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1.  Introduction 
Research studies often collect information at multiple timepoints.   For example, the 

Cardiovascular Health Study (CHS), an observational study of 5,888 older adults [1], has 
conducted semiannual assessments of cardiovascular functioning and other health measures for 
up to 18 years.  With these longitudinal measurements, CHS data may be used to study a disease 
course [2], health in the years leading up to a diagnosis [3], or the natural history of aging [4, 5].    

Missing data are an impediment to longitudinal data analysis.  Early analysis methods, 
such as repeated measures ANOVA, require balanced data (responses at the same timepoints for 
all individuals), and other conditions unlikely to be met in long-term follow-up [6].  Suppose a 
cohort of 200 subjects report self-rated health at age 70 years, and only 150 of these subjects are 
located for follow-up.   If the average self-rated health at age 75 is higher than the average at 70, 
the increase could reflect improvement in individuals’ health, attrition of sicker participants, or 
death of sicker participants.    

Dropout and nonresponse in longitudinal data analysis have been studied extensively, and 
accommodation of selected types of missing data has become routine [7-10].  Comparatively 
little work in statistical methodology has addressed data missing when deaths occur during the 
period of follow-up  [11-18].  In many applications deaths are fundamentally different from data 
missing due to nonresponse.  Data missing due to nonresponse could potentially have been 
collected, but were not.   Data missing due to death are undefined, or have coding (such as a 
systolic blood pressure of 0) inconsistent with measured responses.  We focus here on truncation 
due to death; however, a brief review of models for longitudinal data with monotone dropout 
provides a foundation for discussing analysis of longitudinal data truncated by death. 

Two common, widely applied analysis methods for longitudinal data are random effects 
models [19] (related to mixed models [20], multilevel models [21], and latent variable models 
[22]) and generalized estimating equations (GEE) [23].   By modeling a structure for the 
correlation between subjects’ longitudinal responses, many random effects models will fit 
unbiased regression models even with unbalanced data.  For example, if sicker participants drop 
out, their trajectory of decline in self-rated health is continued implicitly by a random effects 
model [24].  If trends for dropouts can be inferred from observed data (“missing at random”, 
such as when scores decline before dropout), the missingness is “ignorable” and the overall rate 
of change will be measured as if no one has dropped out.  If the decline in health that leads to 
dropout starts after the last recorded measurement, then dropout is “non-ignorable,” and random 
effects models are not an easy solution.  Untestable assumptions must be made about non-
ignorable dropout processes to model longitudinal trends [24].  GEE can accommodate data 
missing at random if estimating equations are weighted by the inverse probability of dropout [9].  
Giving additional weight to observed data for people who were likely to drop out is similar to 
implicit or explicit imputation of unobserved data.  In fact, under some conditions, weighted 
GEE and imputation will give the same results [25].   “Missing at random” is often a reasonable 
assumption, especially when longitudinal observations are closely spaced relative to mechanisms 
acting on both dropout and response.  For example, preclinical cognitive changes could likely be 
detected by annual assessments before a CHS participant becomes impaired by dementia in a 
way that would lead to nonresponse.  However, analysis of longitudinal data with MAR dropout 
still requires accurate modeling of the regression model (fixed effects) and either correlation (for 
random effects models) or dropout (for weighted GEE).    

Different approaches have been proposed to distinguish data missing due to death from 
nonresponse, and to accommodate data missing due to death [11-18].  In this article, we examine 
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how these models arise from the statistical distribution of longitudinal data and survival 
information, and give some guidance on appropriate analysis techniques.    In Section 2, two 
hypothetical data examples are used to present five modeling options for longitudinal data 
truncated by death.  Data examples without measurement error illustrate clearly how modeling 
choices for longitudinal data reflect assumptions about survival.   Section 3, an analysis of CHS 
data, illustrates how standard analysis techniques such as random effects models and GEE may 
be applied to address different research aims involving longitudinal data truncated by death.   

 
2.  Longitudinal data truncated by death  
2.1. Data examples 
2.1.1.  Cardiovascular Health Study (CHS) 
 

The Cardiovascular Health Study (CHS) is a population-based prospective longitudinal 
study of 5,888 adults aged 65 years and older at baseline [1].   Cognitive functioning was 
assessed annually for up to 10 years.  We examine the 3814 participants aged 70 years and older 
at baseline, 1356 (36%) of whom died during follow-up.  The longitudinal response for this 
analysis is cognitive functioning, measured by the Modified Mini-Mental State Examination 
(3MSE, scored from 0 to 100) [26].  Questions of interest include the rate of change and 
expected cognitive status at specific ages.  We will examine how different analysis methods each 
yield 3MSE trajectories and fitted values, but address different research aims.  

Accommodation of deaths in CHS data will be described using simplified hypothetical 
data.  Table 1 shows 3MSE data for 4 hypothetical participants with a baseline age of 70.  
Participant A, representing normal cognitive functioning, has a 3MSE of 90 points at all 
assessments.  Participant B’s linear decline from 84 to 74 points over 5 years reflects a possible 
trajectory of mild cognitive impairment (which could be interpreted as preclinical Alzheimer’s 
disease).  Participants C and D both decline between baseline and age 72, and die before age 73.    

 
2.1.2.  Complementary Comfort Care (C3) Study 
 
The Complementary Comfort Care (C3) study (William Lafferty, principal investigator) is a 
randomized clinical trial testing the effect of complementary and alternative medicine on quality 
of life (QOL) and symptoms for patients at the end of life.  A palliative care intervention of 
guided meditation and twice-weekly massage is compared to an active control of friendly visits.  
The longitudinal response variable for the C3 study is a single-item QOL item, “How would you 
rate your overall quality of life during the past 7 days?”  Scores of 0 are defined as “no quality of 
life and 10 as “perfect quality of life”.   The aim of the study is to compare QOL in the treatment 
and control groups.   

The study is ongoing, so we present only hypothetical data from a simplified version of 
the C3 design (Table 2).  In both the control group (A) and treatment group (B), the weekly 
quality of life rating declines by 1 point in each of the three weeks before death [27].  For earlier 
QOL assessments, the treatment group increases QOL by 0.5 points each week, and the control 
group QOL is stable at baseline levels.    

 
2.2. Notation 
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Vector Yi represents the longitudinal response (i.e., cognitive functioning or quality of life), 
measured at multiple timepoints for participant i.  The dimension (length) of Yi may differ for 
individuals (values of i), due to death.  For example, in Table 1 (hypothetical CHS data), 
responses for participant A, YA, are the vector (90,90,90,90,90,90), and for participant C, YC is 
(84,80,76).  Scalar variable Si represents survival time for participant i, such as age at death or 
weeks from baseline until death:  in Table 1, SC is 73 years.  The dimension of Yi is determined 
by the value of Si.  The joint distribution ( , S )i if Y describes the probability that Yi takes on a 
vector of specific values, and that participant i dies at a specific time.    
 
2.3.  Statistical models for longitudinal response and survival 
 
Regression models for longitudinal data describe the relationship between predictors and the 
longitudinal response, Yi.  Because survival Si determines the length of Yi and is not fixed, 
regression models of longitudinal data truncated by death must explicitly or implicitly model 
survival as well.  A single regression model could be built for the joint distribution ( , S )i if Y ,  
or for factorizations based on the definitions of joint and conditional distributions:   

( | S ) (S )i i if f⋅Y  or (S | ) ( )i i if f⋅Y Y .  We will characterize models for Yi as unconditional, 
fully conditional, or partly conditional based on how, or whether, the longitudinal response 
model conditions on Si.  These models are defined in more detail below, and summarized in 
Table 3.  Each model is applied to both the hypothetical CHS and C3 data.  The different 
research aims of the two studies serve as a useful contrast, and the simplified data illustrate 
clearly how modeling choices for longitudinal data reflect assumptions about survival. 
 
2.3.1 ( )if Y  Unconditional 
 
 An unconditional model, ( )if Y , is appropriate if deaths do not occur, are independent of 
the response process, or do not result in truncation (if the response has a well-defined value 
following death).  If these stipulations are not met, the unconditional distribution ( )if Y  reflects 
averaging ( | S )i if Y  over the survival function (S )if , as shown in this section.  Unconditional 
regression models cognitive functioning at all timepoints as if nobody died, in an “immortal 
cohort” [14].  The unconditional average 3MSE at age 75 years in the CHS hypothetical data is: 
 

average(3MSE at age 75) = average(3MSE at 75|alive at 75) P(alive at 75)
                                                + average(3MSE at 75|deceased at 75) P(deceased at 75)

                          

⋅
⋅

90 74 2 2               = X .
2 4 4
+

⋅ + ⋅

 

 
For analysis methods for which “missing at random” nonresponse mechanisms are ignorable – 
such as for random effects models fit to unbalanced longitudinal data – the value of X is imputed 
implicitly because of the structure imposed by correlation between each subject’s longitudinal 
observations.  We convey this implicit imputation by projecting the hypothetical 3MSE data of 
deceased participants based on individual slopes.  This extrapolation is more extreme than 
estimates would be with real data (i.e., Section 3.1.1), since estimation of fixed effects in random 
effects models will be influenced by regression to the mean and other shrinkage [28].  Extending 
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the Table 1 trajectories for Participants C and D linearly, the “incomplete” response vectors 
(84,80,76) and (65,50,35) are imputed to (84,80,76,72,68,64)  and (65,50,35,20,5,-15).  
Participant D’s imputed response at age 75 (-15 points) is inappropriate, outside the range of the 
3MSE.   

An unconditional model uses both observed and imputed data to estimate linear 3MSE 
slope and 3MSE at age 75 (Table 4, row a).  Completing the estimate of 3MSE at age 75 by 
imputing the value of X: 

 
64 ( 15) 90 74 64 ( 15)90 74 2 2average(3MSE at age 75) = 53.25.

2 4 2 4 4
+ − + + + −+

⋅ + ⋅ = =  

 
The age 75 fitted 3MSE (53.25 points) and linear 3MSE slope (5.25 point decline per year) both 
underestimate cognitive functioning among participants alive at age 75, because values are 
imputed beyond death. 
 QOL for the hypothetical C3 data may be described by unconditional linear models with 
quadratic time, fitted separately (via interaction terms) for treatment and control groups: 

2 2
ij 1 ij 2 ij 3 i 4 i ij 5 i ijE(QOL ) week week tx tx week tx weekβ β β β β β0= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅  

for treatments i=A,B and weeks j=0-5.  The fitted models in Figure 1a were generated by using 
available data and by extending past death (if needed to have data to week 5), using the terminal 
decline trajectory.  The unconditional model reflects that the patients had similar QOL at 
baseline, but that the treatment group QOL could improve or remain stable on average, while the 
control group QOL declined on average.   Notably, the fitted QOL at week 5 for the control 
group is -0.3 points, beyond the range of the QOL scale.  Extension of QOL trajectories beyond 
death was explicit when computing this example, but would be implicit if a random effects 
model were fitted to observed data [14, 15, 24].   
 In rare cases, implicit imputation beyond death may be reasonable.  When local 
recurrence following ablation of liver tumors is evaluated, some livers may “die” due to 
transplant.  The chance of recurrence (Yi) and transplant candidacy (Si) are related.  However, 
since the transplant rate will never be 100%, an unconditional model and implicit imputation 
beyond transplant may be valid.  The research question addressed is, “What would have 
happened if the person had not died, but the longitudinal response continued along the exact path 
that led to death?”   While this question is relevant to liver transplants, the CHS and C3 
hypothetical examples show that unconditional models are generally inappropriate for 
longitudinal data with considerable imbalance due to death. 
 
2.3.2. ( | S  = )i if sY  Fully conditional 
 
Sometimes only subjects who survive to the end of the study are included in analysis, or 
decedents are analyzed separately from non-decedents [29].  An analogy in the missing data 
literature is pattern-mixture models [10, 30], which stratify by the time of dropout.   Pattern-
mixture models may be fitted using the same methods as unconditional models (random effects 
regression, etc.) but are made fully conditional by fitting separate regression models to strata 
defined by time of death.  Generally a categorical variable defined by survival time is used as a 
main effect (and interaction term) in regression models, so that longitudinal trajectories are fit for 
groups defined by time of death [13, 31].  An advantage of this approach is accurate 
representation of individuals’ scores over time.    
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 Computing linear slopes separately for decedents and survivors in the hypothetical CHS 
data (Table 4) demonstrates minimal decline in survivors (row b(1), 1 point per year) and 
terminal decline for decedents (row b(2), 9.5 points per year).  However, since the time of death 
is not known in advance, these models could not be used to predict an individual’s trajectory 
based on baseline information.  Figure 1b shows the average QOL response for weeks 0-4 for the 
6 C3 hypothetical patients who die just after week 4, 5, or 6.  The shape of the QOL trajectory 
for each treatment group, and the difference between groups, are similar to the unconditional 
model.  Unlike the unconditional model the fitted QOL values are within the range of values 
reported by the patients. 

In addition to decedent and non-decedent, other stratifications based on time of death 
have scientific merit.  For example, the “dying process” may be examined for decedents only, 
with years until death as the timescale [5, 32, 33].  This approach is especially appropriate for the 
C3 data, since hospice patients are expected to die within a relatively short timeframe.  Figure 1c 
changes the x-axis of the C3 longitudinal plot, directly measuring terminal decline [5].  The 
average QOL values in the weeks before death are shown separately for treatment and control 
groups.  This fully conditional model reflects the data-generating assumption that the treatment 
group experienced QOL improvement before the onset of terminal decline. 

 
2.3.3. ( | S  > )i if tY  Partly conditional 
 
For partly conditional models, the expected value of Yij (response of subject i at time tij) 
conditions on the subject’s being alive at time tij.  This conditioning may seem trivial:  after all, 
data are not collected posthumously.  However, as is well-documented for data missing due to 
dropout [24], analysis methods that model the correlation structure of longitudinal data (such as 
mixed models) will implicitly impute responses, whether missing due to dropout or death [14, 
15].  Partly conditional regression models assume independence among the longitudinal 
responses, and in that sense are equivalent to linear regression or generalized linear models.  
However, models are fit using generalized estimating equations (with independence working 
correlation) in order to estimate sandwich standard errors [23], especially when weights are 
included to accommodate dropout [9, 15].  

Partly conditional “regression conditioning on being alive” [15] (RCA) describes 3MSE 
scores at different ages among the surviving participants.  For the hypothetical CHS data, RCA 
estimates of average 3MSE at age 75 and linear 3MSE slope are calculated using linear 
regression (Table 4, row d).  Implicit imputation is avoided by treating observations from the 
same person as independent.  RCA accurately shows that the prevalent cognitive functioning 
level is slightly higher at age 75 (82 points is the average 3MSE for survivors A and B, estimated 
as 80.8 by imposing a single linear slope to all observed data), compared to age 70 (80.8 point 
average for A-D, estimated as 76.2 by linear regression).  The partly conditional slope predicts 
that average 3MSE increases 0.92 points per year, despite that no individuals have increasing 
3MSE scores.   Partly conditional regression reflects 3MSE in the dynamic cohort of survivors, 
not individual subjects’ change in cognitive functioning. 

A partly conditional model for QOL in hypothetical C3 patients is shown in Figure 1d.  
The same quadratic time trend is fitted as for the unconditional model, but to unbalanced data 
(different length of follow-up) without imputation past death.  The average QOL for the 
treatment group survivors is stable over time, reflecting the mixture of treatment group 
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participants with rising QOL and those with terminal decline.   The dynamic cohort of surviving 
control group participants shows a declining average QOL. 

 
2.3.4. ( , S )i if Y  Unconditional (joint model) 
 
A joint response encompassing both survival and the longitudinal response also may be of 
interest.  A patient facing a diagnosis may ask not only, “What is the chance that I’ll be alive in 5 
years?” but also, “What is the chance that I’ll be alive and healthy in 5 years?”  A joint model of 
the probability of being healthy and alive [12, 34, 35] characterizes the status of the entire cohort 
with respect to a longitudinal response and death.  A related approach rescales response 
measures to predict the probability of being healthy and alive in a prescribed amount of time, 
such as one year [29, 36].  Because the joint response (healthy and alive) is defined at all 
timepoints for all individuals, longitudinal data are balanced.  Therefore, analysis methods 
(random effects, GEE, etc) will not be affected by differential survival.  Joint models also may 
assess treatment effects simultaneously for longitudinal response and survival [37], or integrate 
morbidity and mortality in utility measures such as quality-adjusted life years.  

Defining 3MSE scores ≥ 80 points as healthy, the probability of being “healthy and 
alive” at age 75 in the hypothetical CHS data is 1/4 (Table 4, row e), which reflects a decline in 
the cohort, since 3/4 were healthy and alive at baseline (see Table 1).  Assuming a linear trend, 
the decline from 3/4 healthy to 1/4 healthy over 5 years reflects a rate of decline of 1/10 of the 
cohort losing health or life each year.  Note, however, that it is possible to have a transition from 
an “unhealthy” 3MSE to a “healthy” 3MSE score at a later time.     
 Figure 1e shows a joint model for the C3 hypothetical data, tracking the percentage in the 
control and treatment groups that are healthy and alive (where “healthy” is defined as QOL ≥ 4).  
Like most panels of Figure 1, Figure 1e shows better hypothetical QOL for the treatment group 
compared to the controls.  In addition to comparing the percent of the cohort that is healthy and 
alive at each timepoint, the treatment effect may be assessed using the area under the curve 
(AUC), or average weeks of healthy life [38].   The AUC is 1.25 (of 5) weeks of healthy life for 
the control group, and 3.13 weeks for the treatment group.   
 
2.3.5. Other factorizations and analysis approaches   
 
 A factorization of the joint distribution ( , S )i if Y  (Section 2.2) not yet discussed is 

(S | ) ( )i i if f⋅Y Y .  This framework is especially applicable to predicting survival (Si) using 
information from longitudinal biomarkers (Yi) [39-41].  Applying this model to hypothetical 
CHS data, we could conclude that 33% (1/3) of participants with declining 3MSE survive to age 
75, while 100% (1/1) with stable 3MSE survive to age 75.  This class of models would be 
categorized as “unconditional” in the framework discussed here, but is not considered in detail 
because survival, not longitudinal data, is the primary response of interest.   
 Another approach to modeling longitudinal data truncated by death is to estimate causal 
models for selected principal strata [16, 18].  In the C3 study, the effect of treatment on QOL 
would be decoupled from survival rates by estimating a causal effect of treatment versus control 
at week X in strata of patients expected to live until week X regardless of treatment assignment.  
The interpretation of these models is similar to interpretation of pattern-mixture models, in that 
information about future survival status (as well as counterfactual survival status) must be known 
in order to make use of predicted causal effects within each principal stratum.   As for pattern-
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mixture models, stratification based on information known at study entry would be preferable 
[16].  
 
3. Data example 
 
As described in Section 2.1.1, our primary goal in the CHS analysis is to describe the trajectory 
of cognitive functioning (3MSE) over time, and to estimate 3MSE scores at different ages.   We 
examined 3814 participants age 70 years or older at the beginning of the study.  In this cohort, 
1356 participants (36%) died during follow-up:   44% (744/1703) of men and 29% (612/2111) of 
women.  Gender effects were explored to add a between-person variable of interest to the 
longitudinal (within-person changes) model, and to explore the effects of differential survival on 
different regression approaches for longitudinal and survival data. 

Although models may be constructed to accommodate deaths and nonresponse separately 
[15], we impute data missing due to nonresponse for simplicity of presentation.  Data were not 
considered missing if follow-up was truncated by death, or censored by the end of the study 
period.  (A group to boost minority recruitment received 6 annual assessments instead of 10.)  
Most participants (n=2061, 54%) completed all scheduled 3MSE assessments.   About 17% of 
3MSE scores (5174 of 31093) were missing due to participant nonresponse.  Most nonresponse 
was intermittent, with one or two scores missing (n=948 participants).  Some participants had 
dropped out of the study, and were missing 7 or more scores (n=134).  Nonresponse was 
accommodated by imputation using the Markov Chain Monte Carlo method of PROC MI in the 
SAS/STAT software, version 9.1 (SAS Institute, Inc., Cary, NC).    Imputation was stratified by 
time of death (for decedents) and recruitment group (for non-decedents), and was modeled based 
on observed 3MSE values, baseline age, gender, and recruitment group.     

 
3.1.Statistical models for longitudinal response and survival 
 

CHS analysis results are shown in Figure 2.   Using models fit to all participants with 
baseline age ≥ 70 years (n=3814), each plot shows fitted 3MSE values for a baseline age of 70 
years. 

 
3.1.1 ( )if Y Unconditional 
 

The unconditional model of 3MSE scores by age in the CHS data is a random effects 
linear regression [19], separating the effects of age and aging [42] in a quadratic model with 
random intercept and first-order polynomial: 

^
2

ij 0i 1 i 2 i 3 1 ij 4 ij ij3MSE male age0 ( ) year yearib bβ β β β β ε0= + + ⋅ + ⋅ + + ⋅ + ⋅ +  
where age0 is the participant-specific baseline age (in years), year is the study year (and 
difference from baseline age), and random intercept, slope, and error (b0i, b1i, and εij) are 
normally distributed with mean 0.  Likelihood-based methods such as random effects regression 
will fit an unconditional model, since they treat any unbalance in the data as “missing at 
random.”  Interactions between sex and linear and quadratic terms were explored, but did not 
contribute to the models.  Figure 2a shows the fitted “average” trajectories for males and females 
(thick lines, b0i=b1i=εij=0), and several fitted trajectories for individuals (thin lines, selected b0i 
and b1i).  The random intercepts and slopes allow a wide range of individual fitted trajectories.  
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However, time trends and other covariate effects are generally interpreted based on the mean 
model (thick lines), which reflects both observed data and data implicitly imputed beyond death. 
According to this average trajectory, the expected 3MSE for both males and females is 86 points 
at age 75, and 77 points at age 79.   The unconditional model suggests rather strong age-
associated declines in cognitive functioning. 
 
3.1.2. ( | S  = )i if sY  Fully conditional 
 
 The first fully conditional model fitted to the CHS data is a pattern-mixture model, in 
which quadratic time trends are fitted (as for the unconditional model), stratified by year of death 
relative to baseline.  Figure 2b shows fitted mean 3MSE trajectories for a baseline age of 70 
years.  The pattern-mixture model demonstrates terminal decline in participants who die (fitted 
lines that end before age 79), and reasonably stable cognitive functioning in participants who 
survive.  The fitted 3MSE at age 75 ranged from 75 points in males who died by age 76, to 91 
points in males and females who enrolled at age 70 and survived at least to age 79.    The fitted 
mean trajectories are closer to trajectories observed for individuals than the unconditional model, 
but require conditioning on survival time, which is not known at baseline. 
 The second fully conditional model examines terminal decline.  Rather than counting 
forward in years of age, the time scale for this analysis counts backward from death.   The 2458 
participants who are alive at the end of follow-up (64%) are excluded, since their age at death is 
not known.   As in earlier models, a random effects model is fitted with quadratic time and 
random intercept and slope.  However, the time scale is changed: 
 

^
2

ij 0i 1 i 2 i 3 1 ij 4 ij ij3MSE male age0 ( ) yr_fr_death yr_fr_deathib bβ β β β β ε0= + + ⋅ + ⋅ + + ⋅ + ⋅ + , 
 
where yr_fr_death ranges from -1 (one year before the year of death) to -9 (9 years before), and 
other variables are as described in Section 3.1.1.   Figure 2c shows fitted average terminal 
decline trajectories for men and women with baseline age 70.  The estimated rate of decline is 
about 4.7 points per year, plus the effect of a negative quadratic coefficient (-0.3).  The fitted 
3MSE score 6 years before death is about 87 points, close to the average baseline value (88 
points) for the 70-year-olds at baseline.   For this cohort of decedents, averaging over 
yr_fr_death and sex, the expected 3MSE at age 75 is 85 points, and at age 79 is 82 points.   The 
rate of terminal decline reflects the combined influence of the most dramatic declines and the 
more stable 3MSE patterns observed in the multiple pattern-mixture fitted trajectories for 
decedents. 
 
3.1.3. ( | S  > )i if tY Partly conditional 
 
 The partly conditional model avoids implicit imputation of data for deceased subjects, 
and describes longitudinal 3MSE for the dynamic cohort of survivors [14, 15].  The regression 
equation is similar to that for the unconditional and pattern-mixture models, but does not include 
a random intercept or slope:   
 

^
2

ij 1 i 2 i 3 ij 4 ij ij3MSE male age0 year yearβ β β β β ε0= + ⋅ + ⋅ + ⋅ + ⋅ + . 
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Figure 2d shows the expected 3MSE score for participants who entered the study at age 70, 
given that they were alive at the time 3MSE was measured.  The difference in expected 3MSE at 
different ages is smaller than for the unconditional or fully conditional models.  The expected 
3MSE score of participants who entered CHS at age 70 is 91 points for surviving 75-year-olds, 
and 87 points for surviving 79-year-olds.  However, this does not imply an average decline of 1 
3MSE point per year, since the average for survivors is not the same as the trajectory from 
following individuals.  The partly conditional model tracks the prevalent average 3MSE score in 
the survivors at each timepoint. 
 
3.1.4. ( , S )i if Y Unconditional (joint model) 
 
 Figure 2e shows the proportion of CHS participants who are healthy (3MSE ≥ 80) and 
alive at ages 70-79.   The percent alive and healthy (PAH) shown is a proportion reflecting the 
status of study participants enrolled at age 70.     Modeling of PAH also is possible, as well as 
constructing confidence intervals around the PAH estimate [35].  The percent alive and healthy 
is not always decreasing:  individuals may regain “health”, such as when a low 3MSE score was 
due to short-term side effects of medication.  Like the partly conditional model, the joint model 
describes the cohort, rather than trends for individuals.   Unlike the partly conditional model, the 
entire cohort is described at each timepoint, not only survivors.  (The end of follow-up for the 
minority recruitment group could affect differences seen between ages 70-76 and 77-79. We 
avoid implicit imputation beyond 6 years by computing the empirical PAH as a simple 
proportion.)     

For participants aged 70 years at baseline, the probability of being alive and having 
3MSE ≥ 80 at age 75 is 0.82 for females and 0.75 for males.  At age 79, the PAH is 0.70 for 
females and 0.54 for males.  Summing the area under the curve, the average years of healthy life 
(of 9 possible) is 7.6 for females, and 6.7 for males.  The average gender difference appears to be 
greater for the joint model than for the other fitted models in Figure 2.   This reflects a survival 
advantage for females, which was not apparent in models that focused on the 3MSE. 

 
4. Discussion 
 
 Through analysis of hypothetical and actual data sets, we have shown that choice of 
analysis has a great influence on interpretation of longitudinal data truncated by death.  No single 
approach is appropriate in all situations, so the analysis should be chosen to address the aims of a 
research project.   Summaries of individual trajectories and descriptions of terminal decline were 
achieved with fully conditional models, in which analysis of longitudinal response is stratified by 
time of death.   The partly conditional model addressed situations where prevalence, rather than 
individual trajectories, was of interest.  For example, survival information could estimate the 
number of new Medicare recipients who will be alive in 10 years, and a partly conditional model 
could then estimate the need for dementia services in those survivors.  In our hypothetical 
palliative care example, treatment effects were reflected by a joint model for longitudinal 
response and survival.  The area under the joint density curve summarized treatment differences 
in both survival and quality of life response.   In our examples, observational data (CHS) were 
best described using models based on individual trajectories and the dynamic cohort of survivors, 
while the clinical trial (C3) aims were addressed by joint models.   However, due to differences 
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in study aims and the vagaries of data collection, this heuristic will not apply in all situations.   
 Once the statistical model is clarified by research aims, choice of analysis method should 
be apparent (Table 3).   An unconditional model is fit by random effects and other multilevel 
approaches, when the time scale does not depend on survival times.  A fully conditional model 
may be fit by random effects or other analysis methods, with time scale or stratification 
depending on survival time [5, 13].   Partly conditional models are fit directly by GEE with 
independence working correlation [15].  Joint models may be fit as a multivariate joint 
distribution [37], or as a composite response incorporating both survival and longitudinal 
response [29]. 
  We have focused on research in which estimation of a parameter, such as a treatment 
effect, slope, or patient trajectory is of primary interest.   Other classes of statistical analysis are 
available to address different research questions.   Additionally, models fit using one 
factorization of the joint distribution of survival and longitudinal response may be transformed to 
address aspects of another model.   For example, a fully conditional model may be marginalized 
[43] to estimate a partly conditional entity, such as the expected 3MSE among CHS survivors at 
age 85 [10];  a joint model may estimate fully conditional trajectories [31]. 
 In longitudinal studies in which some subjects die yet another response, such as quality of 
life, is of primary interest, careful modeling is required to identify an analysis method to address 
research aims.  When deaths occur at many different times along the time frame for which 
responses are measured (i.e., age or time from baseline), random effects models (which are 
unconditional with respect to survival) may implicitly impute data beyond death.   Implicit 
imputation is a fundamental strength of random effects models in the missing data context, but 
limits the suitability of these unconditional models in analyzing longitudinal data with great 
imbalance due to death.  When the time scale describes time from (not until) death, the model 
becomes fully conditional. For terminal decline models, implicit imputation beyond death will 
not occur when random effects models are fit.   Analysts concerned about the potential impact of 
implicit imputation may fit a generalized linear model or generalized estimating equations with 
independence correlation (which fit partly conditional models) and compare fitted parameters to 
an unconditional model.   
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Table 1:  Longitudinal 3MSE scores for 4 hypothetical CHS participants (X = deceased) 
                                      age 70 71 72 73 74 75
A (“normal”)  90 90 90 90 90 90
B (“mild cognitive impairment”)   84 82 80 78 76 74
C (“terminal decline”)  84 80 76 X X X 
D (“terminal decline”)  65 50 35 X X X 
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Table 2:  Longitudinal QOL scores for 8 hypothetical C3 participants (X = deceased) 
 week 
 0 1 2 3 4 5 6 7 8 9 10
A1 3 3 3 3 2 1 0 X X X X 
B1 3 3.5 4 4.5 3.5 2.5 1.5 X X X X 
A2 4 4 3 2 1 X X X X X X 
B2 4 4.5 3.5 2.5 1.5 X X X X X X 
A3 1 0 X X X X X X X X X 
B3 1 1.5 2 2.5 3 3.5 4 3 2 1 X 
A4 5 5 5 4 3 2 X X X X X 
B4 5 5.5 6 5 4 3 X X X X X 
 
A = control group (friendly visits, which might include help with chores) 
B = treatment group (guided meditation and twice-weekly massage) 
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Table 3:  Summary of statistical models for longitudinal response and survival (time of death) 
Row  Statistical Model Sample Research Setting Primary Analysis 

Method 
Comments 

a. Unconditional 
( )if Y  

Describe Yi (longitudinal 
response) in setting where 
survival (Si) is unrelated to 
Yi, or when death does not 
result in missing data 
 

Rate of local recurrence 
following ablation of 
liver tumors* 

Mixed effects/random 
effects/latent variable 
regression 

May implicitly impute 
data beyond death 

b.   Fully 
conditional: 
pattern-
mixture  

( | S  = )i if sY  

Describe Yi  separately for 
groups defined by survival 
time 

Longitudinal change in 
physical functioning 
following stroke, 
separately for 6+-month 
and 5+-year survivors 
 

Mixed effects/random 
effects regression 
stratified by survival 
time 

Describes individual 
trajectories, but uses 
future survival 
information to predict 
earlier responses 

c.   Fully 
conditional: 
terminal 
decline 

( | S  = )i if sY  

Describe Yi counting 
backward from time of 
death 

Terminal decline studies Mixed effects/random 
effects regression 

Time scale is 
retrospective 

d. Partly 
conditional 

( | S  > )i if tY  

Describe Yi in the dynamic 
cohort of survivors at each 
timepoint 

Average physical 
functioning in survivors 
at 6 months and 5 years 
after stroke  

Generalized estimating 
equations (GEE) with 
independence working 
correlation 
 

Describes longitudinal 
trend of dynamic 
cohort, not individuals 

e. Joint model 
( , S )i if Y  

Describe both Yi and Si – 
for example, “probability of 
being healthy and alive” 

Percent of stroke patients 
who are alive and can 
perform self-care 6 
months after stroke 

Logistic regression, 
GEE (binary outcome), 
or specialized methods 
for multiple responses 

Continuous longitudinal 
outcomes may need to 
be categorized for 
analysis 

 
* Some livers may “die” due to transplant, but the transplant rate will never be 100% due to availability.  Therefore, “Would 
recurrence have occurred if transplant had not?” is a valid question. 
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Table 4:  Hypothetical CHS data (Table 1) estimated age 75 3MSE score and 3MSE slope, using models that accommodate deaths in 
different ways   
Row  Statistical Model Sample Research Question(s) 3MSE at age 75 linear 3MSE slope 

(annual change in 3MSE) 
a. Unconditional 

( )if Y  
What is the expected 3MSE at 
age 75, in an immortal cohort? 

90 74 64 ( 15) 53.25
4

+ + + −
=  

points 

0 ( 2) ( 4) ( 15) 5.25
4

+ − + − + −
= −  

points/year 
 

b(1). Fully conditional: 
survivors 

( | S  >75)i if Y  
 

What is the expected 3MSE at 
age 75/70 for people who live 
to be at least 75? 

90 74 82
2
+

= points 0 ( 2) 1.0
2

+ −
= −  points/year 

b(2). Fully conditional: 
decedents 

( | S  75)i if ≤Y  
 

What is the expected 3MSE at 
age 70 for people who die at 
age 71-75? 

(both deceased at age 75) 4 ( 15) 9.5
2

− + −
= − points/year 

c.  Fully conditional:  
terminal decline 

( | S  = )i if sY  

What is the expected 3MSE 
two years before death? 

(not estimated directly) -9.5 points/year (same as 
previous row – changing time 
scale does not make a 
difference with only one 
stratum of decedents) 
 

d. Partly conditional 
( | S  > )i if tY  

What is the expected 3MSE at 
age 75/70 for people who live 
to be at least 75/70?   

76.2 + 0.92*5 = 80.8 points 0.92 points/year 

e. Joint model 
( , S )i if Y  

What is the probability of 
being healthy and alive at age 
75 for people who were alive 
at age 70? 

1/4 alive and 3MSE ≥ 80  
at age 75 

on average 1/10 lose health/life 
each year (since 3/4 healthy at 
age 70, and 1/4 healthy at age 
75) 
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Figure 1:  Hypothetical C3 data (Table 2) fitted quality of life (QOL) trajectories, using different 

models to summarize longitudinal response (QOL) and survival (S) 
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Figure 2:  Fitted Modified Mini-Mental State Examination (3MSE) trajectories for CHS 

participants aged 70 years at baseline, using different models to summarize longitudinal response 
(3MSE) and survival 
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