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A Smoothing Approach for Data Masking

Yijie Zhou, Francesca Dominici and Thomas A. Louis ∗

October 11, 2007

Abstract

Individual-level data are often not publicly available due to confidentiality. Instead, masked data

are released for public use. However, analyses performed using masked data may produce invalid

statistical results such as biased parameter estimates or incorrect standard errors. In this paper, we

propose a data masking method using spatial smoothing, and we investigate the bias of parameter

estimates resulting from analyses using the masked data for Generalized Linear Models (GLM). The

method allows for varying both the form and the degree of masking by utilizing a smoothing weight

function and a smoothness parameter. We show that data masking by using a smoothing weight

function that accounts for the prior knowledge on the spatial pattern of exposure may lead to less

biased parameter estimates when using the masked data for analyses. Under our method, first-order

bias of the association between regressors and outcome when estimated using the masked data has

a closed-form expression.

We apply the method to the study of racial disparities in mortality rates using data on more than

4 million Medicare enrollees residing in 2095 zip codes in the Northeast region of the United States.

We find that the bias of the estimated association between race and mortality rates when using the

masked data is highly sensitive to both the form and the degree of masking.

KEYWORDS: Data Masking; Confidentiality; Spatial Smoothing
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1 Introduction

Collecting individual-level data for a large study population is generally very expensive and difficult,

therefore is typically conducted by government agencies. In addition, even when individual-level data

have been collected, often such data cannot be made publicly available in order to protect confidentiality.

Preserving the confidentiality of the individuals whose health records are collected is essential in attaining

the “public’s trust and cooperation with these data collection programs,” and therefore is directly

associated with “the quality and, hence, usefulness of the data” (Duncan and Pearson (1991)). The issue

of confidentiality is receiving increasing attention as more advanced computer-based technologies and

more sophisticated analytical methodologies are developed (Cox (1996); Duncan and Pearson (1991)).

For example, the increasing number and size of individual-level health data files facilitates integration of

different files to produce more detailed information on individuals, which allows potential identification

even after removing key identification variables such as social security number (SSN) in each component

data file. In addition, the longitudinal design of data collection mechanisms increases the likelihood of

identifying an individual based on his/her medical information. Moreover, locations of the individuals

whose health records are collected can now be easily determined by mapping their addresses to a

geographic position database that contains detailed street information for the entire nation (Armstrong

et al. (1999); Curtis et al. (2006)).

To preserve an individual’s confidentiality, methods have been developed to mask individual-level data

before they are released for public use. In the following paragraphs we briefly summarize existing data

masking methods, and in this paper we propose a new method for data masking.

Current data masking methods mainly include data deletion and coarsening, data transformation, and

imputation (Cox (1996); Duncan and Pearson (1991); Little (1993)). Specifically, data deletion includes

random sampling of observations, suppressing observations or cells that contain extreme values, and

removing key identification variables. Coarsening includes rounding (e.g., rounding birth date into birth

year), categorizing continuous variables especially in the extremes, and combining multiple categorical
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variables to form a single category. Data transformation and imputation replace the original data value

with a substitute which is generated by a certain procedure or simulated under a certain distribution.

Methods that fall in this category include data swapping where original data values are exchanged

between data records (Dalenius and Reiss (1982); Moore (1996); Carlson and Salabasis (2002)), data

perturbation including adding random noise (Kim (1986); Sullivan and Fuller (1989); Fuller (1993))

and generating artificial data that have the same distribution as original data (Fienberg et al. (1998);

Gouweleeuw et al. (1998); Muralidhar et al. (1999); Muralidhar and Sarathy (2003)), data shuffling

which combines the idea of swapping and perturbation (Muralidhar and Sarathy (2006)), and imputing

synthetic data using regression model based approaches (Franconi and Stander (2002, 2003)) and

multiple imputation (Rubin (1987, 1996)) based approaches (Rubin (1993); Raghunathan et al. (2003);

Reiter (2003, 2005)). In addition, data aggregation is also viewed as a type of data masking method, and

is widely used by government agencies to release data for public use. Aggregation combines individual-

level observations and produces data in aggregated forms such as group averages (e.g., zip code-level

average exposure and total death count). Therefore, aggregation differs from other masking methods by

producing masked data at an aggregated area-level instead of individual-level. Studies using aggregated

data do not support estimation of the association between exposure and a health outcome at the

individual-level, and such association estimates are subject to ecological bias (Greenland and Morgenstern

(1989); Greenland (1992); Prentice and Sheppard (1995); Wakefield and Salway (2001)).

Many masking methods above such as deleting observations and variables, combining multiple cate-

gorical variables to form a single category, adding random noise, data swapping, and data aggregation,

can be formulated within the framework of a general class of data masking methods called matrix

masking (Duncan and Pearson (1991); Cox (1994)). Suppose data on n observations and p variables

are stored in a n × p matrix. Matrix masking takes the general form of Z∗ = AZB + C, where Z

is the original data matrix and Z∗ is the transformed data matrix. Matrices A, B and C are the

row (observation) operator, column (variable) operator, and random noise, respectively. Links between

the above masking methods to matrix masking are investigated by Duncan and Pearson (1991), Cox

(1994), Fienberg (1994), and Fienberg et al. (1998).
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It is conceivable that without sufficient knowledge of the masking mechanisms, valid statistical analyses

using matrix masked data are difficult. Therefore, for researchers who are provided with only the masked

data Z∗, the simple approach is to treat Z∗ as the “real” data for statistical analyses, i.e., to ignore

the masking process. However, such analyses may result in biased parameter estimates. Muralidhar

et al. (1999) evaluate the bias of summary statistics such as mean, variance and covariance of the

masked data for several masking methods that are based on adding and multiplying random noise.

They show that data masked by different methods preserve different summary statistics of the original

data. Muralidhar and Sarathy (2006) evaluate the bias of correlation between two normally distributed

variables when masked by data shuffling and data swapping, and they find that the correlation is generally

attenuated towards zero. Kim (1986) and Fuller (1993) investigate the bias of regression coefficients in

the context of linear regression models for the masking methods that are proposed in the two papers,

respectively, with both methods based on adding random noise and transformation. It is showed for both

methods that if the masked data preserve the first two moments of the original data, estimates of the

linear regression coefficients when using the masked data are (approximately) unbiased in the absence

of higher order interactions in the regression models. However, the bias of regression coefficients for

non-linear models is rarely discussed, except for ecological bias from data aggregation.

In this paper we propose a special case of matrix masking where we construct the row (observation)

transformed data, i.e., Z∗ = AZ, using spatial smoothing. We investigate the bias of parameter

estimates resulting from analyses using such masked data for Generalized Linear Models (GLM), and we

provide guidance on how to select the type of masking process that may lead to less biased parameter

estimates. Specifically, by using linear spatial smoothers, we construct masked data for both regressors

and outcome which are defined as weighted averages of the original individual-level data. The shape of

the smoothing weight function defines the “form” of masking and the smoothing parameter measures

the “degree” of masking. This approach supports exploration of the bias of parameter estimates that

results from analyses using the masked data, for a wide variety of weight functions and degrees of

masking. By choosing an appropriate weight function and smoothing parameter value, the masked
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data can account for prior knowledge on the spatial pattern of individual-level exposure, and parameter

estimates from analyses using such masked data might be less subject to bias. Based on this approach,

we also derive a closed-form expression for calculating the first-order bias of the association between

regressors and outcome when estimated using the masked data, for any assumed distribution of the

outcome given the regressors in the exponential family.

We apply our method to the study of racial disparities in mortality risks for a large sample of the Medicare

population which consists of more than 4 million individuals in the Northeast region of the United States.

We develop and apply statistical models to estimate the age and gender adjusted association between

race and mortality risks, using both the original individual-level data and the masked data. Association

estimate when using the individual-level data is used as a gold-standard from which bias of the estimates

when using the masked data can be evaluated.

In section 2 we detail the method, and in section 3 we present simulation studies to quantify the

bias of the parameter estimates resulting from analyses using masked data under different types of

smoothing weight functions and different degrees of smoothing. In addition, we compare the bias of

the parameter estimates resulting from analyses using the masked data with that from analyses using

spatially aggregated data. In section 4, we apply the method to the Medicare data set, and in section 5

we discuss the method and the results as well as identify areas of future work. Derivation of the

closed-form expression for the first-order bias of the association between regressors and outcome when

estimated using the masked data is presented in the Appendix.

2 Methods

2.1 Matrix Masking Using Spatial Smoothing

We assume that the outcome variable Y and the regressors X are spatial processes {Y (s),X(s)}, and

the observed individual-level data {(Yi,Xi), i = 1, · · · , N} are realizations of the spatial processes at

locations s = {s1, · · · , sN}, i.e., Xi = X(si), Yi = Y (si), i = 1, · · · , N . We construct masked data

5

Hosted by The Berkeley Electronic Press



at s using spatial smoothing, and we show later that this masking approach is a special case of matrix

masking by row (observation) transformation.

Let Wλ(u, s; S) denote the relative weight assigned to data at location s when generating smoothed

data for target location u, where λ ≥ 0 is a smoothing parameter, and S denotes all spatial locations in

a study area so s is a subset of S. The parameter λ controls the degree of smoothness, with smoothness

increasing with λ. For notational convenience we suppress the dependence of W on S.

We consider a sub-class of linear smoothers under which the smoothed spatial processes at location u

are defined as follows. For λ > 0,

Yλ(u) =
∫

Y (s)Wλ(u, s) dN(s)
/∫

Wλ(u, s) dN(s) (1)

Xλ(u) =
∫

X(s)Wλ(u, s) dN(s)
/∫

Wλ(u, s) dN(s) ,

where N(s) is the counting process for locations with available data from spatial processes {Y (s),X(s)}.

For ∀ u ∈ s we require that W0(u, s) = I{s=u}. If W is continuous in λ, we define W0(u, s) as

lim
λ↓0

Wλ(u, s). Therefore, we have that {Y0(si),X0(si)} = {Yi, Xi}, the original individual-level data.

We generate masked data by taking the predictions from (1) at s where the original individual-level data

are available, i.e., {Yλ(si),Xλ(si), i = 1, · · · , N}. By definition in (1), the masked data are weighted

averages of the original individual-level data {Y (si),X(si)}. The shape of the weight function W and

the degree of smoothness λ control the form and the degree of masking, respectively, where the degree

of masking increases with the degree of smoothness. In practice, the masked data at location si are

computed by,

Yλ(si) =
N∑

k=1

YkWλ(si, sk)

/
N∑

k=1

Wλ(si, sk) (2)

Xλ(si) =
N∑

k=1

XkWλ(si, sk)

/
N∑

k=1

Wλ(si, sk) .
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Examples of commonly used smoothers within this class include parametric linear regressions fitted by

ordinary least square and weighted least square, penalized linear splines with truncated polynomial basis,

kernel smoothers, and LOESS smoothers (Simonoff (1996); Bowman and Azzalini (1997); Hastie et al.

(2001); Ruppert et al. (2003)).

Let Y and Yλ denote the vectors of {Yi} and {Yλ(si)}, and let X and Xλ denote the matrices of

{Xi} and {Xλ(si)}, respectively, where Xi and Xλ(si), i = 1, · · · , N are row vectors. It can be seen

that Yλ = AλY and Xλ = AλX , where Aλ = (Aλij
) =

(
Wλ(si, sj)

/∑N
j=1 Wλ(si, sj)

)
. Therefore,

constructing masked data by equation (2) is a special case of matrix masking by row (observation)

transformation. Reidentification from (Yλ,Xλ) to (Y,X ) requires knowledge of both W and λ as well

as the existence of A−1
λ .

2.2 Bias from Using Masked Data

Bias may arise when a non-linear model that is specified for the original individual-level data is fitted

to the masked data. Specifically, we assume the following model for the original individual-level data

which is viewed as the “truth,”

g(E{Y|X}) = Xβ. (3)

Model (3) implies the analogous model for the masked data

g(E{Yλ|Xλ}) = Xλβ (4)

only for a linear function g(x) = ax, where a is a constant (except for few special circumstances such

as Xi = x, i.e., constant exposure). It follows that for a non-linear regression model (3), the coefficient

estimate obtained by fitting model (4) will be a biased estimate of β. Therefore, it is important to

evaluate the bias of the coefficient estimate under model (4) as well as how the bias varies as a function

of the form and the degree of data masking.

It is common to assume that the masked data are mutually independent. However, they are generally
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correlated, since they combine information across the same locations. To investigate the impact of this

correlation on the uncertainty of the coefficient estimate when using the masked data, we compare the

“naive” confidence interval under model (4) which do not account for this correlation with an appropriate

confidence interval obtained using simulation or bootstrap methods (Efron (1979); Efron and Tibshirani

(1993)).

3 Simulation Studies

3.1 Data Generation and Parameter Estimation

In this section, we conduct simulation studies to illustrate that parameter estimates from analyses using

masked data may be less subject to bias when the selection of the smoothing weight function accounts

for the spatial patterns of exposure. We illustrate this point using three examples. In each case, we

define the study area to be [−1, 1]× [−1, 1]. Within this study area we randomly select 1000 locations

as s where individual-level exposure and outcome data are obtained.

In each example, we define a spatial process of exposure X(s) and we obtain X(si) for si ∈ s. We

simulate the individual-level outcome data at s from a model of the general form

Y (si)
i.i.d.∼ Poisson

(
eµ+βX(si)

)
, (5)

with the individual-level exposure coefficient β being the parameter of interest. The values of µ and β

are selected to achieve reasonable variability of E{Y (si)|X(si)} under model (5) across the locations

in s.

We construct the masked data {Yλ(si), Xλ(si)} using kernel smoothers, and we estimate the exposure

coefficient βλ under model

Yλ(si)
i.i.d.∼ Poisson

(
eµλ+βλXλ(si)

)
(6)
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which is analogous to the Poisson log-linear model (5) but fitted to the masked data. The masked

data are constructed and βλ is estimated for each combination of 20 λ values and two different kernel

weights, respectively, so we can evaluate the bias as a function of both the smoothing weight and λ.

In addition, we construct spatially aggregated data by equally partitioning the study area into 7×7 = 49

cells and calculating Y+j =
nj∑
i=1

Y (si) and X̄·j =
nj∑
i=1

X(si)/nj , where nj is the total number of individual-

level data points in cell j, j = 1, · · · , 49. We estimate the exposure coefficient βe using the aggregated

data {Y+j , X̄·j} under the analogous ecologic model

Y+j
i.i.d.∼ nj · Poisson

(
eµe+βeX̄·j

)
. (7)

We generate 500 replicates of the individual-level outcome data. For each replicate, βλ and βe are

estimated as above. The estimates of βλ for each combination of λ value and kernel weight as well

as the estimates of βe are averaged across the 500 replicates. The average estimates of βλ and βe are

compared to the true value of β to evaluate the resultant bias.

3.2 Choice of Smoothing Weight Function

To select a weight function that may lead to a less biased estimate of the exposure coefficient when

using the masked data for the analysis, we notice that expectation of the masked outcome Yλ(si) with

respect to model (6) is
E{Yλ(si)|Xλ(si)} = eµλ+βλXλ(si),

while expectation of Yλ(si) with respect to model (5) is

E{Yλ(si)|X} =
∫

eµ+βX(s)Wλ(si, s) dN(s) = eµ+βXλ(si)

∫
eβ[X(s)−Xλ(si)]Wλ(si, s) dN(s),

where X = {X(s)}. The comparison between E{Yλ(si)|X} and E{Yλ(si)|Xλ(si)} suggests that

we can reduce the bias of estimating µ and β when using the masked data by selecting a W s.t.∫
eβ[X(s)−Xλ(si)]Wλ(si, s) dN(s) is close to 1. One way to construct such a W is to assign high weights

to locations that receive similar exposure as the target location and low weights otherwise. The W
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constructed in this way has the property that it accounts for prior knowledge on the spatial pattern

of the exposure which in our examples is also the spatial pattern of the outcome due to the model

assumption (5). Therefore, to assess the bias difference when varying the smoothing weight function,

we construct the two different kernel weights for data masking in the way that one weight accounts for

prior knowledge on the spatial pattern of the exposure as above, while the other does not.

3.3 Example I

We assume that the exposure is eradiated from a point source A and decreases symmetrically in all

directions as the Euclidean distance from A increases. Specifically, we define X1(s) = 7 exp(−r2
s/2.5)

for s ∈ [−1, 1] × [−1, 1], where rs is the Euclidean distance between location s and the point source

A. Figure 1 (a) shows the contour plot of X1(s). The individual-level outcome is simulated from

Y1(si)
i.i.d.∼ Poisson

(
e−25+4X1(si)

)
. Aggregated data of exposure and outcome are constructed by

calculating group summaries of {Y1(si), X1(si)} as described in Section 3.1.

We construct masked data {Y1λ(si), X1λ(si)} by using equation (2) with (1.) the Euclidean kernel

weight W ∗
λ and (2.) the ring kernel weight W1λ which are defined as follows:

W ∗
λ (u, s) = exp(−||s− u||2/λ), (8)

W1λ(u, s) = exp(−|r2
s − r2

u|/λ). (9)

The ring kernel weight W1λ(u, s) decreases exponentially as the difference between r2
s and r2

u increases,

and such difference is positively associated with the difference between X1(s) and X1(u) according to

the spatial pattern of the exposure. Figure 1 (b) shows the contour plot of W1λ(s1, ·). On the other

hand, the Euclidean kernel weight W ∗
λ (u, s) solely depends on ||s− u||, the Euclidean distance between

location u and location s, and therefore does not account for prior knowledge on the spatial distribution

of the exposure.
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3.4 Example II

We assume that the exposure is eradiated from a point source A and toward a certain direction such

as blew by wind. Specifically, we define X2(s) = 7 exp(−r2
s/6 − cos θs/3) for s ∈ [−1, 1] × [−1, 1],

where θs is the angle between the direction from point source A to location s and the direction that the

exposure is towards, and rs is defined the same as in example I. Figure 2 (a) shows the contour plot of

X2(s). The individual-level outcome is simulated from Y2(si)
i.i.d.∼ Poisson

(
e−36+4X2(si)

)
. Aggregated

data of exposure and outcome are constructed by calculating group summaries of {Y2(si), X2(si)} as

described in Section 3.1.

We construct masked data {Y2λ(si), X2λ(si)} by using equation (2) with (1.) the Euclidean kernel

weight (8) and (2.) the ring angle kernel weight

W2λ(u, s) = exp(−(|r2
s − r2

u|+ 2| cos θs − cos θu|)/λ)

which decreases exponentially as the difference between r2
s and r2

u increases as well as the difference

between cos θs and cos θu increases. Figure 2 (b) shows the contour plot of W2λ(s1, ·).

3.5 Example III

We assume that the exposure is eradiated from a point source A but blocked in certain area such

as by a mountain, so the blocked area receives no exposure. Specifically, we define the unblocked

area to be sx ≤ 0.4 or cos ϑs ≤ 0.625 for s ∈ [−1, 1] × [−1, 1], where sx is the x-axis value of

location s and ϑs is the angle between positive x-axis and the direction from point source A to location

s. We define the exposure X3(s) = 7 exp(−r2
s/2.5) · Is for s ∈ [−1, 1] × [−1, 1], where Is is the

indicator that s is located within the unblocked area, and rs is defined the same as in example I and

II. Figure 3 (a) shows the contour plot of X3(s). The individual-level outcome is simulated from

Y3(si)
i.i.d.∼ Poisson

(
e−24+4X3(si)

)
. Aggregated data of exposure and outcome are constructed by

calculating group summaries of {Y3(si), X3(si)} as described in Section 3.1.

We construct masked data {Y3λ(si), X3λ(si)} by using equation (2) with (1.) the Euclidean kernel
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weight (8) and (2.) the ring block kernel weight

W3λ(u, s) = exp(−|r2
s − r2

u|/λ) · (Is = Iu)

which assigns non-zero weight only when location u and location s are both in the blocked or unblocked

area. In addition, the non-zero weight from W3λ(u, s) decreases exponentially as the difference between

r2
s and r2

u increases. Figure 3 (b) shows the contour plot of W3λ(s1, ·).

3.6 Results

Results obtained from example I are shown in Figure 1 (c). Specifically, we show the average estimates

of βλ across the 500 simulation replicates as a function of λ for the ring kernel weight (9) and the

Euclidean kernel weight (8) respectively, with the “naive” 95% confidence intervals. By “naive” we

mean that the confidence intervals are computed by fitting model (6) directly, and therefore do not

account for the possible correlation between the masked data as pointed out earlier in Section 2.2.

The reference lines are placed at the true value of β and at the average estimate of βe across the 500

simulation replicates, from which the bias of estimating the exposure coefficient by using the average

estimates of βλ can be evaluated.

We find that data masking using the ring kernel weight (9) leads to smaller bias of estimating the

exposure coefficient than masking using the Euclidean kernel weight (8), for all λ values that are

considered. It suggests that when using masked data for analyses, a data masking procedure that

preserves the spatial pattern of the original individual-level exposure and outcome data leads to less

biased parameter estimates than a masking procedure that does not do so. In addition, we find that as

λ increases, that is, as the degree of data masking increases, the bias increases for both kernel weights.

However, as λ increases, the bias difference of the parameter estimates obtained with the two different

kernel weights decreases. This increase in the bias and decrease in the bias difference indicates that in

the presence of a high degree of masking, choice for the form of masking may be less influential on the

resultant bias.
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Moreover, comparing the bias of estimating β when using the average estimates of βλ and using the

average estimate of βe, we find that for small values of λ, the bias is smaller when using the average

estimates of βλ from the ring kernel weight (9). It indicates that analyses using the masked data that

are constructed from an appropriate smoothing weight function and a reasonably low degree of masking

may lead to less biased parameter estimates than analyses using spatially aggregated data. Similar

results of example II and example III are showed in Figure 2 (c) and Figure 3 (c).

Figure 4 shows the width ratios comparing the 95% “naive” confidence intervals versus the percentile

confidence intervals obtained from the empirical distributions of the estimates across the 500 simulations,

for the estimates of βλ in the three examples respectively. Width ratio when λ = 0 is calculated using

the non-smoothed data, i.e., the individual-level data. We find that in these three examples, the use of

the “naive” confidence intervals generally overestimate the uncertainty of the estimates of βλ, and the

degree of overestimation increases as λ increases. In addition, for example II and III where the spatial

patterns of exposure are non-isotropic, the degrees of overestimation differ for the weight functions with

and without accounting for prior knowledge on the spatial pattern of exposure.

4 Application to Medicare Data

We apply our method to the study of racial disparities in mortality risks for a sample of the U.S. Medicare

population to evaluate the bias of estimating the association between race and mortality risks when using

the masked data.

4.1 Data Source

We extract a large data set at individual-level from the Medicare government database. Specifically,

it includes individual age, race, gender and a day-specific death indicator over the period 1999-2002,

for more than 4 million black and white Medicare enrollees who are 65 years and older residing in the

Northeast region of U.S. People who are younger than 65 at enrollment are eliminated because they are

eligible for the Medicare program due to the presence of either a certain disability or End Stage Renal
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Disease (ESRD) and therefore do not represent the general Medicare population.

Figure 5 shows the study area which includes 2095 zip codes in 64 counties in the Northeast region of

U.S. We choose the counties whose centroids fall within a desired range which covers the Northeast

coast region of U.S, and we exclude zip codes without available study population. This area covers

most of the large, urban cities including Washington D.C., Baltimore MD, Philadelphia PA, New York

City NY, New Haven CT, and Boston MA, and therefore has the advantage of high population density

and substantial racial diversity.

We categorize the age of individuals into 5 intervals based on age at enrollment: [65, 70), [70, 75),

[75,80), [80, 85), and [85, +). This categorization facilitates detection of age effects on mortality risks,

because the difference in mortality risks for one year increase in age is relatively small. We “coarsen”

the daily survival information into yearly survival indicators. As is the case for most survival analyses,

the annual survival records for each individual are modeled as conditionally independent, in our case as

inputs to logistic regression. By doing this, we define our outcome as the probability of the occurrence of

death for an individual in one year. This prevents comparing individuals with different risks of observing

their events of death due to the difference in the length of follow-up.

4.2 Statistical Models and Data Masking

Let i denote individual, j denote zip code, t denote year, and Dijt be the death indicator for individual

i in zip code j in year t. Similar to the study by Zhou et al. (2007), we define the individual-level model

as

logit Pr(Dtij = 1) = β0 + β1 raceij + β2 ageij + β3 genderij + β4 (age× gender)ij . (10)

Geographic locations for the original individual-level data are needed to spatially smooth the individual-

level data. However, from the Medicare data we only have the longitude and latitude of the zip code

centroids. Therefore, we apply a two-step masking procedure on the individual-level data, where we first
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aggregate the individual-level data to zip code-level, and we then spatially smooth the zip-code level

aggregated data to construct the masked data at the zip code-level.

Specifically, let D++j denote the total death count and nj denote the total person-years of zip code j.

We first obtain from aggregation {% blackj , % agecatj , % malej , % (agecat×male)j , pj = D++j/nj ,

j = 1, · · · , J} which are the marginal distributions of race, age, gender, the joint distribution of age

and gender, and the mortality rate, respectively, of each zip code.

Due to the complex spatial pattern of the zip code-level covariates, we use kernel smoothers with

bivariate normal density kernel weights for spatial smoothing, so the shape of the smoothing weight is

flexible by varying the correlation parameter value of the bivariate normal distribution. Let the two-

component vector s = {s1, s2} denote the location of a zip code, where s1 and s2 are the longitude and

latitude of the zip code centroid, respectively. We use smoothing kernel weights of the general form

Wλ(u, s) = exp(−(s1 − u1, s2 − u2)T Σ−1
λ (s1 − u1, s2 − u2)/2),

where

Σλ = λ

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

σ2
1 and σ2

2 are the variances of the longitude and latitude data of the 2095 zip codes, respectively. We

consider for ρ the following three values:

1. ρ = 0, so the weight solely depends on the Euclidean distance ||s− u||;

2. ρ = 0.5, so higher weight is assigned to s in the northeast and southwest direction of u;

3. ρ = −0.5, so higher weight is assigned to s in the northwest and southeast direction of u.

Let pjλ denote the smoothed mortality rate of zip code j from which we calculate the smoothed death

count D++jλ = pjλ · nj . Let % blackjλ, % agecatjλ, % malejλ, % (agecat × male)jλ denote the
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smoothed marginal distributions of race, age, gender, and the smoothed joint distribution of age and

gender, respectively, of zip code j. We define the model specified for masked data as

D++jλ ∼ Bin(nj , pjλ) (11)

logit pjλ = β0λ + β1λ% blackjλ + β2λ% agecatjλ + β3λ% malejλ + β4λ% (agecat×male)jλ.

Zip code-level non-smoothed aggregated data are also used to fit model (11).

4.3 Choice of Association Measure

The common approach to report the association between race and mortality risks is to report the race

coefficients β1 in model (10) and β1λ in model (11), whose interpretation is subjected to the coding of

the race covariate. For direct understanding of the difference in the risk of death between the black and

white populations, we define and report the population-level odds ratio (OR) of death comparing Blacks

versus Whites which is a function of the predicted values (Zhou et al. (2007)). Therefore, interpretation

of this association measure does not depend on model parameterization (e.g., on covariate centering

and scaling).

Specifically, let

Ptijb = Pr(Dtij = 1| raceij = Black, ageij , genderij)

Ptijw = Pr(Dtij = 1| raceij = White, ageij , genderij)

denote the predicted probabilities of death in year t for a black person and a white person, respectively,

whose other covariates values are the same as the ith individual in the jth zip code. We define the
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population-level OR from the individual-level model (10) as follows:

OR =
P···bQ···w
P···wQ···b

where P···b =
∑
t,i,j

Ptijb, P···w =
∑
t,i,j

Ptijw, Q···b = 1− P···b, Q···w = 1− P···w.

Similarly we define population-level ORλ from the ecologic model (11) using summary probabilities

P·bλ =

∑
j njPjbλ∑

j nj
and P·wλ =

∑
j njPjwλ∑

j nj
,

where Pjbλ and Pjwλ are the predicted probabilities of death in one year for zip codes that consist

of solely black and solely white population, respectively, and whose marginal and joint distributions of

age and gender are the same as zip code j. “Naive” standard errors of logORλ are calculated using

the multivariate Delta Method (Casella and Berger (2002)). In addition, bootstrap confidence intervals

for logORλ are calculated using 1000 non-parametric bootstrap samples. Both “naive” and bootstrap

confidence intervals for ORλ are obtained by exponentiating the corresponding confidence intervals for

logORλ.

4.4 Results

Figure 6 shows the estimates of ORλ under model (11) as a function of λ for the three kernel weights

respectively, with the 95% “naive” confidence intervals, confidence intervals using bootstrap standard

error estimates, and bootstrap percentile confidence intervals. OR0 is estimated by fitting model (11)

to the non-smoothed zip code-level aggregated data. The reference line is placed at the estimate of OR

under the individual-level model (10).

We find that the estimates of ORλ highly depend on both the form and the degree of masking. For small

values of λ (< 0.1), the estimates of ORλ for all three kernel weights are smaller than the estimate
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of OR and therefore produce negative bias, while for larger values of λ the bias differs substantially

for different kernel weights. For example, data masking using the kernel weight with ρ = 0.5 leads

to consistent underestimate of the odds ratio for all λ values that are considered. When using the

kernel weight with ρ = −0.5 for data masking, the estimates of ORλ are less subject to bias than

those from using the other two kernel weights. For all three kernel weights, the “naive” confidence

intervals underestimate the uncertainty of the ORλ estimates, which is in the opposite direction of the

relation between the “naive” and the appropriate confidence intervals in the simulation studies. The

two bootstrap confidence intervals are wider than the “naive” confidence interval when λ = 0, which

suggests a systematic difference between the bootstrap confidence intervals and the “naive” confidence

intervals regardless of smoothing. This systematic difference occurs because the non-smoothed zip

code-level aggregated data may not satisfy the Binomial model assumption in (11).

5 Discussion

We propose a special case of the matrix masking method by using spatial smoothing, and we investigate

the bias of parameter estimates resulting from analyses using the masked data. By using our method,

masked data producers who possess the confidential individual-level data can evaluate this bias as a

function of both the form and the degree of masking, which facilitates identification of data masking

procedures for which this bias is small. In the simulation studies, we provide useful guidance for

constructing masked data that leads to less biased association estimates between the masked exposure

and outcome. Specifically, masked data can be constructed by using a smoothing weight function

that accounts for prior knowledge on the spatial pattern of individual-level exposure, together with

a reasonably low degree of masking. We provide guidance for how to select such a smoothing weight

function for log-linear models. In addition, we also provide candidate weight functions for three simplified

but representative spatial patterns of exposure. Therefore, institutions who possess the confidential

individual-level data can release data masked in such a way that parameter estimates from analyses

using the masked data are less subject to bias. However, information on the smoothing weight function
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and the smoothing parameter cannot be simultaneously released with the masked data, in order to

prevent reidentification.

We apply our smoothing method of data masking to the study of racial disparities in mortality risks

for the Medicare population, and we find that the bias of estimating the OR of death comparing

the black population versus the white population highly depends on both the form and degree of

masking. However, the data application results may be more appealing if the zip code-level aggregated

demographic and mortality data were generally not publicly available.

We compare the “naive” confidence intervals with the appropriate ones which account for the possible

correlation between masked data in both the simulation studies and the data example, where we observe

opposite directions in the relation between the “naive” and the appropriate confidence intervals. It

suggests no general direction for that relation.

Based on our method, we additionally derive a closed-form expression for first-order bias of the parameter

estimates obtained using the masked data, for GLM that belong to the exponential family. The first-order

bias calculation is not necessary when both individual-level exposure and outcome data are available

so the actual bias can be computed. It may be used by researchers who have only the individual-level

exposure information to explore candidate smoothing weight functions for the institutes who produce

and release the masked data. However, only the institutes can decide and know the final choice of the

smoothing weight function and the smoothing parameter value.

Our approach has some attractive features. We have a direct measure of the degree of masking, λ.

By varying λ, we can vary the degree of masking, keeping constant the form of masking. Secondly,

by choosing the smoothing weight function W , our approach leads to very flexible data masking pro-

cedures in controlling the form of masking. W can be defined as any weight function and therefore is

not restricted by existing smoothing methods. In addition, we can easily assess the sensitivity of the

parameter estimates obtained using the masked data with respect to the choice of W . Thirdly, our

data masking method is linear transformation on the original individual-level data. Because correlation
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between random variables is invariant under linear transformation, the masked data generated using our

method preserve the interrelation among the original individual-level data.

Our method needs further development. First, our approach is developed under the assumption that

the original individual-level data are independent across individuals or spatial locations. However, this

assumption is often violated and therefore, additional work is needed to extend our method to account

for the correlation between the original individual-level data. Secondly, the two criteria to evaluate a

data masking method are the risk of disclosure and the ability for valid statistical inference, or in a formal

representation, the utility, of the masked data (Duncan and Pearson (1991); Muralidhar and Sarathy

(2003)). The risk of disclosure can be defined as an increase in the probability of disclosure in data

value or individual identity, resulting from the incremental information provided by access to the masked

data (Muralidhar and Sarathy (2003)). More formal and detailed definition can be found in Duncan

and Lambert (1986) and Duncan and Pearson (1991). In this paper we address the ability to draw

valid statistical inference by investigating the bias of parameter estimates resulting from analyses of the

masked data. Although we can control on the risk of disclosure by controlling the degree of masking,

we do not directly address this risk. Therefore, future work is necessary to evaluate the disclosure risk

when using our proposed data masking method. In addition, another direction for future work is to

extend our approach by adding random noise to the spatially smoothed data, which adds a further layer

of masking.
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APPENDICES

A First-Order Bias

We derive a closed-form expression for the first-order bias of estimating the regression coefficients in

GLM that belong to the exponential family, when using data masked by our method. Let β denote the

vector of regression coefficients of a model specified for the original individual-level data. When the

model belongs to the exponential family, its log likelihood can be expressed as

LL(β) =
N∑

i=1

YiXiβ − b(Xiβ)
a(φ)

+ C(Yi, φ),
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b′(Xiβ) = g−1(Xiβ), where b′(·) is the derivative of function b(·), and g(·) is the link function.

Substituting the individual-level data {Yi,Xi} by the masked data {Yλ(si),Xλ(si)}, we obtain log

likelihood of the analogous model when fitted to the masked data,

LLm(βλ;λ) =
N∑

i=1

Yλ(si)Xλ(si)βλ − b(Xλ(si)βλ)
aλ(φλ)

+ Cλ(Yλ(si), φλ), (12)

where βλ denotes the corresponding vector of regression coefficients. In order to calculate the MLE

of βλ, it is common procedure to calculate the score function from the likelihood (12) and take its

expectation with respect to the “true” individual-level model E{Yi|Xi}. Denote the expected score

function as S(λ, βλ) and denote β(λ) as the solution s.t. S(λ, β(λ)) = 0. It can be shown that

β(0) = β. Taking the derivative of S(λ, β(λ)) = 0 with respect to λ and evaluating it at λ = 0, we

obtain the standard result:

β′(0) = −(S2(0,β(0))−1 · S1(0,β(0)), (13)

where S1 and S2 are the partial derivatives with respect to the first and second components of ∂S/∂λ,

respectively. Specifically,

S1(0,β(0)) =
N∑

i=1

XT
i

(∫
h(X(s)β)R0(si, s) dN(s)− h′(Xiβ)

∫
X(s)T R0(si, s) dN(s) · β

)

S2(0,β(0)) = −
N∑

i=1

h′(Xiβ) ·XT
i Xi, (14)

where R0(si, s) = ∂ (Wλ(si,s) /
∫

Wλ(si,s) dN(s))
∂λ

∣∣∣
λ=0

and h(·) = g−1(·), inverse of the link function of

the GLM. In practice, S1(0,β(0)) in (14) is calculated by substituting the the integrals by summations

over all locations where the original individual-level data are available.

The quantity β′(0) denotes the instant bias of estimating β using masked data, when changing from no

masking to a very low degree of masking. As expected, when (1.) X(s) is constant across all locations
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in s; (2.) g(·) is a linear function, S1(0,β(0)) is calculated to be 0, and therefore β′(0) = 0.

Using β′(0), we can approximate the bias of estimating β when fitting GLM using masked data whose

degree of masking is λ, by calculating

β(λ)− β ≈ β′(0) · λ.

This bias calculation can be extended to any function of β, for example, the predicted value. Specifically,

bias in estimating f(β) can be approximated by

f(β(λ))− f(β) ≈ f ′(β) · (β(λ)− β) ≈ f ′(β) · β′(0) · λ.

It can be seen that the first-order bias approximation can be easily generalized to approximation using

higher-order terms of the Taylor series expansion in addition to the first-order term. Specifically,

β(λ)− β ≈ β′(0) · λ + β′′(0) · λ2/2 + · · ·+ β(n)(0) · λn/n!, n ≥ 1. (15)

Similarly we can generalize the bias approximation of estimating f(β).

A limitation of the bias approximation using Taylor series expansion (15) is that, we ignore the remainder

term β(n+1)(ξ) · λn+1

(n+1)! , ξ ∈ (0, λ), which may not be small for large values of λ. Therefore, the

approximation only captures the bias for λ ≈ 0, i.e., the instant direction and magnitude of the bias

when changing from no masking to a very low degree of masking. It may not capture the total bias for

a specified degree of masking. In the application of our method to the Medicare data, the first-order

bias is calculated to be 0 for all three kernel weights because R0 in (14) equals 0. In addition, when

applying the bias approximation (15) to the three examples in the simulation studies for n = 1, · · · , 5,

the bias approximation is calculated to be 0, while non-zero bias is showed by comparing the parameter

estimates when using the masked data with the true parameter value.
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Figure 5: Location of the 2095 zip codes included in our study area.
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Figure 6: Estimates of ORλ Under Ecologic Model (11) as a Function of λ for the Three Weight
Functions, With the 95% “Naive” Confidence Intervals (CI), CI Using Bootstrap Standard Error (SE)
Estimates, and Bootstrap Percentile CI.

(a): For Bivariate Normal Density Kernel Weight with ρ = 0
(b): For Bivariate Normal Density Kernel Weight with ρ = 0.5
(c): For Bivariate Normal Density Kernel Weight with ρ = −0.5

OR0 is Estimated By Fitting Model (11) to the Non-Smoothed Zip Code-Level Aggregated Data.
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