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1. Introduction

Two common problems in clinical trials are noncompliance and missing outcome data.

Noncompliance occurs when some subjects fail to comply with their assigned treatments;

missing data occurs when study investigators cannot collect outcome information on some

subjects. Ignoring the noncompliance or missing data may result in biased estimates of

causal effects. Moreover, the assumed mechanism of missing-data also has an impact on the

estimated causal effects. Many methods have been developed for handling either missing

data or noncompliance, but researchers have only recently started to develop methods for

handling both missing outcome data and noncompliance in the same study (Frangakis and

Rubin, 1999; Zhou and Li, 2006; Yau and Little, 2001; O’Malley and Normand, 2005).

Frangakis and Rubin (1999) proposed a moment estimator for the complier average causal

effect (CACE) parameter under the binary compliance status and latent ignorable (LI)

missing outcome assumption. The LI assumption means the missing data mechanism has

no residual dependence with the outcome, given the observed data and latent compliance

class. Under the same LI assumption, Zhou and Li (2006) derived maximum likelihood

(ML) estimates as well as moment estimates of the CACE when the compliance status is a

discrete variable with three categories and when the outcome variable is binary. O’Malley

and Normand (2005) gave the moment and ML estimators of the CACE for a continuous

outcome variable.

The above mentioned methods may yield biased estimators of the CACE if the missing

data mechanism is a different type of the non-ignorable missing mechanism from latent

ignorability. The mechanism of missing outcome Y may depend on missing values of Y . For

example, some subjects may drop out of a study because of a patient’s declining health

condition, which is related to Y given the observed data and latent compliance class. As

a motivating example, consider a study on the effectiveness of influenza vaccine efficacy
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in reducing morbidity in high-risk adults (McDonald et al., 1992). This study began in

1978 and lasted for three years. There were about two thousand patients enrolled in the

study. Physicians were randomly assigned to the treatment group of the control group at

the beginning of the study. The physicians assigned to the treatment group would encourage

their eligible patients to get a flu shot. But the patients themselves decided whether or not

to take flu shots. One of the main outcomes in the study was the flu-related hospitalization.

Some patients’ outcomes were not observed, and the reason for missing outcomes may depend

on the missing values. For example, some subjects were missing their outcomes because they

had flu but went to different hospitals than the study hospital, and as a result their outcomes

were not recorded. Or, some patients were missing their outcomes because the reason for their

hospitalizations was unknown. When the missing data mechanism depends on the outcome,

we define this situation as completely non-ignorable (CN). The LI missing data mechanism

assumed that subjects dropped out because of subjects’ latent compliance statuses.

Analysis of CN missing data is more difficult than analysis of LI data. One major difficulty

under the CN missing data mechanism is the issue of parameter identifiability. Here we

say that a parametric model Pθ is identifiable if there is a unique value of the parameter

vector θ that can generate a given observed distribution Fθ, that is if Fθ = Fθ′ , then

θ = θ′. When the missing-data mechanism is non-ignorable, some of parameters may not

be identifiable even if data provide enough degrees of freedom (Little and Rubin, 2004).

Several authors have proposed methods for dealing with CN. For example, Brown (1990)

developed an estimation method for missing normal outcome variables in longitudinal studies

under the CN missing mechanism. Robins and Rotnitzky (2004) discussed the parameter

identifiability in randomized trials with non-compliance. Vansteelandt and Goetghebeur

(2005) discussed the parameter identifiability in randomized trials with non-compliance and
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missing data. However, no methods are available for dealing with the CN missing mechanism

and noncompliance in the same study.

In this paper we fill the gap by first studying identifiability of the model parameters

under the CN assumption. We show that the parameters are identifiable under two different

conditions. The first condition assumes that the missing data mechanism depends only on

the missing outcome variable. If this assumption does not hold, the parameters are not

identifiable. However, we can show that the parameters are also identifiable if we can find

an observed discrete covariate X before the treatment assignment, which associated with Y

in each subpopulation of the compliance and treatment level. Then we derive both moment

and ML estimators.

The paper is organized as follows. We describe notation and assumptions in Section 2. In

Section 3, we give the theoretical results on identifiability of the parameters. In Section 4, we

conduct simulation studies to assess the finite-sample properties of the derived estimators

and sensitivity of the proposed estimators to the departure from the assumed conditions.

Then we illustrate the application of the proposed methods in a real study. We give some

concluding remarks in Section 5. The proofs of theorems are presented in Appendix.

2. Notation and Assumptions

For the sake of notational simplicity, we suppress the index i, which represents the ith

patient. Let Z represent the randomized treatment assignment (1 = new, 0 = control) and

let ξ = P (Z = 1). Let the binary variable D denote which treatment the patient receives

(1 =new treatment received, 0 =control received). Let D(Z) represent which treatment

received if the patient’s physician is assigned to the treatment Z, and Y be a binary outcome

variable. Y = 0 if the patient goes to the hospital due to the flu and Y = 1 otherwise. R is

the binary response indicator of Y , that is, R = 1 if Y is observed and R = 0 if Y is missing.

We define Y {Z, D(Z)} or Y (Z) as the potential outcome of the patient if the patient is
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assigned the treatment Z. R(Z) is the potential binary response indicator of a patient if the

patient is assigned to the treatment Z. In our notation, Z, R, D, and Y are observed data

of a patient, and D(Z), Y (Z), and R(Z) are potential outcomes of a patient.

Following Imbens and Rubin (1997), we let U be the compliance status of a patient, defined

as follows:

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c, if D(0) = 0 and D(1) = 1

n, if D(0) = 0 and D(1) = 0

a, if D(0) = 1 and D(1) = 1

d, if D(0) = 1 and D(1) = 0,

where c, n, a and d represent complier, never-taker, always-taker and defier, respectively. Here

U is an unobserved variable, representing compliance behavioral patterns of the patient. Let

ωu = P (U = u). For simplicity, we also denote ρyzu = P (R = 1|Y = y, Z = z, U = u)

and θyzu = P (Y = y|Z = z, U = u). As in Imbens and Rubin (1997) and Frangakis and

Rubin (1999), in this paper we consider CACE as the parameter of interest, defined as

CACE = E{Y (1) − Y (0) | U = c}.

Since the joint distribution of the potential outcomes Y (z), R(z) and U conditional on

Z = z can be expressed by parameters ωu, ρyzu and θyzu, causal effects are identifiable if we

can show these parameters are identifiable. Next, we will give the necessary assumptions to

make these parameters identifiable under the CN missing mechanism.

Assumption 1: Stable unit treatment value assumption (SUTVA) (Rubin, 1978; Angrist

et al., 1996; Imbens and Rubin, 1997).

SUTVA implies that potential outcomes do not depend on the treatment status of other

individuals.

Assumption 2: Randomization: Z is randomized.
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We can express the CACE as CACE = θ11c − θ10c under the randomization assumption.

Assumption 3: Monotonicity: Di(1) ≥ Di(0) for all subjects i, which implies there are

no defiers.

Assumption 4: Exclusion restrictions (Angrist et al., 1996): P{Yi(1)|Ui = n} = P{Yi(0)|Ui =

n}, and P{Yi(1)|Ui = a} = P{Yi(0)|Ui = a}.

The exclusion restriction implies P (Yi|Zi = 1, Ui = n) = P (Yi|Zi = 0, Ui = n), and P (Yi|Zi =

1, Ui = a) = P (Yi|Zi = 0, Ui = a), that is θ11n = θ10n and θ11a = θ10a. In some studies, such

as double blinding, exclusion restrictions are reasonable.

Assumption 5: Compound exclusion restrictions (Frangakis and Rubin, 1999): P{Yi(1), Ri(1)|Ui =

n} = P{Yi(0), Ri(0)|Ui = n}, and P{Yi(1), Ri(1)|Ui = a} = P{Yi(0), Ri(0)|Ui = a}.

Assumption 5 is stronger than Assumption 4. Besides having the same implications as

Assumption 4, Assumption 5 also implies P (Ri|Zi = 1, Ui = n) = P (Ri|Zi = 0, Ui = n)

and P (Ri|Zi = 1, Ui = a) = P (Ri|Zi = 0, Ui = a). Assumption 4 instead of Assumption

5 is required in our Theorems 1 and 2 where the missing-data mechanism doesn’t depend

on latent compliance status variable U (Assumptions 6 and 7). Assumption 5 instead of

4 is required in Theorems 3 where the missing-data mechanism depends on both missing

outcomes and U (Assumption 8).

3. Identifiability and Estimation

In this section, we discuss additional conditions needed to identify the causal parameters

under the CN assumption, and then propose moment and ML estimators of causal effects.

Intuition behind how identification of parameters is achieved is related to the idea of in-

strumental variables. As we know, if there are no missing outcomes, causal parameters are

identifiable under the standard assumptions 1 to 4 of an instrumental variable, as shown
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in Angrist, Imbens, and Rubin (1996). When the missing data mechanism depends only on

outcomes, under the assumptions 1 to 4, as well as the assumption 6, (U,Z) can be considered

as an instrumental variable, and causal parameters are still identifiable. In Section 3.1, we

consider a missing-data mechanism model in which the mechanism of missing outcome Y

depends only on the outcome Y itself; that is, only the outcome Y has an effect on R. Under

this assumption we provide a sufficient condition on parameter identifiability in Theorem 1.

Without any other assumptions on the missing data mechanism, only this model and latent

ignorable model can be identified.

When the missing data mechanism depends on more variables, an additional instrumental

variable is required to identify parameters. If the missing-data mechanism depends on not

only Y but also the treatment assignment Z, we can still identify the parameters in this

model when we have one additional covariate (X) that can affect the outcome Y but does

not depend on the other variables D and Z in the study. This model is more general than the

first missing-data model. Here (X, U) is being used as an instrumental variable for finding

the effect of Y on R. In Section 3.2, we present the results under this more general model.

In Section 3.3, we extend our identifiability results to an discrete outcome with more than

two categories.

3.1 Identifiability without Covariate

We consider a CN mechanism which satisfies the following assumption:

Assumption 6: P{Ri(z)|Yi(z), Di(z), U = u} = P{Ri(z)|Yi(z)} for z = 0 and 1, and

P{Ri(1)|Yi(1) = y} = P{Ri(0)|Yi(0) = y}.

When Z is randomized, Assumption 6 implies ρyzu = ρyz′u′ for any z �= z′ or u �= u′.

Before studying parameter identifiability, we compared Assumption 6 with the LI as-

sumption. The LI assumption requires that potential outcomes and associated potential
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nonresponse indicators are independent within each level of the latent compliance covariate

(Frangakis and Rubin, 1999), that is P{R(1)|U, Y (1)} = P{R(1)|U} and P{R(0)|U, Y (0)} =

P{R(0)|U}. The LI assumption means patients drop out because of their latent compliance

class. Yet Assumption 6 means that patients may drop out because of a worsen disease

condition, which is related to the outcome. For example, they may drop out when they feel

more terrible after taking the assigned drugs. In our study, Y measures the hospitalization of

a subject and the reason for missing Y of a subject may due only to her/his hospitalization

status. So whether patients drop out of the trial is determined by their outcomes, not by

their inherent and invariable nature. These two assumptions are so different that a wrong

assumption will have a serious impact on estimation of CACE unless CACE is close to zero.

We will see this point in our simulations.

Next theorem shows that the parameters are all identifiable under Assumption 6. For the

case of simplicity, we denote ρy = ρyzu and δyzu = P (Y = y,R = 1|Z = z, U = u). Under

Assumption 6, the vector of parameters is θ = (ξ, ωa, ωn, θ10a, θ11n, θ11c, θ10c, ρ0, ρ1).

Theorem 1: If Y is not independent of Z given U or if Y is not independent of U

given Z, then under Assumptions 1-4 and Assumption 6, the vector of parameters, θ, is

identifiable.

We give a detailed proof of this theorem in Appendix. It is worthwhile to note that if Y is

independent of Z given U and is also independent of U given Z, we can not identify all the

parameters. However, from θ10a = θ11n = θ11c = θ10c, we can get CACE = θ11c − θ10c = 0,

which means the treatment has no causal effect on the outcome.

After we have shown identifiability of θ, we can derive the moment and ML estimators

of θ. Let Nyrzd be the observed number of patients with Y = y,R = r, Z = z, D = d.

The observed data, Ny1zd (for y, z, d = 0, 1) and N+0zd (for z, d = 0, 1), can be consid-

ered as from a multinomial distribution with the corresponding cell probabilities, νy1zd and
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ν+0zd, where N+0zd =
∑

y Ny0zd denotes an observed frequency with y’s value missing,

νy1zd = P (Y = y, R = 1, Z = z, D = d) and ν+0zd = P (R = 0, Z = z, D = d).

Then the moment estimator of CACE is ̂CACEnocova = δ̂11c−δ̂10c

ρ̂1
. And we can obtain that

̂CACEnocova has an asymptotically normal distribution using the central limit theorem

and the multivariate delta method. Since moment estimates may be the outside of the

parameter space in practice (Zhou and Li, 2006), we propose the EM algorithm to find

ML estimates in this article. In Theorem 1 the complete-data likelihood function is given

as Lc(θ) = ΠN
i=1P (Zi)P (Ui)P (Di|Zi, Ui)P (Yi|Zi, Ui)P (Ri|Yi). In the E step, we take the

expectation of the complete-data, given the observed data and the previous parameter

estimate θ = θ(k), that is n
(k+1)
yrzu = E{nyrzu|observed− data,θ(k)}. In the M step, we can get

the ML estimates θ(k+1) from the n
(k+1)
yrzu .

3.2 Identifiability with a Covariate

In some clinical trials there are good reasons to believe that the missing data mechanism

is also affected by the treatment assignment not just the outcome, because the occurrence

of side effects differs between treatment arms. In some clinical trials, a direct effect of the

treatment assignment on the missing data mechanism is essentially implied by the study

design. For example, when patients in the treatment group experience severe side effects, they

are removed from further study. Therefore, the response indicator of the outcome, R, depends

not only on the outcome Y itself but also other variables. The parameter vector θ is not

identifiable under only Assumptions 3, 4, and 6 without further assumptions. In this case, we

can introduce an additional covariate X which is observed before the assigned treatment, and

thus Z is independent of (X, U). Suppose that X associated with Y in each subpopulation of

U = u and Z = z (that is, P (y|x, z, u) �= P (y|z, u) for some x and for all u and z) such that

the parameter vector θ becomes to be identifiable. For example, in some clinical trials it may

be reasonable to assume that the age of patients is associated with Y in each subpopulation.
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Here we suppose that x is discrete. Then the following theorem shows that parameters are

identifiable. Let αxu = P (X = x, U = u), ρyzux = P (R = 1|Y = y, Z = z, U = u,X = x)

and θyzux = P (Y = y|Z = z, U = u,X = x). To emphasize the dependence of the causal

effect parameter on covariates, we write CACE as CACEcova, which is defined as follows:

CACEcova =
∑

x E{Y (1)−Y (0) | U = c,X = x}P (X = x|U = c) =
∑

x(θ11cx−θ10cx)αxc/ωc.

With availability of this covariate X, we can replace Assumption 6 by the following

assumption.

Assumption 7: For z = 0 and 1,

P{Ri(z)|Yi(z), Di(z), U = u,X = x} = P{Ri(z)|Yi(z)}. (1)

Assumption 7 means that the missing data mechanism depends on both the outcome Y and

the assigned treatment Z, which is weaker than Assumption 6. To identify parameters under

Assumption 7, we introduce an observed covariate X as an additional instrumental variable

in Theorem 2.

When the treatment assignment Z is randomized, we have from (1) that ρyzux = ρyzu′x′ for

any u �= u′ or x �= x′, and thus we can simply denote ρyzux as ρyz. The vector of parameters,

θ, is denoted as θ = (ξ, ωa, ωn, αxa, αxn, αxc, θ10ax, θ11nx, θ11cx, θ10cx, ρ00, ρ01, ρ10, ρ11).

Theorem 2: Suppose that X is an observed discrete covariate that depends on Y in

each subpopulation of U = u and Z = z. Then under Assumptions 1-4 and Assumption 7,

the vector of parameters, θ, is identifiable.

We give a proof of Theorem 2 in the appendix. Under the model in Theorem 2, we can obtain

the estimate of CACE as ̂CACEcova1 =
∑

x(δ̂11cx/ρ̂11 − δ̂10cx/ρ̂10)α̂xc/ω̂c.

Note that in Theorems 1 and 2 we only make the exclusion restriction assumption, which

is weaker than the compound exclusion restriction assumption made in Frangakis and Rubin

(1999). If we also make the stronger compound exclusion assumption, we can further relax

Hosted by The Berkeley Electronic Press



10 Biometrics, 000 0000

Assumption 7 to allow the missing-data mechanism to depend on both missing outcomes

and latent compliance status variable.

Assumption 8: For z = 0 and 1,

P{Ri(z)|Yi(z), Di(z), U = u,X = x} = P{Ri(z)|Yi(z), U = u}. (2)

This assumption assumes that the missing data mechanism depends on Y , Z and U .

When the treatment assignment Z is randomized, using (2) we obtain that ρyzux = ρyzux′

for any x �= x′, and thus we can simply denote ρyzux as ρyzu. Since the compound exclusion

assumption (Assumption 5) holds, we have that ρy0n = ρy1n and ρy0a = ρy1a. Hence, the

vector of parameters, θ, is

θ = (ξ, ωa, ωn, αxa, αxn, αxc, θ10ax, θ11nx, θ11cx, θ10cx, ρ11n, ρ01n, ρ00a, ρ10a, ρ11c, ρ01c, ρ00c, ρ10c).

Theorem 3: Suppose that X is an observed discrete covariate that depends on Y in each

subpopulation of U = u and Z = z. Then under Assumptions 1-3, 5, and 8, the parameters

in θ are identifiable.

The difference between the models in Theorems 2 and 3 is in their missing data mechanisms.

For the model in Theorem 3, R depends on Y (Z), Z and U , while R depends only on Y (Z)

and Z in the model of Theorem 2. For the model of Theorem 3, we can obtain the estimate

of CACE as ̂CACEcova2 =
∑

x(δ̂11cx/ρ̂11c − δ̂10cx/ρ̂10c)α̂xc/ω̂c.

3.3 Extension to multi-level outcomes

In this subsection we generalize Theorems 1, 2, and 3 to a multi-level outcome. Let Y be

a K-level discrete variable, where Y = 0, . . . , K − 1, and the covariate X be a J−valued

variable, i.e., X ∈ {0, 1, . . . , J − 1}. Since the proofs of corollaries are similar to theorems,

we omit the proofs for the sake of simplicity.

Corollary 1: If Y has fewer levels than 5, that is K < 5, and the rank of the 4 × K

http://biostats.bepress.com/uwbiostat/paper317
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matrix, ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ01n δ11n . . . δK−1,1n

δ00a δ10a . . . δK−1,0a

δ01c δ11c . . . δK−1,1c

δ00c δ10c . . . δK−1,0c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is equal to K, then the result of Theorem 1 holds.

Note if K > 4, the model of Theorem 1 cannot be identified without additional assumptions,

because the degree of freedom in the observed data is 4K + 3, which is smaller than the

number of parameters 5K − 1.

Corollary 2: Let us define the following J × K matrices:

ΔMulti
zu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ0zu0 δ1zu0 . . . δK−1,zu0

δ0zu1 δ1zu1 . . . δK−1,zu1

...
... . . .

...

δ0zu,J−1 δ1zu,J−1 . . . δK−1,zu,J−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where u = n, a, c and z = 0, 1.

(1) When J ≥ K, if the ranks of the two J × K matrices, ΔMulti
1n and ΔMulti

0a , are equal to

K, then the result of Theorem 2 holds.

(2) When J ≥ K, if the ranks of the four J × K matrices, ΔMulti
1n , ΔMulti

1c , ΔMulti
0a and

ΔMulti
0c , are all equal to K, then the result of Theorem 3 holds.

4. Simulation Studies and Application

In our simulation studies, we first assessed the relative performance of the moment and ML

estimators in finite-sample sizes when the assumptions were correct. We then assessed the

sensitivity of the derived moment and ML estimators when some of the assumptions were

violated.
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In the first simulation study, we generated 1000 samples. Each of which had a sample

size of N = 500 under the model with a covariate as specified in Theorems 2. We computed

moment and ML estimates of parameters for every sample, their means, standard deviations,

and actual coverage percentages of 95% confidence intervals. The result is reported in Table

1. We used the bootstrap to estimate the standard deviation. Since the moment and ML

estimates are all asymptotically normal distributions, we also computed confidence intervals.

We also generated data under the missing-data models, given in Theorems 1 and 3. Since the

results were similar to that in Theorem 2, we only reported the results on the missing-data

model with a covariate in Theorem 2 for the sake of simplicity. From Table 1, we see that

except for ξ, ωn and ωa, the ML estimates perform better than the moments estimators.

In addition, for half of the samples the moment estimates are not proper (meaning that at

least one of the estimates for the sample is outside of the corresponding parameter’s range).

Hence we would recommend the ML estimates over the moment estimates.

[Table 1 about here.]

Next we conducted a sensitivity analysis of the proposed estimators between the LI as-

sumption and CN assumption. We assumed that the true model satisfied the CN assumption

described in Theorem 1, but we estimated the CACE under the wrong LI assumption.

Thus the true CACEtrue is θ11c − θ10c and the estimated CACEestimated is θ11cρ1

θ11cρ1+(1−θ11c)ρ0
−

θ10cρ1

θ10cρ1+(1−θ10c)ρ0
. Let bias = |CACEestimated − CACEtrue|. We maximized bias over all values

from 0.0 to 1.0 by step 0.01 of θ11c, θ10c, ρ1 and ρ0. The result was reported in Figure 1. Each

curve in Figure 1 represents a fixed CACE value, which was set to be 0.05, 0.1, 0.15, 0.2, and

0.25, respectively. For each of the five true CACEtrue values, we plotted a curve to represent

the relationship between the maximum bias of CACE estimates and a real parameter

|P (R = 1|Y = 1)−P (R = 1|Y = 0)| in Figure 1. Here, |P (R = 1|Y = 1)−P (R = 1|Y = 0)|

can be interpreted as a measure for the departure of the assumed LI model from the true CN
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model. The larger |P (R = 1|Y = 1) − P (R = 1|Y = 0)| is, the further away the assumed LI

model is from the true CN model. From Figure 1, we see that the further away the assumed

LI model is from the true CN mode, the bigger the bias of the CACE estimates obtained

under the wrong LI model is. From Figure 1, we can also see that the bias of estimated

CACE depends on the value of the true CACE. In general, the larger the true CACE is,

the bigger the bias of the estimated CACE is. As the true CACE decreases, the bias of

the estimated CACE also decreases, and as the CACE value tends to zero, the difference

between the estimates of the CACE under the CN and LI models also tends to zero.

[Figure 1 about here.]

[Figure 2 about here.]

In Figure 2, we assumed that the true missing-data mechanism model was the LI model, but

we used a wrong CN model to estimate the CACE. Thus the true CACEtrue is θ11c−θ10c and

the estimated CACEestimated is (1−θ11n)γ1n−(1−θ10a)γ0a

γ1nγ0a(θ10a−θ11n)
(θ11cγ1c − θ10cγ0c), where γzu = P (R =

1|Z = z, U = u). The bias is still denoted as bias = |CACEestimated − CACEtrue|. We

maximized bias over all values from 0.0 to 1.0 by step 0.01 of θ11c, θ10c, θ11n, θ10a, ρ1n, ρ0a,

ρ1c and ρ0c. We also found that the maximum bias of the estimated CACE was increasing

as the value of the true CACE was increasing. Thus, the estimate of CACE is sensitive to

the model of the missing data mechanism. The estimate of the CACE obtained from the LI

model is biased if the true missing-data mechanism is a CN model, and vice versa. On the

other hand, if the value of CACE tends to zero, the maximum bias tends to zero regardless

whether the true missing-data mechanism model is the CN model or the LI model. Here

the estimate of CACE under the assumption LI is given by Zhou and Li (2006), and the

estimate of CACE under the assumption CN is given by Theorem 1 in this paper.

We also compared our method with the method in which subjects with missing data

were discarded. We generated 1000 samples with sample size N = 3000 under the model
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of Theorem 1. In Table 2, we reported means and standard errors of estimates of CACE,

derived using our method and the method by discarding subjects with missing data. We fix

ρ0 = 0.1 and change ρ1 from 0.2 to 0.9 and other parameters are fixed as ξ = 0.5, ωn = 0.2,

ωa = 0.3, θ10a = 0.6, θ11n = 0.3, θ11c = 0.8 and θ10c = 0.2. From Table 2, we can see that

the bias of CACE estimates obtained by discarding subjects with missing data increases as

|ρ1 − ρ0| is increasing; whereas the estimates obtained by our method are very close to the

true CACE regardless of the value of |ρ1 − ρ0|.

[Table 2 about here.]

[Table 3 about here.]

Now we apply our method to flu shot data, Zhou and Li (2006). We assume the CN missing-

data mechanism satisfying Assumption 6. The observed data are N1100 = 49, N0100 = 573,

N1101 = 16, N0101 = 143, N1110 = 47, N0110 = 499, N1111 = 20, N0111 = 256, N+000 = 492,

N+001 = 17, N+010 = 497, N+011 = 9. We report the results in Table 3. Since the moment

estimates are not proper, we only summarize the ML method. From the table, ρ̂0 = 1 and

the variance is equal to zero. This result means that all patients who were in hospital must

be observed.

The estimated CACE and its 95% confidence interval are -0.1393 and (−0.4808, 0.2022)

respectively. For a comparison purpose, we listed the estimated CACE and its 95% confidence

interval from Zhou and Li (2006) under the LN assumption. Under latent ignorability,

the estimated CACE is -0.009, and its associated 95% confidence interval of CACE is (-

0.211,0.229). Both methods reached the same conclusion that influenza vaccination is not

associated with reduced risk of hospitalization for respiratory illness.

There are several limitations to the results of this application. First, we ignore clustering

effect in the data that may lead to violation of the SUTVA assumption. Second, since

the study is not double blind, the exclusion restrictions assumption may be questionable,
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particularly among the always-takers, who are probably at high risk for flu and then may

receive other medical actions beside flu shots given by their physicians when their physicians

received a reminder about flu shots.

5. Conclusion

In this paper we discussed the problem of non-compliance and non-ignorable missing outcome

mechanism. One major problem dealing with a non-ignorable missing data is the issue of

parameter identifiability. We gave sufficient conditions for identifying causal effect parameters

under the CN missing-data mechanism, which is one type of non-ignorable missing and is

different from the existing LI assumption. Under the CN missing-data mechanism, we give

a theorem on parameter identification when the missing data mechanism depends only on

outcomes. With availability of a certain type of covariates, we can relax the missing data

mechanism assumption — Assumption 6 — to allow the missing-data mechanism to depend

on not only the missing outcome variable but also the treatment assignment Z and the

latent compliance status variable U . From the simulation results, the estimate of CACE is

sensitive to the missing data mechanism assumption. So we should pay attention to choose

the missing data mechanism in practice. It is still an open problem that how to test a non-

ignorable missing data mechanism. However, we can obtain from the simulations that the

CACE estimates is not sensitive to the missing data mechanism assumption as the true

CACE value tends to zero. Some assumptions in our theorems are (partly) testable from the

observed data, such as X is not associated with (D, Z).
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Appendix

Proof of Theorem 1:

Identifiability of ξ, ωa and ωn is immediate from randomization of Z and the monotonicity

assumption, that is, ξ = P (Z = 1), ωa = P (U = a) = P (D = 1|Z = 0) and ωn = P (U =

n) = P (D = 0|Z = 1). We next show that δyzu are the functions of the distributions of

observed variables. Under the Assumption 3, we obtain that δy1n = P (Y = y,R = 1|Z =

1, U = n) = P (Y =y,R=1,Z=1,D=0)
P (Z=1,D=0)

and that δy0a = P (Y =y,R=1,Z=0,D=1)
P (Z=0,D=1)

.

For δy1c, we have δy1c = P (Y =y,R=1,Z=1,U=c)
P (Z=1,U=c)

= P (Y =y,R=1,Z=1,D=1)−P (Y =y,R=1,D=1,Z=1,U=a)
P (Z=1,D=1)−P (D=1,Z=1,U=a)

.

Under the monotonicity and randomization assumptions, P (D = 1, Z = 1, U = a) in the

denominator can be rewritten as P (Z = 1)P (D = 1, U = a|Z = 1) = P (Z = 1)P (U = a|Z =

1) = P (Z = 1)P (U = a|Z = 0) = P (Z = 1)P (D = 1, U = a|Z = 0) = P (Z = 1)P (D =

1|Z = 0). On the other hand, from the numerator we have that P (Y = y, R = 1, D = 1, Z =

1, U = a) = P (R = 1|Y = y, D = 1, Z = 1, U = a)P (Y = y|D = 1, Z = 1, U = a)P (D =

1, Z = 1, U = a), where P (R = 1|Y = y, D = 1, Z = 1, U = a) = P (R = 1|Y = y) = P (R =

1|Y = y, D = 1, Z = 0, U = a) because of Assumption 6, P (Y = y|D = 1, Z = 1, U = a) =

P (Y = y|D = 1, Z = 0, U = a) due to the exclusion restriction and P (D = 1, Z = 1, U =

a) = P (D = 1, U = a|Z = 0)P (Z = 1) by the forward proof. So P (Y = y,R = 1, D =

1, Z = 1, U = a) = P (R = 1|Y = y, D = 1, Z = 0, U = a)P (Y = y|D = 1, Z = 0, U =
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a)P (D = 1, U = a|Z = 0)P (Z = 1) = P (Y = y, R = 1, D = 1, U = a|Z = 0)P (Z = 1).

Hence, we obtain that δy1c = P (Y =y,R=1,Z=1,D=1)−P (Y =y,R=1,D=1|Z=0)P (Z=1)
P (Z=1,D=1)−P (D=1|Z=0)P (Z=1)

.

Similarly, we can show that δy0c = P (Y =y,R=1,Z=0,D=0)−P (Y =y,R=1,D=0|Z=1)P (Z=0)
P (Z=0,D=0)−P (D=0|Z=1)P (Z=0)

. Hence, we

have shown that δyzu’s are identifiable.

Next we will show that ρy’s are identifiable. Let us define the matrix Δ1 as follows:

Δ1 =

⎛
⎜⎝ δ01n δ00a δ01c δ00c

δ11n δ10a δ11c δ10c

⎞
⎟⎠

T

.

Because θ0zu + θ1zu = 1 and from δyzu = ρyθyzu, we obtain the following equations:

Δ1

⎛
⎜⎝ 1/ρ0

1/ρ1

⎞
⎟⎠ =

(
1 1 1 1

)T

. (A.1)

Below we show that Δ1 has rank 2. Suppose that Δ1 does not have full column rank. Then

we have δ01n

δ11n
= δ00a

δ10a
= δ01c

δ11c
= δ00c

δ10c
, which implies θ01n

θ11n
= θ00a

θ10a
= θ01c

θ11c
= θ00c

θ10c
since δyzu = ρyθyzu.

Thus we obtain that θ10a = θ11n = θ11c = θ10c, which implies that Y is independent of Z

given U and is also independent of U given Z. This contradicts the condition of Theorem

1. Therefore, we have shown that ρy’s are identifiable. Finally, the parameters θyzu can be

identified from equations: θ10n = θ11n = δ11n/ρ1, θ11a = θ10a = δ10a/ρ1, θ11c = δ11c/ρ1 and

θ10c = δ10c/ρ1.

Proof of Theorem 2:

The joint distribution can be factorized as P (Z, U,D, X, Y, R) = P (R|Z, U,D, X, Y ) P (Y |Z, U,D, X)

P (D|Z,U,X)P (U,X|Z)P (Z). Since Z is randomized, P (U,X|Z) = P (U,X). Because D is

determined by (Z,U), we obtain that P (D|Z, U,X) = P (D|Z, U) and P (Y |Z,U,D,X) =

P (Y |Z, U,X). From the randomization assumption and Assumption 7, we obtain that

P (R|Z, U,D, X, Y ) = P (R|Y, Z). So we can rewrite the joint distribution as

P (Z, U,D, X, Y, R) = P (Z)P (U,X)P (D|Z,U)P (Y |Z, U,X)P (R|Y, Z).
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To identify P (U,X), we first note that from independence of Z and (U,X), the definition of

U , and Assumption 3, we obtain that P (U = a|X = x) = P (U = a|Z = 0, X = x) = P (D =

1|Z = 0, X = x), P (U = n|X = x) = P (U = n|Z = 1, X = x) = P (D = 0|Z = 1, X = x)

and then P (U = c|X = x) = 1 − {P (U = n|X = x) + P (U = a|X = x)}. Since P (X)

is identifiable, P (U,X) is identifiable; since Z and U determine D, P (D|Z = z, U = u) is

known for all z and u.

Below we show that ρ01, ρ11, ρ00, ρ10, θ11nx, θ10ax, θ11cx and θ10cx are identifiable condition-

ally on X = x. Let us define the following matrices:

Δ2
zu =

⎛
⎜⎝ δ0zux δ1zux

δ0zux′ δ1zux′

⎞
⎟⎠

Since

δyzux = P (R = 1|Y = y, Z = z)P (Y = y|Z = z, U = u,X = x) = ρyzθyzux, (A.2)

using the same idea as in the proof of Theorem 1, we obtain the following equations:

Δ2
1n

⎛
⎜⎝ 1/ρ01

1/ρ11

⎞
⎟⎠ =

⎛
⎜⎝ 1

1

⎞
⎟⎠ (A.3)

and

Δ2
0a

⎛
⎜⎝ 1/ρ00

1/ρ10

⎞
⎟⎠ =

⎛
⎜⎝ 1

1

⎞
⎟⎠ . (A.4)

Under Assumption 3, the elements in the matrices Δ2
1n and Δ2

0a can be expressed by the

distributions of observed variables, respectively, as follows:

δy1nx =
P (Y = y,R = 1, Z = 1, D = 0, X = x)

P (Z = 1, D = 0, X = x)
(A.5)

and

δy0ax =
P (Y = y, R = 1, Z = 0, D = 1, X = x)

P (Z = 0, D = 1, X = x)
. (A.6)

Suppose that Δ2
1n in (A.3) is not full rank for all x �= x′. Then it is immediate that Y is

independent of X given U = n and Z = z, which contradicts the assumptions in Theorem 2.
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Thus there exists at least one pair of x and x′ so that the matrix Δ2
1n is full rank, and then

ρ01 and ρ11 can be solved from (A.3). Similarly, we can show that ρ00 and ρ10 are identifiable

from (A.4).

From (A.2), (A.5) and (A.6), we can identify θy1nx and θy0ax. Similarly we can identify θy1cx

and θy0cx from the equations θy1cx = δy1cx

ρy1
= P (y,R=1,Z=1,D=1,x)/(ξρy1)−P (y,R=1,Z=0,D=1,x)/{(1−ξ)ρy0}

P (Z=1,D=1,x)/ξ−P (D=1,Z=0,x)/(1−ξ)

and θy0cx = P (y,R=1,Z=0,D=0,x)/{(1−ξ)ρy0}−P (y,R=1,Z=1,D=0,x)/(ξρy1)

P (Z=0,D=0,x)/(1−ξ)−P (D=0,Z=1,x)/ξ
.

Proof of Theorem 3:

Similar to the proof of Theorem 2, we have P (Z, U,D, X, Y, R) = P (Z)P (U,X)P (D|Z,U)

P (Y |Z, U,X)P (R|Y, Z, U). Hence, we can identify δy1nx and δy0ax from (A.5) and (A.6) re-

spectively. We can also identify δy1cx and δy0cx by δy1cx = P (y,R=1,Z=1,D=1,x)−P (y,R=1,D=1,Z=0,x)ξ/(1−ξ)
P (Z=1,D=1,x)−P (D=1,Z=0,x)P (Z=1)/P (Z=0)

and δy0cx = P (y,R=1,Z=0,D=0,x)−P (y,R=1,D=0,Z=1,x)(1−ξ)/ξ
P (Z=0,D=0,x)−P (D=0,Z=1,x)P (Z=0)/P (Z=1)

.

Next we show that we can identify ρyzu. We first put δyzux’s into the following matrices:

Δ3
zu =

⎛
⎜⎝ δ0zux δ1zux

δ0zux′ δ1zux′

⎞
⎟⎠ ,

for (z, u) = (1, n), (1, c), (0, a) and (0, c). Because R is independent of X given (Y, Z, U),

we obtain that δyzux = P (R = 1|Y = y, Z = z, U = u)P (Y = y|Z = z, U = u, X = x) =

ρyzuθyzux. Hence, we can obtain the following equations:

Δ3
zu

⎛
⎜⎝ 1/ρ0zu

1/ρ1zu

⎞
⎟⎠ =

⎛
⎜⎝ 1

1

⎞
⎟⎠ .

Using the same argument as in the proof of Theorem 2, we can show that all four Δ3
zu matrices

have full ranks under the assumptions in Theorem 3. Therefore, we can identify ρyzu’s. Finally,

because δyzux = P (R = 1|Y = y, Z = z, U = u)P (Y = y|Z = z, U = u,X = x) = ρyzuθyzux,

we can identify θ10ax, θ11nx, θ11cx and θ10cx respectively.
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Figure 1. Real model: CN; Supposed model: LI.
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Figure 2. Real model: LI; Supposed model: CN.
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Table 1
Simulation results of comparison between moment method and ML method with covariate in Theorem 2, including

mean, standard deviation and actual 95% coverage probability. The level of covariate is 2 and N = 500.

Moment Method ML Method
Real Parameters Mean Std Dev 95%Cover Mean Std Dev 95%Cover

ξ = 0.5 0.4998 0.0225 0.950 0.4998 0.0225 0.950
P (U = n|X = 0) = 0.3 0.3003 0.0451 0.949 0.2993 0.0448 0.948
P (U = a|X = 0) = 0.2 0.2020 0.0422 0.954 0.2008 0.0419 0.947
P (U = n|X = 1) = 0.1 0.1007 0.0240 0.949 0.1001 0.0239 0.950
P (U = a|X = 1) = 0.5 0.5009 0.0397 0.949 0.4997 0.0393 0.949
P (X = 0) = 0.4 0.3997 0.0229 0.956 0.3997 0.0229 0.956
θ10a0 = 0.6 0.7124 0.3501 1.000 0.6201 0.2387 0.995
θ11n0 = 0.3 0.5013 0.3681 1.000 0.2967 0.1169 0.961
θ11c0 = 0.8 0.6835 0.4362 1.000 0.7673 0.1727 0.953
θ10c0 = 0.2 0.3617 0.3806 0.832 0.2398 0.1981 0.941
θ10a1 = 0.5 0.6372 0.3430 1.000 0.5236 0.1690 0.966
θ11n1 = 0.2 0.4067 0.3863 0.804 0.2014 0.1301 0.959
θ11c1 = 0.7 0.6224 0.4610 1.000 0.6429 0.2745 0.936
θ10c1 = 0.1 0.2005 0.2614 0.911 0.1194 0.1052 0.956
ρ00 = 0.2 0.2331 0.2756 0.916 0.2111 0.0507 0.950
ρ01 = 0.3 0.3357 0.2883 0.912 0.3062 0.0793 0.952
ρ10 = 0.6 0.4103 0.2760 0.876 0.6271 0.2145 0.999
ρ11 = 0.8 0.3515 0.3154 0.639 0.8288 0.1237 0.997
CACE = 0.6 0.3823 0.6703 0.922 0.5254 0.2928 0.933
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Table 2
Sensitivity analysis of CN and the method by ignoring incompletely observed subjects. Covariate X is binary and

N = 3000. The true value of CACE is 0.6.

CACE CACEignor

Value of ρ1 Mean Std Dev Mean Std Dev

ρ1 = 0.2 0.5923 0.0891 0.5621 0.0867
ρ1 = 0.3 0.5992 0.0795 0.5018 0.0715
ρ1 = 0.4 0.5977 0.0754 0.4474 0.0611
ρ1 = 0.5 0.6001 0.0695 0.3983 0.0547
ρ1 = 0.6 0.5987 0.0663 0.3595 0.0490
ρ1 = 0.7 0.5947 0.0636 0.3239 0.0455
ρ1 = 0.8 0.5965 0.0631 0.2998 0.0410
ρ1 = 0.9 0.6017 0.0545 0.2757 0.0376
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Table 3
ML estimates and SE of flu shot data.

Parameters MLE Std Dev(Bootstrap) 95% CI

ξ 0.5065 0.0097 (0.4874, 0.5255)
ωn 0.7839 0.0108 (0.7627, 0.8051)
ωa 0.1348 0.0091 (0.1170, 0.1525)
θ10a 0.1757 0.0234 (0.1300, 0.2215)
θ11n 0.5216 0.0143 (0.4936, 0.5495)
θ11c 1.379e-016 0.0268 (0.0000, 0.0526)
θ10c 0.1393 0.1722 (0.0000, 0.4768)
ρ0 1.0000 0.0000 (1.0000, 1.0000)
ρ1 0.1151 0.0095 (0.0965, 0.1337)
CACE -0.1393 0.1743 (−0.4808, 0.2022)
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