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Summary: Stratifying on propensity score in observational studies of treatment is a common technique

used to control for bias in treatment assignment; however, there have been few studies of the relative

efficiency of the various ways of forming those strata. The standard method is to use the quintiles

of propensity score to create subclasses, but this choice is not based on any measure of performance

either observed or theoretical. In this paper, we investigate the optimal subclassification of propensity

scores for estimating treatment effect with respect to mean squared error of the estimate. We consider

the optimal formation of subclasses within formation schemes that require either equal frequency of

observations within each subclass or equal variance of the effect estimate within each subclass. Under

these restrictions, choosing the partition is reduced to choosing the number of subclasses. We also consider

an overalll optimal partition that produces an effect estimate with minimum MSE among all partitions

considered. To create this stratification, the investigator must choose both the number of subclasses and

their placement. Finally, we present a stratified propensity score analysis of data concerning insurance

plan choice and its relation to satisfaction with asthma care.
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1. Introduction

In observational studies where investigators seek to estimate the effect of a binary treatment

(“treatment” and control), treatment assignment is not randomized. As a result, treatment

groups may differ substantially on important confounding covariates, and this confounding biases

the direct estimate of treatment effect (Rubin, 1991) (Sommer and Zeger, 1991). Methods

available to control for confounding in observational studies include direct adjustment, matching,

and stratification on covariates (Cochran, 1968) (Billewicz, 1965). Propensity score methods,

developed by Rosenbaum and Rubin (1983), may also be used.

The propensity score of an experimental unit is the conditional probability of that unit being

assigned to the treatment group, given observed covariates. Under randomization, this probability

is controlled by the investigator and is independent of covariates, so that the propensity creates

the assignments. When units are not randomized, the propensity emerges from the assignment

process. Specifically, those who are treated will tend to have higher propensity scores than those

who go untreated. This imbalance in propensity score represents an imbalance in covariates

between treatment and control groups, and several methods utilizing the propensity, including

matching, subclassification, and direct adjustment on propensity scores, have been shown to

yield unbiased estimates of treatment effect (Rosenbaum and Rubin, 1984) (Rosenbaum and

Rubin, 1983) (Rosenbaum and Rubin, 1985) (Dehejia and Wahba, 2002). We are interested in

the method of adjustment by subclassification on propensity score.

When using the subclassification approach, the range of propensity scores is split into subclasses,

and treatment effect is estimated for the outcomes within each subclass. The overall treatment

effect is then estimated using an inverse variance weighted mean of the subclass-specific estimates.

Choice of the number and placement of subclasses influences the variance and bias of the resultant

estimate. Generally, there are opposing effects on variance and bias; wide classes produce low

variance but high potential bias, narrow classes the reverse.

http://biostats.bepress.com/jhubiostat/paper155



2 Biometrics, 000 0000

Two popular approaches for forming subclasses are equal frequency of observations in each

subclass and equal subclass-specific variance of the estimated treatment effect across subclasses.

In this paper we compare these two methods and a method designed to produce an approximately

optimal set of strata, those that minimize the mean squared error (MSE) of the overall estimate.

This hybrid approach depends on specifying a confounding structure, and near optimality of the

approach depends on an approximately correct specification. In this report we base the partition

on linear confounding. Mean squared error performance of the three approaches depends on the

distribution of propensity scores in the two treatment groups, and we examine several patterns.

For a specified number of propensity score strata, the equal frequency approach often produces

some subclasses with a large discrepancy between the number of units assigned to treatment

and control, producing a high stratum-specific variance of the estimated treatment effect. Inverse

variance weighting gives these estimates little influence on the overall estimate, in some sense

“wasting” observations. The equal variance approach (Hullsiek and Louis, 2002) was designed

to address this issue by forming strata with approximately equal variances for the estimated

treatment effect. However, for a fixed number of subclasses, equal variance subclasses can have

boundaries far from the equal frequency classes (generally, higher frequencies for low and high

propensity scores, lower frequencies for propensity scores near 0.5).

Irrespective of the approach to forming class boundaries, MSE performance depends on the

number of strata relative to the inherent degree of confounding. If there is no confounding, it

is optimal to use one class (minimize the variance); if there is considerable confounding, then

several strata will be needed to minimize MSE.

Section 2 describes the propensity score stratification methods, and Section 3 presents per-

formance comparisons. Section 4 presents an analysis of an observational study of the effect of

health insurance type on satisfaction with asthma care. Section 5 summarizes results and suggests

another algorithm for choosing the number and form of subclasses.
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2. Model and Methods

Let Zi indicate treatment assignment, with Zi = 1 for treatment and Zi = 0 for control. Define

the response vectors accordingly, Yz = (Y1z, Y2z, . . . , Ynzz), where nz is the sample size for

treatment group z. Furthermore, let Xi be a vector of potential confounders, attributes that help

predict both treatment and outcome. With no confounding a simple difference of means, (Ȳ1−Ȳ0),

is minimum variance, unbiased (and therefore minimum MSE) for estimating the treatment effect.

In the presence of confounding, this estimate is biased. If the statistical relation between X and

Y is known, a standard covariate adjustment can be used to reduce bias. Alternatively, use of

propensity score,

e(Xi) = Pr(Zi = 1|Xi)

by weighting or stratification can reduce the bias (Rosenbaum and Rubin, 1984).

We study stratification into K subclasses ordered on propensity score, combining stratum-

specific estimates. To structure the approach, let Pz be the propensity score random variable in

treatment group z with density and cdf,

Pz ∼ fz(p)

Pr(Pz ≤ p) =

∫ p

0

fz(u)du

For ease of notation we assume the distributions are continuous, however our findings hold for

the general case. Determining an effective value for K and subclass boundaries depends on these

distributions. For example, if f1(p) = f0(p), then K = 1 is optimal (just use the overall estimate).

Note that the fz(p) can be estimated and in some situations (e.g., a randomized experiment) are

known.

Estimating the treatment effect with the simple difference of means permits the computation

of subclass-specific variance, assuming without loss of generality that the variance of outcome

in each group is 1. Let t = (0 = t0 < t1 < . . . < tK = 1) define a partition of the range of
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propensity scores with K subclasses. The estimated treatment effect in the kth stratum and its

variance are

∆̂k = ∆̂k(t) = Ȳ1k − Ȳ0k

Vk = Vk(t) = V ar(Ȳ1k − Ȳ0k)

=
1

N

[
π−1

F1(tk)− F1(tk−1)
+

(1− π)−1

F0(tk)− F0(tk−1)

]
.

where N = n0 + n1, and π = n1/N . The overall estimate and it’s variance are

∆̂ = ∆̂(t) =
(
ΣK

k=1∆̂kV
−1
k

)
/
(
ΣK

k=1V
−1
k

)

V (∆̂) = 1/
(
ΣK

k=1V
−1
k

)
.

If Vk ≡ V (as in equal variance partitioning), then V (∆̂) = V
K

. Setting K = 1 yields the minimum

variance, and variance increases with K. However, the bias is maximized at K = 1 and generally

decreases as K increases.

In order to specify the bias, we must define the model,

Y |z, X = α + βz + ηe(X) + ε (1)

Here β is the true treatment effect, but we observe a linear combination of β and η. The within

subclass bias and overall bias are given by

E[∆̂k]− β = (α + β + ηe1k)− (α + ηe0k)− β

= η(e1k − e0k)

E[∆̂]− β = η
ΣK

k=1V
−1
k (e1k − e0k)

ΣK
k=1V

−1
k

where ezk = E[Pz|Pz ∈ (tk−1, tk)].

After studying the formulas for variance and bias, it is clear that η is important in determining

the mean squared error of the estimate associated with a particular subclass partition. For example,

if either η = 0 or e1k − e0k = 0 for all k, then the estimate is unbiased, and one subclass is
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preferred. However, as η increases, the proportion of MSE attributable to bias increases, and so

more subclasses are required in order to control MSE.

The number of units in the sample, N , also determines the relative impact of variance and bias

in MSE, but because increasing sample size has the same effect on this relation as increasing η,

we keep N constant and compare the various subclass formation methods at different levels of

what we will call η∗, a representation of the combined effects of both η and N . Also note that in

order to form K equal frequency or equal variance subclass partitions, it is not necessary to have

any information about the value of η∗. However, in order to find the optimal subclass partition,

which yields the minimum mean squared error estimate of treatment effect using K subclasses,

η∗ must be known.

3. Performance Assessment

To investigate the performance of the two methods for subclass formation already discussed

compared to the optimal subclass formation, we created a program to compute the mean squared

error at varying values of η using the variance and bias formulas above. The program considered all

possible subclass partitions with cutpoints specified up to three decimal places, allowing between

one and six total subclasses. It reported the lowest MSE of the six possible equal frequency

formations, the lowest MSE of the six possible equal variance formations, and the number of

subclasses used in each. The program also reported the subclass formation with the absolute

minimum MSE of all partitions considered.

For simplicity, we require that the marginal density of propensity scores is uniform on [0, 1],

forcing equal frequency cutpoints to be equidistant along the range of propensity scores. We also

assume that the densities of the propensity scores of the two treatment groups are antisymmetric,

f0(p) = f1(1−p), and that there is equal sample size in each treatment group. These restrictions

http://biostats.bepress.com/jhubiostat/paper155



6 Biometrics, 000 0000

yield

1

2
f1(p) +

1

2
f0(p) = 1 0 < p < 1

⇒ f1(1− p) = 2− f1(p) 0 < p < .5 (2)

which implies we must have f1(p) ≤ 2. Also notice that anti-symmetry causes the outermost

regions of the propensity score range to have the greatest imbalance in group distribution, so if

equal frequency subclass formation is used, the subclasses on each end of the range will have the

largest variance.

Characterizing this class of functions, we may take any function f such that f(p) ≤ 2 and

f(.5) = 1 and define

f ∗(p) =





f(p) p ≤ .5

2− f(1− p) p > .5

Then, the function f ∗ satisfies the necessary conditions to be a density under consideration

because 1
2
f ∗(p) + 1

2
f ∗(1 − p) = 1

2
[f(p) + 2 − f(p)] = 1, as in 2. In fact, the form defined

by f ∗ completely characterizes the class of functions that satisfy anti-symmetry and marginal

uniformity. To show this, take any f in this class and define f ∗ as above. Then for 0 ≤ p ≤ .5,

f ∗(p) = f(p), and for .5 < p ≤ 1, f ∗(p) = 2− f(1− p) = f(p) since f satisfies (2).

For ease of computation, we begin with the functions defined by f1(p) = (2p)s, f0(p) =

2− (2p)s. Varying s produces a wide range of plausible distributions, with an s of zero indicating

a uniform distribution in each treatment group, and a large s indicating an extreme differential

in treatment assignment according to propensity score.

3.1 Results

The program was run using the propensity score densities above with s = 0.25, s = 1, and

s = 3. For visual aid, these densities are plotted below (Figure 1). The total sample size N was

kept constant at 100 throughout, so that all change in η∗ was captured by varying η (η∗ = η).

We plotted the mean squared errors of treatment effect estimates using the overall optimal, best
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equal frequency, and best equal variance subclass formations versus η∗, which ranged from zero

to two. In addition, the number of subclasses used in each estimate was marked adjacent to the

MSE of that estimate (Figure 2).

[Figure 1 about here.]

[Figure 2 about here.]

3.1.1 Known η∗. For smaller values of s, both equal frequency and equal variance subclass

formations have nearly identical mean squared errors to the optimally formed subclasses. However,

when s = 3 there is a clear benefit of optimal formation at intermediate values of η∗, with

equal frequency formation having the second lowest values of MSE, and equal variance formation

producing the highest values of MSE. This ordering was repeated at other values of s, with higher

values of s generally producing larger differences in results between formation schemes.

As expected, the number of subclasses required to minimize the MSE of treatment effect

estimation generally increased with increasing η∗ under all three formation schemes and all three

values of s, although not necessarily consecutively. In particular, among lower values of s (s =

0.25), an even number of subclasses is preferred in optimal subclass formation, and among higher

values of s (s = 3), an odd number of subclasses is preferred. This finding is reasonable since

at lower values of s the center of the conditional densities are nearly uniform, and therefore,

stratifying this portion of the data is not beneficial in terms of variance or bias. In contrast,

at higher values of s, the expected within interval difference in propensity scores is so great in

the center of the distributions that not stratifying the center would severely increase bias. When

s = 1, there is no apparent preference between even or odd numbers of subclasses.

Figure 2 also does not show consecutiveness of subclass count within even or odd counting,

for example the jump from 1 to 5 among the overall optimal when s = 3 or the jump from 2 to

6 among s = 0.25. These jumps are due to the coarseness of the vector of values tried for η∗,

http://biostats.bepress.com/jhubiostat/paper155
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and when η∗ was further refined, intermediate numbers of subclasses were found where expected

within the existing even or odd trend.

3.1.2 Unknown η∗. It should be noted that the optimal formations used above to estimate

treatment effect assume that η∗ is known. In practice, the η∗ used to optimize the subclass

formation will not necessarily be the true η∗ under the model. Therefore, when comparing the

performance of the various formation schemes, mean squared error should be calculated under

the true η∗. We adjusted the program to assess the sensitivity of the three formation schemes to

inaccurately estimated η∗. Subclass formations were created and optimized under our assumed

η∗, but mean squared error of the resulting estimate was computed under one of four truths:

η∗ = 0, 0.5, 1, or 2.

[Figure 3 about here.]

Figure 3 presents the MSE of estimates under each of these four η∗ values. From these plots it

is clear that optimizing subclass formation for an inaccurate η∗, even within the equal frequency

or equal variance schemes, can cause inflation of MSE. As in Figure 2, the effect is mitigated

when the conditional densities of propensity scores are more uniform (s = 0.25), but may still

result in an MSE as much as three times what would be expected when an appropriate number of

subclasses are used. Also, it appears that underestimating η∗ is more harmful than overestimating

it, although the mean squared errors of estimates formed under an assumed η∗ of near 2 may be

conservative due to the fact that our program was limited to a maximum of six subclasses.

In summary, the overall optimal subclass formation has slightly lower MSE around the truth, as

expected. However, at all other values of assumed η∗, none of the formation schemes are effective

at reducing MSE because each chooses an incorrect number of subclasses when the estimated η∗

is not close to the truth.
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3.2 Generality of Distributional Assumptions

Above we assumed that the marginal density of propensity scores was Uniform(0,1) and that the

two conditional distributions were anti-symmetric. The former assumption is made without loss

of generality because data not satisfying this condition may be transformed. If the conditional

densities are anti-symmetric, the uniform transform does not corrupt this property; however, if

anti-symmetry is not present, it cannot be forced through a monotone transform.

Let F (p), F1(p), and F0(p) be the marginal and conditional cumulative distributions of propen-

sity scores, respectively. Using the cdf as the uniform transform, the transformed scores and their

conditional distributions are given by

F (p) =
1

2
F1(p) +

1

2
F0(p)

= U ∼ U(0, 1)

F ∗
z (u) = = Fz(F

−1(u))

f ∗z (u) =
fz(F

−1(u))

f(F−1(u))

The conditional distribution of the transformed data is closely related to the conditional distribu-

tion of the untransformed data. Because of this relation, anti-symmetry is preserved under this

transformation, as shown in the appendix.

The preservation of anti-symmetry under the uniformity transform follows from the more general

fact that any monotone transform will preserve anti-symmetry. Unfortunately, this property also

implies that no monotone transform will produce anti-symmetry in data where it does not already

exist. Therefore, the results presented above are partially generalizable to cases which do not

meet the assumptions held thus far. We will now present one such case.

4. Analysis of Insurance Plan Choice Data

The following analysis considers data collected on 2515 asthma patients as part of the 1998

Asthma Outcomes Survey (Masland et al., 2000). This study was initiated by the Pacific Business

http://biostats.bepress.com/jhubiostat/paper155
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Group on Health and HealthNet health plan for the purpose of assessing the quality of asthma

care from 20 physician groups. Huang et al. (2005) developed propensity score methods to address

physician group as a multiple treatment analysis. Because of confidentiality issues, and because

we prefer a dichotomous treatment, our analysis evaluates the effect of health insurance type

on satisfaction with asthma care across the 20 providers. Insurance type is classified as public,

purchased through an employer, purchased personally, or other. A large majority, 2360 individuals,

held either employer or personally purchased health insurance, and so we will consider the subset

of data with these two insurance types so that the treatment of interest is dichotomous.

We began by developing a propensity score from the available covariates, including possible

confounders such as age, sex, race, education, employment, and physician group. The propensity

score was found through a logistic model of the personal health insurance indicator on the

covariates of interest, so that the propensity score obtained is the probability of holding personally

purchased insurance, rather than employer purchased insurance, controlling for all covariates in the

model. After comparing several models through regular model checking and diagnostics, a model

for generating propensity scores was selected to insure that the propensity score is accurate and

that the model contains the apppropriate covariates, which at minimum includes the confounders,

as suggested by Austin et al. (2007). In addition, we checked independence of treatment (health

insurance type) and covariates, conditional on propensity score, through side-by-side boxplots

of covariates, stratified on both treatment and propensity score quintile, or through two-by-two

tables of treatment and covariates within propensity score quintiles. Finally, the propensity score

was transformed to yield marginal uniformity as shown above.

[Figure 4 about here.]

[Figure 5 about here.]

Once a propensity score was established for each individual, we estimated η, the effect of

propensity score on outcome, in order to begin subclass formation. We used simple covariate
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adjustment to produce a rough estimate through the model (1) where z now refers to the

indicator of personally purchased insurance. Although this is a reasonable way to estimate η,

it is not sufficient here to accurately estimate the treatment effect without the possibility of

considerable bias because it relies heavily on model assumptions of a linear and additive relation

between treatment and response.

It should be noted that this procedure is only valid when the relation between propensity score

and response is monotone. Otherwise, a U-shaped relationship could result in an η estimate of

0, indicating no bias, despite a large bias term. The value of η estimated with the above model

is 0.124. This estimate, combined with the imbalance in propensity between treatment groups

observed in the plot of conditional cumulative distributions (Figure 5), indicates that there may

be a sizeable bias term on the naive estimate of treatment effect.

[Figure 6 about here.]

[Figure 7 about here.]

In order to examine the performance of the equal frequency subclass formation scheme as the

subclass count is increased, we plotted the within subclass estimates and the overall estimate

of treatment effect, using each of one through ten subclasses (Figure 6). The within subclass

estimates were computed using a simple difference of means (unadjusted), as well as the linear

regression of outcome on treatment and propensity (adjusted). Also reported is the p-value from

a χ2 test of equality among within subclass linear regression estimates.

Comparing the difference of means estimate and linear regression estimate using K = 1 (no

stratification), bias due to treatment assignment is apparent. Increasing the number of subclasses

to two reduces the difference between adjusted and unadjusted estimates, and using three or more

subclasses causes the overall difference of means and linear regression estimates to be nearly equal,

indicating a reduction in bias. The two overall estimates remain nearly unchanged as the number

of subclasses is increased from three, and the increase in variance on these estimates is negligible,
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leading to essentially identical inferences when any of three through ten subclasses are used

(Figure 7).

The adjusted and unadjusted estimates within a subclass are also nearly identical beginning

with three subclasses, indicating that the variation of propensity scores within a subclass is not

substantially effecting the estimate. Therefore, subclassification is effectively reducing treatment

assignment bias. However, there is an apparent trend across subclasses which produces generally

higher effect estimates in subclasses with higher propensity scores. The trend in estimates is

mitigated by K = 9, so if the overall estimates were changing as K increased, one might prefer

the stratification with nine or ten subclasses.

Figure 6 shows treatment effect estimates in subclasses with lower propensity scores have larger

variances. This trend is different from the anticipated obstacle of very large variances in the outer

subclasses, but it does not represent a major concern, since the differential among variances is

not great at moderate values of K (K < 6). In general, the estimated variance of within subclass

estimates, as well as their observed variability from one subclass to the next, increases as K

increases, but there is no trend in χ2 p-values as the number of subclasses increases.

After examining all of the equal frequency analyses presented above, we recommend using

the linear regression estimate generated from the three subclass partition. We choose the linear

regression estimate because it is much more stable at varying K than the difference of means

estimate. We choose the three subclass partition because it contains the minimum number of

subclasses necessary to suitably control bias in treatment effect estimates, and it does not contain

enough subclasses to increase variance. Also, three subclasses are chosen because the relative

uniformity of the conditional densities of propensity scores (Figure 4) indicate a preference for an

odd number of subclasses, as reported in the performance assessment.

Athough this method was not investigated in the performance assessment, we also considered

using the within subclass estimates of bias to guide fractionation of subclasses. This adaptive
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fractionation method would further split, according to frequency, subclasses with bias estimates

above some threshold, and leave remaining subclasses unsplit. Bias may be estimated using

the rough estimate of η reported above and the difference in mean propensity scores between

treatment and control groups.

Choosing a threshold of .005, the adaptive fractionation approach indicates a need for more than

one subclass in this example, since the estimated bias for K = 1 is .032. Therefore, we consider

K = 2. Both of the within subclass bias estimates in this partition are above our threshold, so

rather than splitting either subclass in half, consider K = 3. All subclasses in the three subclass

partition yield bias estimates below our designated threshold, so we stop at K = 3. If one or

two of the bias estimates from this partition had been above .005, we would have split those

subclasses in half. If all three bias estimates had been above .005, we would have considered

K = 4. It is fortunate that in this analysis the adaptive fractionation approach leads to the same

stratification already decided upon: three equal frequency subclasses.

We must note that, as with the model used above to estimate η, linear regression was used

throughout this analysis, despite the dichotomous outcome measurements of satisfaction with

care (poor/fair/good vs. very good/excellent) because the results thus far relied on a linear bias

structure. Since the superiority of equal frequency formation over equal variance formation was

established in the performance assessment in simple linear cases such as this example, we did not

pursue equal variance stratification. Also, the conditional densities of propensity resemble those

considered in the performance assessment with s < 1, indicating that an appropriate number of

equal frequency subclasses would control for bias approximately as well as the optimal subclass

formation, so we did not pursue optimal stratification in this example either.

5. Discussion and Future Work

The objective of this study was to compare the effectiveness of equal frequency and equal variance

partitioning schemes at controlling the mean squared error of the effect estimate in a stratified
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propensity score analysis, and to consider the relative merits of an optimal partition. Although

there was no uniformly best strategy, the results imply some practical suggestions in choosing

propensity score subclasses.

First, when outcome follows a linear additive model, as was considered here, equal frequency

subclass formation results in effect estimates with consistently lower MSE than equal variance

formation, regardless of accuracy in the estimation of η. Also, the use of an appropriate number

of equal frequency subclasses was in general not substantially inferior to the optimal subclass

partition, and sometimes resulted in lower MSE of the estimate compared to the optimal when

subclasses were chosen under an inaccurately estimated η∗. Therefore, considering the additional

computational expense of the equal variance and overall optimal methods, equal frequency

formation is recommended in this case. However, when using within subclass regression adjusting

for variables other than propensity score to estimate treatment effects, the equal variance method

may still perform better than equal frequency with respect to MSE, as shown by Hullsiek and

Louis (2002).

Second, the appropriate choice of partition relies on the relative importance of bias and variance

in the MSE, summarized by η∗, and the level of imbalance in propensity to assignment between

the two treatment groups, summarized in this study by s. As η∗ increases, more subclasses are

needed to effectively control the increasing impact of the bias term, and using more subclasses

than is optimal in equal frequency and equal variance formations is less harmful to MSE than using

too few subclasses. Thus, when using the equal frequency method to form subclasses, we suggest

increasing the number of subclasses until the overall estimate remains relatively constant, or until

there is a substantial increase in variance of the estimate. Also, the optimal subclass formations,

both within a scheme and overall, generally stratified sections of the domain of propensity scores

with large slopes on the conditional densities in those sections. This behavior is due to the large

values of e1k− e0k found in subclasses that span these sections, and it explains the preference for
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odd K when the edges of the conditional densities have high slope (s < 1), and the preference

for even K when the centers of the densities have high slope (s > 1). One should consider this

preference when choosing subclasses to ensure that these sections of propensity score domain are

appropriately stratified in order to control bias.

A possibility for achieving overall optimal partitioning is the adaptive fractionation pursued

in the example analysis. The estimated relation between propensity score and outcome through

direct covariate adjustment is a competent guide for the choice of an initial K equal frequency

subclasses, and comparing estimated bias across the K subclasses indicates which subclasses may

need further fractionation. Adaptively splitting subclasses with this algorithm will provide better

variance control than the purely equal frequency method, but it creates additional dependence

on correct model choice and could dictate poor splitting choices under an incorrect model.

Combining within subclass covariate adjustment with adaptive fractionation would allow for

maximum flexibility in the true underlying model and robustness from either strategy.

Finally, both the performance assessment and the example analysis indicate that equal fre-

quency subclass formation adequately controls MSE of the estimate of treatment effect, and an

improved method for generating subclasses is necessary only in cases of extreme imbalance in

propensities between treatment groups. Our results are without loss of generality with respect to

the assumption of uniformity on the propensity score distribution, but that generality may not

extend to conditional propensity score distributions which do not satisfy anti-symmetry, since no

monotone transformation exists to generate anti-symmetry. Furthermore, these methods must be

reevaluated for application to nonlinear data.

Acknowledgements

This research was supported by Grant 5T32ES012871 from the U.S. National Institute of Envi-

ronmental Health Sciences. The authors wish to thank Constantine Frangakis for supplying the

data analyzed in this paper.

http://biostats.bepress.com/jhubiostat/paper155



16 Biometrics, 000 0000

References

Austin, P. C., Grootendorst, P., and Anderson, G. M. (2007). A comparison of the ability of

different propensity score models to balance measured variables between treated and untreated

subjects: a monte carlo study. Statistics in Medicine 26, 734–753.

Billewicz, W. (1965). The efficiency of matched samples: An emperical investigation. Biometrics

21, 623–643.

Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias

in observational studies. Biometrics 24, 295–313.

Dehejia, R. H. and Wahba, S. (2002). Propensity score-matching methods for nonexperimental

causal studies. The Review of Economics and Statistics 84, 151–161.

Huang, I., Frangakis, C., Dominici, F., Diette, G., and Wu, A. (2005). Application of a propensity

score approach for risk adjustment in profiling multiple physician groups on asthma care. Health

Services Research 40, 253–278.

Hullsiek, K. H. and Louis, T. A. (2002). Propensity score modeling strategies for the causal

analysis of observational data. Biostatistics 2, 179–193.

Masland, M., Wu, A., Diette, G., Dominici, F., and Skinner, E. (2000). The 1998 asthma

outcomes survey. San Francisco, CA: Pacific Business Group on Health .

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70, 41–55.

Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using

subclassification on the propensity score. Journal of the American Statistical Association 79,

516–524.

Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate

matched sampling methods that incorporate the propensity score. The American Statistician

39, 33–38.

Hosted by The Berkeley Electronic Press



Optimal Propensity Score Stratification 17

Rubin, D. B. (1991). Practical implications of modes of statistical inference for causal effects

and the critical role of the assignment mechanism. Biometrics 47, 1213–1234.

Sommer, A. and Zeger, S. L. (1991). On estimating efficacy from clinical trials. Statistics in

Medicine 10, 45–52.

Appendix Proof of Anti-symmetry Preservation

F1(1− p) = 1− F0(p)

⇒ F (1− p) =
1

2
F1(1− p) +

1

2
F0(1− p)

=
1

2
[1− F0(p)] +

1

2
[1− F1(p)]

= 1− 1

2
F1(p)− 1

2
F0(p)

= 1− F (p)

⇒ F (1− F−1(u)) = 1− F (F−1(u)) = 1− u

⇒ 1− F−1(u) = F−1(1− u)

⇒ F ∗
1 (1− u) = F1(F

−1(1− u))

= F1(1− F−1(u))

= 1− F0(F
−1(u))

= 1− F ∗
0 (u)

This paper has been typeset from a TEX/ LATEX file prepared by the author.
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Figure 1. The three pairs of propensity score densities conditional on treatment that were
considered.
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Figure 2. Mean squared error of optimal estimates within each subclass formation category:
equal frequency, equal variance, and overall optimal, with the number of propensity score
subclasses used in that estimate adjacent. These are plotted for each conditional density pair
shown above: s = 0.25, s = 1, s=3.

http://biostats.bepress.com/jhubiostat/paper155



20 Biometrics, 000 0000

0.0 0.5 1.0 1.5 2.0

0.
04

0.
08

0.
12

η* = 0

η*

M
S

E

Optimal
Equal Frequency
Equal Variance

s = .25
s = 1
s = 3

0.0 0.5 1.0 1.5 2.0

0.
04

0.
08

0.
12

η* = 0.5

η*
M

S
E

Optimal
Equal Frequency
Equal Variance

s = .25
s = 1
s = 3

0.0 0.5 1.0 1.5 2.0

0.
04

0.
08

0.
12

η* = 1

η*

M
S

E

0.0 0.5 1.0 1.5 2.0

0.
04

0.
08

0.
12

η* = 2

η*

M
S

E

Figure 3. MSE of treatment effect estimators at each value of true η∗ considered, using
propensity score subclasses formed optimally within one of three formation schemes under
the assumed η̂∗ and three propensity score conditional densities.

Hosted by The Berkeley Electronic Press



Optimal Propensity Score Stratification 21

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
Untransformed

p

R
el

at
iv

e 
F

re
qu

en
cy

T = 0
T = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Transformed

p

R
el

at
iv

e 
F

re
qu

en
cy

T = 0
T = 1

Figure 4. Relative frequencies of the raw and uniform transformed propensity scores
conditional on treatment. Only 26.4% of units had personally purchased health insurance
(T=1), and 73.6% of units had employer purchased health insurance (T=0).
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Figure 5. Cumulative distributions of raw and uniform transformed propensity scores
conditional on treatment. Only 26.4% of units had personally purchased health insurance
(T=1), and 73.6% of units had employer purchased health insurance (T=0).
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Figure 6. Within subclass and overall treatment effect estimates with confidence intervals,
using an equal frequency subclass formation of between one and ten subclasses. A circle
represents an estimate derived from the difference of means and a triangle represents
an estimate derived from the linear regression model. The p-value from a χ2 test for
independence of the K within subclass linear model estimates is reported in the lower right
corner.
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Figure 7. Overall treatment effect estimates with confidence intervals, using an equal
frequency subclass formation of between one and ten subclasses. A circle represents an
estimate derived from the difference of means and a triangle represents an estimate derived
from the linear regression model.
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