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1. Background

The importance of biomarkers in disease screening, diagnosis, and risk prediction has been generally

recognized. A well-established criterion for biomarker selection is classification accuracy, commonly

characterized by the Receiver Operating Characteristic (ROC) curve and its summary measures.

However, classification is not always the major focus. Oftentimes we use biomarkers to calculate

the risk of an outcome. Recently, there has been increasing awareness that the ROC curve is not

the most relevant tool for assessing a biomarker whose purpose is risk prediction (Gail and Pfeiffer,

2005; Huang et al., 2007; Pepe et al., 2007; Cook, 2007). On the one hand, the ROC curve does

not display risk which is of primary interest to patients and clinicians. On the other hand, criteria

relating to classification oftentimes can be too stringent for evaluation of a risk prediction marker.

To characterize the predictive capacity of a continuous marker or risk model, Huang et al. (2007)

proposed a new graphical tool, the predictiveness curve, to display the population distribution of

disease risk predicted by the particular marker or risk model.

Let D denote a binary outcome that we term disease here, D = 1 for diseased and D = 0 for

non-diseased. Let Y denote a vector of predictors of interest and Risk(Y ) = P (D = 1|Y ) denote

the risk calculated on the basis of Y . The predictiveness curve for Y is the curve R(v) vs v for

v ∈ (0, 1), where R(v) is the vth percentile of Risk. The inverse function

R−1(p) = P (Risk ≤ p),

is the proportion of the population with risks less than or equal to p. In other words R−1(p) is the

population cumulative distribution function of risk. An appealing property of the predictiveness

curve is that it provides a common meaningful scale for making comparisons between markers or

risk models that may not be comparable on their original scales. Comparisons might be based on

R(v), the risk percentiles. A better risk prediction marker tends to have larger variability in R(v).

A clinically compelling comparison is based on R−1(p). Suppose there exists a low risk threshold pL

and/or a high risk threshold pH which are agreed upon apriori such that the decision for treatment

1

Hosted by The Berkeley Electronic Press



is recommendation for or against if the estimated risk for a patient is above pH or below pL. A

marker or risk model is preferable to another if it categorizes more people into the low and high

risk ranges where decisions are easy to make and leaves fewer subjects in the equivocal risk range.

That is, we hope to identify markers that have large values of R−1(pL) and 1−R−1(pH) and small

values of R−1(pH) − R−1(pL).

Figure 1 displays ROC and predictiveness curves for PSA and PSA velocity as classification or

risk prediction markers for prostate cancer. Details of the data will be discussed in Section 4. The

ROC curves shown in Figure 1(a) suggest that PSA has better classification accuracy than PSA

velocity. The corresponding predictiveness curves are shown in Figure 1(b). We see for example

that at the 90th percentile the risk is 0.372 for PSA but only 0.295 for PSA velocity suggesting PSA

is a better marker of high risk than PSA velocity. PSA is also a better marker of low risk. The 10th

percentile of risk is 0.145 according to PSA velocity but much lower based on PSA, 0.091. We can

also consider the inverse function taking pH = 0.29 and pL = 0.10. PSA is predictive of low risk in

R−1(0.10) = 13.6% of the population, more than 3.0%, the proportion identified with PSA velocity.

PSA also identifies more people at high risk than does PSA velocity with 1 − R−1(0.29) = 25.5%

and 11.1% respectively. Less patients are categorized into the equivocal risk range according to

PSA (60.9%) than PSA velocity (85.9%).

Semi-parametric estimators for making inference about the curve and for making pointwise

comparisons between two curves from a cohort study have been developed by Huang et al. (2007).

Since case-control studies are often performed in the early phases of biomarker development (Pepe

et al., 2001), it is important to estimate the predictiveness of continuous biomarkers in studies

that use this type of design as well. When the disease of interest is rare in the population, using

a case-control sampling to oversample cases can be more efficient than simple random sampling

from the population. In this paper, we consider estimation of the predictiveness curve from a

case-control study based on modeling a parametric ROC curve, assuming the disease prevalence

is known apriori. The idea behind this is the one-to-one relationship between the predictiveness

2

http://biostats.bepress.com/uwbiostat/paper318



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

FPF

T
P

F

PSA
PSA Velocity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b)

v

R
(v

)

ρ

PSA
PSA Velocity

Figure 1. ROC curves and Predictiveness curves for two markers of prostate cancer estimated
from the PCPT cohort data.

curve and the ROC curve.

2. Relationship between the Predictiveness Curve and the ROC Curve

Here we focus on the scenario of a single continuous marker. Note the marker may be a predefined

combination of predictors such as the Framingham risk score. Denote Y , YD , and YD̄ as the marker

measurement in the general, diseased, and non-diseased populations respectively. Let F , FD, and

FD̄ be the corresponding distribution functions and let f , fD, and fD̄ be the density functions. We

assume the disease prevalence ρ = P (D = 1) is known and that the risk of disease P (D = 1|Y ) is

monotone increasing in Y .

Under this monotone increasing risk assumption, we have R(v) = P{D = 1|Y = F−1(v)}. The

following theorem characterizes the one-to-one relationship between the predictiveness curve and

the ROC curve.

Theorem 1

Suppose YD and YD̄ have absolutely continuous distribution functions and P (D = 1|Y ) is

monotone increasing in Y . Further suppose the support of YD̄ covers the support of YD . Then
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R(v) vs v can be represented as

ρROC′(t)
ρROC′(t) + (1− ρ)

vs 1 − (1− ρ)t− ρROC(t), t ∈ (0, 1), (1)

where the ROC curve at false positive rate t is ROC(t), and ROC′(t) is its derivative with respect

to t.

Proof

For v ∈ (0, 1), let y = F−1(v). Suppose FD̄(y) = 1 − t, since y is within the support of YD̄, we

have y = F−1
D̄

(1− t) trivially. Let LR denote the likelihood ratio function: LR(y) = fD(y)/fD̄(y).

We have

v = F (y) = (1− ρ)FD̄(y) + ρFD(y)

= (1− ρ)(1− t) + ρFD(F−1
D̄

(1− t))

= (1− ρ)(1− t) + ρ{1− ROC(t)}

= 1 − (1 − ρ)t − ρROC(t).

Moreover,

R(v) = P{D = 1|Y = y}

=
ρLR(y)

ρLR(y) + (1− ρ)

=
ρLR{F−1

D̄
(1− t)}

ρLR{F−1
D̄

(1 − t)} + (1− ρ)

=
ρROC′(t)

ρROC′(t) + (1 − ρ)
.

The last equality holds since LR{F−1
D̄

(1 − t)} = ROC′(t) (Pepe, 2003). Note the result can be

generalized to the scenario when the upper bound of the support for YD is larger than the upper

bound of the support for YD̄. We omit the details because it is not relevant for the method discussed
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in this paper.

Theorem 1 has implications for estimating the predictiveness curve from a case-control sample

with nD cases and nD̄ controls. We can estimate a smooth ROC curve first and then derive the

corresponding predictiveness curve based on (1). This is an appealing procedure for the following

reasons: (i) The fact that the ROC curve can be estimated only from ranked data implies that

methods for deriving the predictiveness curve from a rank-based ROC curve estimate also only

depend on ranks. This contrasts with previous methods proposed (Huang et al., 2007). (ii) Esti-

mation of the ROC curve is a well studied problem. There are a wide variety of methods available.

(iii) It is natural to estimate the ROC curve from a case-control study since sensitivity and speci-

ficity are defined conditional on disease status. (iv) The area under the estimated predictiveness

curve that is derived from an estimated ROC curve is always equal to ρ, as shown below. This is

a fundamental property of the predictiveness curve since
∫ 1
0 R(v)dv = E(Risk) = E(D) = ρ.

∫ 1

0
R(v)dv

=
∫ t=0

t=1

ρROC′(t)
ρROC′(t) + (1− ρ)

d {1 − (1 − ρ)t − ρROC(t)}

= −
∫ t=0

t=1

ρROC′(t)
ρROC′(t) + (1− ρ)

{
(1 − ρ) + ρROC′(t)

}
dt

= ρ

∫ t=1

t=0

ROC′(t)dt

= ρ {ROC(1)− ROC(0)}

= ρ (2)

This result holds for the ROC curve based on a continuous marker as well as the ROC curve

constructed from a discrete marker which has finite derivative everywhere (details omitted). When

we compare two markers with respect to the steepness of their estimated predictiveness curves, it

facilitates visual comparisons when the estimated curves have the same area under the curve.

Approaches to estimate an ROC curve vary along a spectrum regarding assumptions made. At
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the one extreme, we can model the marker distributions within cases and controls parametrically

and estimate the corresponding ROC curve. For example Wieand et al. (1989) modeled YD and

YD̄ as normally distributed. At the other extreme, an ROC curve can be estimated completely

nonparametrically using empirical estimators for FD and FD̄ (Greenhouse and Mantel, 1950; Hsieh

and Turnbull, 1996). A method in-between is to assume a parametric model for the ROC curve

without enforcing any parametric distributional assumptions on marker measures. This semi-

parametric approach is more efficient than the nonparametric approach, yet more robust than

modeling the marker distributions parametrically. A review of these approaches will be given later.

Before we start exploring different parametric ROC models, we note that the assumption that

P (D = 1|Y = y) is increasing in y implies that LR(y) is increasing in y which in turn implies that

ROC′(t) is decreasing in t. That is, a monotone increasing risk assumption implies concavity of

the corresponding ROC curve. Therefore, we prefer methods that lead to concave estimates of the

ROC curves. Note that concavity has always been a desirable property for an ROC curve because

it guarantees that the ROC curve will never cross the 45◦ “guessing line” (Dorfman et al., 1996)

and because it is a property of the optimal ROC curve for decision rules based on y (McIntosh and

Pepe, 2002).

3. Parametric ROC Models

3.1 The Binormal ROC Curve

The most widely used parametric ROC model is the binormal ROC curve. It assumes that

there exists a common monotone transformation h, which transforms the marker distributions in

both cases and controls to normality. Suppose h(YD̄) ∼ N(µD̄, σ2
D̄

), h(YD) ∼ N(µD, σ2
D), the

corresponding ROC curve is

ROC(t) = Φ{a + bΦ−1(t)},

where a = (µD − µD̄) /σD and b = σD̄/σD. Many algorithms have been proposed to fit the binormal

ROC curve. Moreover, the binormal assumption is thought to fit many real datasets (Hanley, 1988).
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However, a problem with using the binormal ROC model is that it is not concave in (0, 1) unless

b = 1 (i.e. the normal distributions for cases and controls have the same variance). This can be

recognized from the quadratic form of the derivative of the binormal ROC curve,

ROC′(t) =
bφ{a + bΦ−1(t)}

φ{Φ−1(t)} = C+ exp

[
−1

2
(b2 − 1)

{
Φ−1(t) +

ab

b2 − 1

}2
]

, (3)

where C+ is some positive constant.

Thus, if we assume the risk function is monotone increasing as Y increases, the binormal model

is not a suitable model for the ROC curve unless we assume σD = σD̄.

3.2 Concave Parametric ROC Models

Two published parametric models for concave ROC curves are the bigamma and bilomax mod-

els. The bigamma ROC curve (Dorfman et al., 1996) assumes there exists a common monotone

transformation that transforms the distributions of YD and YD̄ into gamma distributions with the

same shape parameter, an extension to the one-parameter exponential family of England (1988).

The use of this ROC model is hindered by the fact that the ROC function cannot be written down

in closed-form. The bilomax ROC curve proposed by Campbell and Ratnaparkhi (1993) assumes

the existence of a monotone transformation h such that the distributions of h(YD̄) and h(YD) are

lomax or type II Pareto (Lomax, 1954). That is,

fD̄{h(YD̄)} =
b1k1

{1 + b1h(YD̄)}k1+1
, b1 > 0, k1 > 0,

fD{h(YD)} =
b2k2

{1 + b2h(YD)}k2+1
, b2 > 0, k2 > 0.

where b1, b2 and k1, k2 are scale and shape parameters respectively. The corresponding ROC curve

has an explicit form:

ROC(t) =
{

1 +
b2

b1

(
t−1/k1 − 1

)}−k2

≡
{

1 + b
(
t−1/k1 − 1

)}−k2

.
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This three-parameter bilomax ROC curve is concave if b = b2/b1 < 1 and k2 ≤ k1.

For estimation of a whole predictiveness curve, we choose estimation of the bilomax ROC

curve as an intermediate step. In practice, the likelihood based on the three-parameter model

can be very flat leading to numerical difficulties in maximization (Campbell and Ratnaparkhi,

1993). Hence we use a two-parameter bilomax ROC model that restricts k1 = k2 = k. This

simplifies numerical fitting procedures considerably with only a minor loss in flexibility. Under

the two-parameter bilomax ROC model ROC(t) =
{
1 + b

(
t−1/k − 1

)}−k
, we have ROC′(t) =

bt−1/k−1
{
1 + b(t−1/k−1)

}−k−1
.

3.3 Estimation

Denote by ROCθ(t), t ∈ (0, 1), the parametric ROC curve with parameter θ. Define

G(θ, t) =
ρROC′

θ(t)
ρROC′

θ(t) + (1 − ρ)

and

H(θ, t) = 1 − (1 − ρ)t − ρROCθ(t).

Let

G−1(θ, p) = inf {t : G(θ, t) ≤ p}

and

H−1(θ, v) = {t : H(θ, t) = v}.

We can estimate θ using algorithms described below and denote its estimation by θ̂. Estimators of

the corresponding predictiveness curve and its inverse are

R̂(v) = G
{
θ̂, H−1(θ̂, v)

}
for v ∈ (0, 1),

R̂−1(p) = H
{
θ̂, G−1(θ̂, p)

}
for p ∈ {R(v) : v ∈ (0, 1)} .
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In practice, oftentimes there does not exist a closed-form for H−1(·) or G−1(·) and numerical

methods need to be implemented to calculate R̂(v) and R̂−1(p).

There are many existing semi-parametric approaches we can use to estimate θ for a whole

ROC curve. Metz et al. (1998) proposed grouping continuous data and estimating the parameters

based on the Dorfman and Alf maximum-likelihood algorithm for ordinal data (Dorfman and Alf,

1969). Hsieh and Turnbull (1996) developed a generalized least squares method to fit a parametric

ROC curve to discretized continuous data. Pepe (2000) and Alonzo and Pepe (2002) proposed

a distribution-free ROC-GLM procedure. Zou and Hall (2000) developed maximum likelihood

rank-based estimator as solution to the score equations derived from the likelihood function of the

order statistics. Pepe and Cai (2004) maximized the pseudolikelihood based on the standardized

marker value. Cai and Moskowitz (2004) developed a maximum profile likelihood approach which

provides a fully efficient parameter estimate. These semi-parametric approaches have the advantage

of being rank-based. We can also model the marker distributions parametrically (Wieand et al.,

1989), the corresponding ROC curve and the predictiveness curve estimators, however, do not have

this rank-invariance property.

3.4 Modeling a Portion of the Predictiveness Curve

3.4.1 Boundary Problems In fitting a parametric risk model to data, we assume the model

holds over the observed range of the data. In contrast, for the parametric-ROC-model, the

parametric form of ROC′
θ(t) is assumed to hold as t → 0 and t → 1. The heavy reliance of

limt→0 ROC′
θ(t) and limt→1 ROC′

θ(t) on the parametric model causes a lack of flexibility in the

estimated predictiveness curve, especially at the boundary. For example, with a binormal ROC

model, limt→1 ROC′(t) = 0 or ∞, which implies Risk(y) = 0 or 1 as y → ∞ and consequently

R(1) = 0 or 1, which may not be reasonable in practice.

As shown in Table 1, when a binormal ROC model is enforced, the boundary of the predictive-

ness curve has value either 0 or 1, completely determined by the parameter b, the ratio of standard

deviation between the latent case and control marker distributions. When a bilomax ROC model

9
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Table 1
Properties of parametric ROC models and the corresponding predictiveness curves.

limROC′(t) Implications for limR(v)
Binormal ROC(t) = Φ{a + bΦ−1(t)}

b < 1
limt→1 ROC′(t) → ∞ limv→0 R(v) = 1
limt→0 ROC′(t) → ∞ limv→1 R(v) = 1
b > 1
limt→1 ROC′(t) → 0 limv→0 R(v) = 0
limt→0 ROC′(t) → 0 limv→1 R(v) = 0
b = 1
limt→1 ROC′(t) → 0 limv→0 R(v) = 0
limt→0 ROC′(t) → ∞ limv→1 R(v) = 1

Bilomax ROC(t) =
{
1 + b

(
t−1/k1 − 1

)}−k2

k2 < k1

limt→1 ROC′(t) → bk2/k1 limv→0 R(v) = ρ
ρ+(1−ρ)k1/(bk2)

limt→0 ROC′(t) → ∞ limv→1 R(v) = 1
k2 = k1 = k
limt→1 ROC′(t) → b limv→0 R(v) = ρ

ρ+(1−ρ)/b

limt→0 ROC′(t) → 1/bk limv→1 R(v) = ρ
ρ+(1−ρ)bk

is assumed, there is more flexibility compared to a binormal ROC model at the boundary of the

predictiveness curve estimate. But still the values of R̂(v) as v approaches 0 and 1 depend entirely

on the parameter estimates of the corresponding ROC curve.

We propose to modify the approach described in Section 3.3 such that the predictiveness curve

estimator is more data-dependent at the boundary without losing the rank-invariance property. In

particular we consider modelling a portion of the ROC curve.

3.4.2 The Partial Predictiveness Curve Heretofore our interest was in estimating the predic-

tiveness curve over the whole domain v ∈ (0, 1) by first estimating a parametric ROC model over its

whole domain t ∈ (0, 1). However, to evaluate a marker for its risk prediction capability, sometimes

we do not need the whole predictiveness curve if only risks within a particular range are of primary

interest. We can instead examine a segment of the predictiveness curve covering those points of
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major concern. To derive this “partial predictiveness curve” using a ROC curve based strategy,

only a portion of the ROC curve needs to be modeled.

Researchers in the field of diagnostic test evaluation have long been interested in the partial

ROC curve. For example, in screening studies, it is important to minimize the unnecessary cost due

to false positive test results, hence the region of the ROC curve corresponding to low FPF is most

relevant. If the purpose of the study is disease diagnosis, it is critical not to miss detecting subjects

with disease, and hence the part of the ROC curve corresponding to high TPF is of primary interest.

Modeling a partial ROC curve and the area under it has been proposed and studied (McClish, 1989;

Thompson and Zucchini, 1989; Jiang et al., 1996; Dodd and Pepe, 2003; Pepe and Cai, 2004).

Interestingly, when concavity is required only over a certain portion of the ROC curve, paramet-

ric ROC models which are not concave in the whole range may be employed. Consider the classic

binormal ROC curve, ROC(t) = Φ
{
a + bΦ−1(t)

}
, whose derivative is shown in (3). Consider the

following two scenarios.

(i) If 0 < b < 1, ROC′(t) increases as
{
Φ−1(t) + ab/(b2 − 1)

}2 increases. Thus for ROC′(t) to

be monotone decreasing, we need to have

Φ−1(t) <
−ab

b2 − 1
⇐⇒ t < Φ

(
−ab

b2 − 1

)
⇐⇒ a >

1 − b2

b
Φ−1(t).

That is, a portion of the ROC curve with small FPF could be modeled to be concave.

(ii) If b > 1, ROC′(t) increases as
{
Φ−1(t) + ab/(b2 − 1)

}2 decreases. Thus for ROC′(t) to be

monotone decreasing, we need to have

Φ−1(t) >
−ab

b2 − 1
⇐⇒ t > Φ

(
−ab

b2 − 1

)
⇐⇒ a >

1 − b2

b
Φ−1(t).

That is, a portion of the ROC curve with large TPF could be modeled to be concave.

We can impose this restriction during estimation to guarantee concavity of the partial binormal

ROC curve over the range of interest. Suppose concavity is required for t ∈ (t0, t1), we can fit the
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ROC model with the restriction on parameter estimates (a, b):

a >
1 − b2

b
Φ−1(t0) & a >

1 − b2

b
Φ−1(t1).

3.5 Asymptotic Theory for the Estimator of the Predictiveness Curve Derived from a Parametric

ROC Model

Suppose R̂(v) and R̂−1(p) are estimators of R(v) and R−1(p) based on either modeling a whole

range or a portion of the predictiveness curve. We assume the following conditions hold for asymp-

totic theory.

Assumptions

(i)
√

n
(
θ̂ − θ

)
d→ N (0, Σ(θ)).

(ii) ROCθ(t) is differentiable with respect to θ and t.

(iii) G(θ, t) is differentiable with respect to θ and t with derivatives g1 and g2.

(iv) H−1(θ, v) is differentiable with respect to θ.

(v) G−1(θ, p) is differentiable with respect to θ.

Theorem 2

√
n
{
R̂(v)− R(v)

}
d→ N

(
0, σ2(v)

)
,

where

σ2(v) =
[
g1

{
θ, H−1(θ, v)

}
+ g2

{
θ, H−1(θ, v)

}(∂H−1(θ, v)
∂θ

)]T

Σ(θ)
[
g1

{
θ, H−1(θ, v)

}
+ g2

{
θ, H−1(θ, v)

}(∂H−1(θ, v)
∂θ

)]
.

Theorem 3
√

n
{

R̂−1(p)− R−1(p)
}

d→ N
(
0, τ2(p)

)
,

12
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where

τ2(p) =

(
∂H

{
θ, G−1(θ, p)

}

∂θ

)T

Σ(θ)

(
∂H

{
θ, G−1(θ, p)

}

∂θ

)
,

where

∂H
{
θ, G−1(θ, p)

}

∂θ
= ρ

∂ROCθ

{
G−1(θ, p)

}

∂θ
+
[
1 − ρ + ρROC′

θ{G−1(θ, p)}
] ∂G−1(θ, p)

∂θ
.

Observe that σ2(v) = {∂R(v)/∂v}2 τ2(p) =
[
g2

{
θ, H−1(θ, v)

}
∂H−1(θ, v)/∂v

]2
τ2(p) for p =

R(v). Theorems 2 and 3 follow directly from the continuous mapping theorem and chain rule. In

practice, due to the lack of closed-forms for H−1(·) and G−1(·), numerical differentiation methods

are needed for calculation of their derivatives, in order to estimate the variances of R̂(v) and R̂−1(p).

4. Markers for Prostate Cancer

The Prostate Cancer Prevention Trial (PCPT) was a randomized prospective study of men with

PSA < 3.0 ng/mL and aged 55+ years who were followed up for 7 years with annual PSA measure-

ments. A biopsy was recommended for all men either during or at the end of the study. Thompson

et al. (2006) identified 5519 men on the placebo arm of the trial who had undergone prostate biopsy

and had a PSA and digital rectal exam (DRE) during the year prior to biopsy and at least 2 PSA

values from the 3 years prior to biopsy. The risk of finding prostate cancer in the biopsy was eval-

uated as a function of PSA, PSA velocity and several other variables including age, family history,

DRE and prior prostate biopsy. The concept is that in the future a man may use his calculated

risk to decide whether or not to have a biopsy procedure performed. We use this study cohort as

our population of interest and illustrate estimation of the predictiveness curve using a case-control

subset from the cohort. 250 cases and 250 controls are randomly sampled, from which we compare

PSA and PSA velocity as predictors of prostate cancer risk. 21.9% of men were found to have

prostate cancer in the original cohort. This number is treated as the “known” prevalence in our

13
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Figure 2. ROC curve estimates from the PCPT data: (a) PSA, (b) PSA velocity.

analysis.

We fit a two-parameter bilomax ROC curve, a partial bilomax ROC curve with t ∈ (0.05, 0.91),

and a partial binormal ROC curve with t ∈ (0.05, 0.91) to the case-control data, from which the

predictiveness curves are derived. We modified the maximum profile likelihood method for fitting

a binormal ROC curve (Cai and Moskowitz, 2004) to fit the bilomax ROC curve. The placement-

value-based pseudolikelihood approach (Pepe and Cai, 2004) is used to fit the partial bilomax and

binormal ROC curves. The estimated ROC curves for PSA and PSA velocity are displayed in

Figure 2. Also displayed are the empirical ROC curves (Obuchowski, 2003) estimated from the

case-control sample. The parametric ROC curve estimates in general agree fairly well with the

empirical ROC curves. The difference between the whole and partial bilomax ROC curves appears

to be smaller compared to the differences between them and the partial binormal ROC curve.

PSA appears to have much better classification accuracy than PSA velocity for diagnosing prostate

cancer.

Figure 3 displays the corresponding predictiveness curves estimated from the case-control sample

for PSA and PSA velocity as well as the empirical predictiveness curve estimate. The empirical
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predictiveness curve is generated in the following way. The observations are partitioned into 10

groups according to cutpoints y1, y2, . . ., y9. Let YDj be the jth case and let YD̄i be the ith control.

Let y10 = 1, for k ∈ {1, . . . , 10}, we calculate

vk = ρ
1

nD

nD∑

j=1

I(YDj ≤ yk) + (1− ρ)
1

nD̄

nD̄∑

i=1

I(YD̄i ≤ yk).

We then calculate P (D = 1|k, sampled), the average risk within the kth group in the case-control

sample, using sample mean of D. The population risk within kth group, P (D = 1|k) is calculated

based on the Bayes theorem

P (D = 1|k)
1 − P (D = 1|k)

=
P (D = 1|k, sampled)

1 − P (D = 1|k, sampled)
nD̄

nD

1 − ρ

ρ
.

The cutpoints are chosen such that vk is the smallest number larger than or equal to k/10. Let v0 =

0, the empirical predictiveness curve is generated as R(v) = P (D = 1|k) for v ∈ (vk−1, vk]. Again,

the predictiveness curves derived from parametric ROC models do not appear to be dramatically

different from the empirical curve. The predictiveness curve derived from the whole bilomax ROC

curve is very similar to that derived from the partial bilomax ROC curve whereas the predictiveness

curve derived from the partial binormal ROC curve looks much more different. In general, the curve

for PSA velocity is shallower, indicating that it is a poorer marker of risk for prostate cancer. Figure

4 shows the predictiveness curves for PSA and PSA velocity derived from the partial bilomax and

binormal ROC curves with pointwise 95% percentile bootstrap confidence intervals. Comparing

Figure 4(a) with Figure 4(b), we see that assuming different parametric ROC models has a big

impact on both the predictiveness curve estimates and their variances, even if there does not

appear to be a dramatic difference between the corresponding ROC curves (Figure 2(a) and (b)).

This is consistent with our previous argument about the distinction between risk prediction and

classification: one risk model can make a big difference compared to another in terms of risk

prediction without having much impact in terms of classification.
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Figure 3. Predictiveness curves for two markers of prostate cancer estimated from the PCPT
cohort and case-control data: (a) PSA, (b) PSA velocity.
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Figure 4. Predictiveness curves for two markers of prostate cancer estimated from the PCPT
case-control data (solid lines) and their pointwise 95% percentile bootstrap confidence intervals
(dashed lines): (a) bilomax, (b) partial binormal.
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Table 2
Estimation of predictiveness curves for PSA and PSA velocity using case-control data from the

PCPT study. Estimation are based on parametric ROC models. P-values are based on the
comparison between PSA and PSA velocity using bootstrap variance estimates.

Model PSA PSA Velocity p-value
Est 95% CI Est 95% CI

Partial Bilomax R(0.1) 7.0 (4.2, 10.2) 9.3 (5.5, 15.1) 0.378
R(0.9) 42.7 (35.9, 48.0) 29.1 (25.7, 36.4) < 0.001
R−1(0.10) 25.2 (11.5, 34.6) 11.9 (8.0, 21.1) 0.022
1 − R−1(0.29) 31.5 (23.2, 38.3) 18.6 (12.4, 42.2) 0.122
R−1(0.29)− R−1(0.10) 43.3 (30.8, 61.8) 69.5 (36.0, 72.0) 0.020

Partial Binormal R(0.1) 6.2 (3.1, 11.0) 10.5 (7.2, 15.7) 0.107
R(0.9) 38.9 (33.0, 45.6) 30.8 (27.4, 36.5) 0.022
R−1(0.10) 21.6 (10.5, 31.3) 8.8 (8.1, 19.1) 0.018
1 − R−1(0.29) 24.9 (20.5, 26.9) 15.4 (8.2, 22.6) 0.010
R−1(0.29)− R−1(0.10) 53.5 (42.6, 66.3) 75.8 (59.7, 81.1) 0.002

Table 2 presents estimates of R(0.1) and R(0.9). Also shown are proportions allocated into the

low, high, and equivocal risk ranges, given a low risk threshold 11% and a high risk threshold 29%.

For example, based on the partial bilomax model, the 90th percentile of risk is 0.291 according to

PSA velocity while it is higher, 0.427, according to the absolute most recent PSA measurement

(p < 0.001). At the low end of the scale, the 10th percentiles of risk based on PSA velocity and

PSA are 0.07 and 0.093 respectively (p = 0.378). According to PSA velocity 14.5% of men can

be classified as having risk below 11% while far more, 29.1%, qualify as low risk when using most

recent PSA as the marker (p = 0.009). In addition, a greater fraction are found to have risks above

29% with PSA than with PSA velocity, 31.5% vs 18.6% (p = 0.122). Less men are categorized

into the equivocal risk zone by PSA 39.4% than by PSA velocity 66.9% (p = 0.014). These results

suggest that PSA performs better for stratifying risk of prostate cancer compared to PSA velocity.

Inference based on the partial binormal ROC model is similar.

Finally, note that the parametric ROC curve methodology can be applied to a cohort study

as well by plugging in the sample prevalence. Table 3 shows the results of predictiveness curves

estimated using the entire PCPT cohort. We compare the bilomax ROC model based approach
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Table 3
Estimation of predictiveness curves for PSA and PSA velocity using data for the entire PCPT
cohort. The semi-parametric method of Huang et al. (2007) is compared with parametric ROC

based method. P-values are based on the comparison between PSA and PSA velocity using
bootstrap variance estimates.

Model PSA PSA Velocity p-value
Est SE Est SE

Semiparametric R(0.1) 9.0 0.0067 14.5 0.0077 < 0.001
R(0.9) 37.2 0.0092 29.5 0.0078 < 0.001
R−1(0.10) 13.6 0.020 3.0 0.0083 < 0.001
1 − R−1(0.29) 25.5 0.0099 11.1 0.018 < 0.001
R−1(0.29)− R−1(0.10) 60.9 0.027 85.9 0.026 < 0.001

Bilomax R(0.1) 9.2 0.0062 12.7 0.0068 < 0.001
R(0.9) 39.5 0.011 33.8 0.010 < 0.001
R−1(0.10) 14.6 0.033 0 0.0059 < 0.001
1 − R−1(0.29) 28.4 0.017 22.3 0.018 0.007
R−1(0.29)− R−1(0.10) 57.0 0.048 77.7 0.021 < 0.001

and the semi-parametric method developed in Huang et al. (2007) assuming logit{P (D = 1|Y )} =

β0 + β1Y
(β2) where Y (λ) = (Y λ − 1)/λ when λ 6= 0 and Y (λ) = logY when λ = 0. The results are

in close agreement. Moreover, standard errors of estimators based on the two methods are similar

in magnitude. This suggests that by applying the case-control methods presented here to cohort

data, efficiency is not lost relative to existing methods that only apply to cohort studies.

5. Discussion

Classification accuracy is usually considered to be an intrinsic property of a marker because it

does not depend on the population-specific disease prevalence. Predictiveness, on the other hand,

integrates classification accuracy and disease prevalence (Pepe et al., 2007) and characterizes the

risk prediction ability of the marker in a particular population. In this paper, we show the one-to-

one relationship between the ROC curve and the predictiveness curve when disease prevalence is

known. The latter has been proposed as a graphical tool for evaluating a continuous risk prediction

marker. We developed methodology for estimating the predictiveness curve based on a parametric

ROC model from a case-control study design. The idea of estimating an ROC curve first seems
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very natural in this retrospective setting considering that criteria for classification accuracy are

defined conditional on disease status. The availability of a wide variety of methods for estimating

a parametric ROC curve makes this approach even more appealing.

The main limitation of assuming a parametric ROC model, however, is lack of flexibility in

the predictiveness curve estimator, especially at the boundary. Estimating a partial predictiveness

curve from a portion of the ROC curve holds promise for resolving this issue. At the same time, it

allows use of the most popular parametric ROC model, the binormal ROC model, which may not

be concave in the whole range of FPF but can be restricted to be concave in certain regions.

Our methods can be used to compare the risk prediction capacities of different markers as we

have shown with the prostate cancer example. Some extensions should be considered. For example,

when predictiveness curves in subpopulations are of interest, we can estimate the covariate-specific

ROC curve using existing ROC regression methods and derive the corresponding covariate-specific

predictiveness curve by plugging in the disease prevalence in the subpopulation. Here we have

focused on disease status at a fixed point in time. When subjects are observed over time, the time

dimension may make things more challenging especially if there is censoring. How to incorporate

the time dependence in a survival analysis setting requires further investigation.

So far we have assumed exact knowledge of the disease prevalence in the population or subpop-

ulations. This is rarely true in real life. In practice, we obtain disease prevalence from the literature

or estimate it from some pilot study. Sensitivity analyses that employ a range of plausible prevalence

values should always be performed. In a more complicated two-phase design, disease prevalence

estimated from the phase-one random sample could be used when we estimate the predictiveness

curve using the phase-two case-control sample. Plugging in a prevalence estimate introduces extra

variation in the predictiveness curve estimator which needs to accounted for in making inference.

Further research in this regard is warranted.
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