 + m′
0(t)

− η(t)

m0(t) + βT
0 Zi

}[
dNi(t) − Yi(t){1 + m′

0(t)}dt

m0(t) + βT
0 Zi

]

7
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Consider the Fisher information at β0 and θ = 0 as a function of fixed η, denoted by matrix

I(η) =

 Iββ(η) Iβθ(η)

Iθβ(η) Iθθ(η)

 ,

with Iββ = E(∂2l/∂β2), Iβθ = E(∂2l/∂β∂θ) and Iββ = E(∂2l/∂θ2), respectively. Then by an

application of the Cauchy-Schwarz inequality, the variance-covariance matrix of any regular

semiparametric estimator β̃ in the linear model, if n1/2(β̃ − β0) converges to a zero-mean

normal, would be larger than (Iββ − IβθI
−1
θθ IT

βθ)
−1 for any η. Here matrix A is ‘larger’ than

matrix B if A − B is nonnegative definite. Since

Iββ(η) = lim
n→∞

n−1

n∑
i=1

∫ τ

0

E

[
Yi(t){1 + m′

0(t)}Z⊗2
i

{m0(t) + βTZi}3

]
dt,

Iβθ(η) = lim
n→∞

n−1

n∑
i=1

∫ τ

0

E

[
Yi(t){1 + m′

0(t)}Zi

{m0(t) + βTZi}2

{
η′(t)

1 + m′
0(t)

− η(t)

m0(t) + βTZi

}T]
dt, and

Iθθ(η) = lim
n→∞

n−1

n∑
i=1

∫ τ

0

E

[
Yi(t){1 + m′

0(t)}
{m0(t) + βTZi}

{
η′(t)

1 + m′
0(t)

− η(t)

m0(t) + βTZi

}⊗2
]

dt,

(Iββ − IβθI
−1
θθ IT

βθ)
−1 thus reaches its maximum at η(t) = η0(t) such that

η′
0(t)E

{
Y (t)

1 + m′
0(t)

}
− η0(t)E

{
Y (t)

m0(t) + βTZ

}
= E

{
Y (t)Z

m0(t) + βTZ

}
,

which has a closed form solution in η0(·):

η0(t) = P (t)−1

∫ τ

t

P (u)Q(u)du,

where

P (t) = exp

[
−

∫ t

0

E

{
Y (u)

m0(u) + βTZ

}/
E

{
Y (u)

1 + m′
0(u)

}
du

]
and Q(t) = E [Y (t)Z/{m0(u) + βTZ}]/E {Y (t)/{1 + m′

0(t)}}, respectively. Therefore, the

semiparametric information bound for β at β0 is the supremum parametric information

bound at β0 given any choice of η(·), which is

lim
n→∞

n−1

n∑
i=1

∫ τ

0

E

[
Yi(t){Zi − z0(t)}⊗2

{m0(t) + βTZi}2

]
dt.

8
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Here

z0(t) = lim
n→∞

Z(t) = lim
n→∞

E
[∑

i Yi(t)Zi

/{m0(t) + βTZi}
]

E
[∑

i Yi(t)
/{m0(t) + βTZi}

] .

Therefore, the optimal estimating function for β in the linear model is

gopt(β) =
n∑

i=1

∫ τ

0

Zi − Z(t)

m0(t) + βTZi

[
dNi(t)− Yi(t){1 + m′

0(t)}dt

m0(t) + βTZi

]
.

For those subjects with ∆i = 1, the individual terms reduce to the α̂ conjectured earlier in

(6). When m0(t) is constant, i.e., underlying distributions are exponential, it is seen that

the extended Buckley-James estimation procedures is fully efficient. While comparing gopt(·)
with the weighted quasi partial score estimating equations, it is straightforward to see that

the optimal weight leads to semiparametric efficient score functions and hence results in the

most efficient estimator.

3 Examples

To better understand the proposed linear model in (2), we illustrate it with some special

examples when the underlying distribution is of Hall-Wellner class, i.e., the baseline mean

residual life function is linear as m0(t) = φ0 + φ1t, where φ0 and φ1 are parameters such

that φ0 > 0 and φ1 > −1. In Fig. 1, φ0 = 1.5 and φ1 = −0.1, 0 and 0.1, respectively.

Assume that β = 0.5 for binary Z of 0 and 1 in model m(t | Z) = m0(t) + βZ. Their mean

residual life functions are plotted along with the corresponding hazard functions. The hazard

ratios are also plotted. It is interesting to see that the constant additivity in mean residual

life functions does not imply constant proportionality in hazard functions, except when the

underlying distribution is exponential. The ratio of hazard functions tends decreasing in

the graphs of decreasing mean residual life functions, while increasing in those of increasing

mean residual life functions. In fact, when m0(t) = 1/(1 + t), the hazard functions would be

identical at t = 0 under the linear model, as shown in Fig. 2, which apparently the usual Cox

proportional hazards model with constant proportionality may not apply. Compared with

the proportional hazards model with time-dependent covariates, the linear mean residual life

9
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model with time-independent covariates may have advantage in summarizing difference in

covariate effect and hence simpler parameter interpretation.

[Figure 1 about here]

We apply the proposed methodology to the well-known Stanford Heart Transplantation

data in Miller & Halpern (1982). The time-to-event outcome being considered is the sur-

vival time since first heart transplantation between October 1967 and February 1980. Two

covariates were originally considered: age at the time of first transplant and T5 mismatch

score which measures the degree of tissue incompatability between the initial donor and re-

cipient hearts with respect to hla antigens. To contrast with their results, we consider the

linear mean residual life model for the base 10 log-transformed survival time against age and

T5 mismatch scores, as in Miller & Halpern (1982) and Lin & Wei (1992). The results are

tabulated in Table 1. along with those from the partial likelihood estimation of the Cox pro-

portional hazards model and the Buckley-James estimation of the linear regression models.

As shown in the table, all the estimates for age and T5 mismatch scores are negatively asso-

ciated with life expectancy, although none of them is significant for the T5 mismatch scores.

That is, the covariate age is not only significant predictor for the patients’ hazard and their

average survival lifetimes, but also for their life expectancy throughout time. For different

estimation procedures of the same linear mean residual life model, it is not surprising to see

that the efficient estimation procedure yields the smallest variance.

[Table 1 about here]

In addition, as demonstrated in Miller & Halpern (1982), a quadratic pattern in the

covariate of age might appear for both the Cox proportional hazards model and the linear

regression models. Thus we fitted the linear mean residual life model as well to compare

with their results, with the T5 mismatch scores omitted due to their insignificance shown

in Table 1. As shown in Table 2, both age and the squared age are significant predictors
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of the life expectancy. However, their impact are of different directions: the age itself

positively predicts the life expectancy while the quadratic age negatively predicts the life

expectancy, which demonstrates similar patterns as those shown by the Cox model and the

linear regression model. Again, the efficient estimation procedure yields smaller variances

compared with other ad hoc procedures.

[Table 2 about here]

4 Discussion

There are some fundamental challenges to develop inference procedures for any statistical

methods of estimation, hypothesis testing or regression based on mean residual life functions

in presence of censoring. One of the challenges comes from the tail behaviour of underlying

distributions of failure times. In reality, the underlying failure times may be heavily right

skewed and early censored, such as for long-term survivors on cancer treatment or subjects

in HIV/AIDS prevention/vaccine trials, it is impossible to estimate the mean residual life

function on the whole positive real line without extra assumptions, although some techniques

such as in Koul, Susarla & Van Ryzin (1981), Gill (1983) and Ying (1993) can be extended.

In general, it is difficult to determine a reasonable upper limit τ without the robustness of

the proposed methodologies being compromised.

To deal with the situation, two possible approaches may be adapted. The first approach

is modify the fully unspecified m0(·) by including parametric component in the tail. For

instance, let τ̃ be a prespecified truncation time. Then it is assumed that

m̃0(t) = m0(t)I(t < τ̃ ) + mrI(t > τ̃ ),

where mr is some positive constant. This means, the baseline mean residual life function is

unspecified up to the truncation time τ̃ , while it becomes exponential after τ̃ . Then it is

straightforward to extend the proposed methodologies to the whole positive real line. The

11

Hosted by The Berkeley Electronic Press



second approach is by way of the cure mixture model. That is, assume that the failure times

are mixture of two subpopulations: relatively short-term survivors and relatively long-term

survivors, denoted by ρ = 1 and 0, respectively. As in Lu & Ying (2004), a failure time T̃ is

assumed to be

T̃ = ρT + (1 − ρ)∞,

in notation. Here the supp{FT(t)} is finite and T follows the linear model (2). In fact, as in

Farewell (1982), the probability of ρ = 1 can be further modelled by the generalized linear

models such as the logistic model.

As in the additive hazards model by Lin & Ying (1994), the linear combination form of

βTZ is chosen mainly for easy interpretation and simple inference procedures. Compared

with the Oakes-Dasu proportional model, it is not restricted to maintain the derived mono-

tonicity in baseline functions. However, it does have constraint such that the modelled mean

residual life function to be nonnegative. One solution is to replace the linear form with

its exponentiated term, as suggested in Lin & Ying (1994). In fact, there are quite a few

modelling routines for the hazard functions can be similarly adapted to the proposed linear

model in this article. For instances, we can consider the following linear model,

m(t | Z) =

p∑
j=1

Zj(t)m0j(t),

as in Aalen (1980); or the additive-multiplicative model,

m(t | Z) = m0(t)h1(β
T

1 Z1) + h2(β
T

2 Z2),

as in Lin & Ying (1995).
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Table 1: Regression estimates with standard errors for 157 Stanford heart transplant patients

Coefficients Age T5 Score

β̂1 s.d. β̂2 s.d.

Cox model 0.0294 0.0115 0.0481 0.0330

Linear regression model -0.0161 0.0083 -0.0294 0.0343

Linear mean residual life model

Buckley-James -0.0273 0.0138 -0.0231 0.0427

Quasi partial score -0.0282 0.0137 -0.0252 0.0401

Efficient estimation -0.0252 0.0118 -0.0256 0.0354

Cox model, estimates based on partial likelihood; Linear regression model, estimates based on Buckley-James

procedure

Table 2: Regression estimates with standard errors for 152 Stanford heart transplant patients

who survived at least 10 days

Coefficients Age Age2

β̂1 s.d. β̂2 s.d.

Cox model -0.1457 0.0554 0.0023 0.0007

Linear regression model 0.1083 0.0417 -0.0017 0.0005

Linear mean residual life model

Buckley-James 0.1728 0.0662 -0.0027 0.0012

Quasi partial score 0.1725 0.0686 -0.0028 0.0012

Efficient estimation 0.1771 0.0547 -0.0023 0.0010

Cox model, estimates based on partial likelihood; Linear regression model, estimates based on Buckley-James

procedure
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Figure 1: Mean residual life functions, their corresponding hazard functions and hazard ratios, when

m0(t) = φ0 + φ1t. The graphs in each row are for decreasing, constant and increasing mean residual life

functions, respectively. Solid lines are for Z = 0 and dashed lines for Z = 1, respectively.
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Figure 2: Mean residual life functions and their corresponding hazard functions, when m0(t) = 1/(1 + t).

Solid lines are for Z = 0 and dashed lines for Z = 1, respectively.
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