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Submitted to the Annals of Applied Statistics

A BAYESIAN APPROACH TO EFFECT ESTIMATION

ACCOUNTING FOR ADJUSTMENT UNCERTAINTY

By Chi Wang, Giovanni Parmigiani∗, Ciprian Crainiceanu

and Francesca Dominici†

Johns Hopkins University

Adjustment for confounding factors is a common goal in the anal-
ysis of both observational and controlled studies. The choice of which
confounding factors should be included in the model used to estimate
an effect of interest is both critical and uncertain. For this reason it is
important to develop methods that estimate an effect, while account-
ing not only for confounders, but also for the uncertainty about which
confounders should be included. In a recent article, Crainiceanu et al.
(2008) have identified limitations and potential biases of Bayesian
Model Averaging (BMA) (Raftery et al., 1997; Hoeting et al., 1999)
when applied to adjustment uncertainty, that arise because BMA
weights models by their ability to make predictions and this may not
reflect the models’ ability to correctly adjust for confounding.

An important remaining question is whether it is possible to de-
sign approaches that account for adjustment uncertainty by treat-
ing the selection of variables as an unknown parameter, as BMA
does, but do not suffer from the same limitations. In this paper, we
propose a novel Bayesian formulation, called “Bayesian Confound-
ing Adjustment” (BCA) to account for adjustment uncertainty in
effect estimation from a Bayesian perspective. BCA uses a differ-
ent weighting mechanism than BMA, wherein effect estimation is
obtained by weighting effect estimates from models, all of which at-
tempt to be fully adjusted for confounding. In simulation studies we
show that BCA provides estimates of the exposure effect that have
lower mean squared error than BMA and correct coverage. We then
compare BCA, the approach of Crainiceanu et al. (2008), and tra-
ditional BMA in a time series data set of hospital admissions, air
pollution levels and weather variables in Nassau, NY for the period
1999-2005. Using each approach, we estimated the short-term effects
of PM2.5 on emergency admissions for cardiovascular diseases, ac-
counting for confounding. This application illustrates the potentially
significant pitfalls of misusing variable selection methods in the con-
text of adjustment uncertainty.

∗Supported in part by NCI grant 2P30CA006973-44S4
†Supported in part by the National Institute for Environmental Health Sciences

(ES012054-03)
Keywords and phrases: Adjustment uncertainty, Bayesian model averaging, Treatment

effect, Exposure effect
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2 C. WANG ET AL.

1. Introduction. Estimating the effect of a predictor on a response,
while properly adjusting for confounding factors, is a common goal in biomed-
ical research. A prominent and controversial example arises in observational
studies of the health effects of environmental contaminants, where the choice
of potential confounders is challenging, and major policy decisions can de-
pend on it. The most common practice is currently to select a model for the
estimation of the effect, and report effect estimates and confidence intervals
that are conditional on that model being correct. This does not account
for “adjustment uncertainty”, that is uncertainty about which covariates
should be included in the model to properly adjust for confounding. It is
sometimes possible to effectively convey this uncertainty by sensitivity anal-
yses, showing the variation of the effect estimate and its interval over a
range of plausible choices of confounders (Dominici et al., 2004; Peng et al.,
2006). For example, when effect estimates are stable over a range of plausi-
ble choice, a sensitivity analysis can be sufficient. However, when the effect
of inclusions or exclusion of potential confounder is stronger it is important
to develop combined estimates that compromise between these choices and
properly report the associated uncertainty.

Bayesian Model Averaging (BMA) has been suggested as a formal tool to
achieve these goals and account for adjustment uncertainty in effect estima-
tion. Bayesian predictions that account for uncertainty in the selection of
predictors (or confounders) (Raftery et al., 1997; Hoeting et al., 1999), are
based on treating the vector of indicators of whether each predictor is in-
cluded as an additional parameter in the analysis. For prediction purposes,
this parameter is a nuisance parameter that can be integrated out. This
results in a weighted average of predictions whose weights depend on the
support that a particular selection receives from the data. This principled
approach inherits a number of desirable properties from a frequentist point
of view as well, and has performed competitively in out-of-sample predic-
tion comparisons from the artificial intelligence literature (Chipman et al.,
2002; Yeung et al., 2005). The conceptual simplicity and solid logic behind
treating the unknown confounder subset as a parameter is attractive in ad-
justment uncertainty as well: for example, Raftery (1995) suggests to esti-
mate the exposure effect by a weighted average of model-specific coefficients,
again using the model’s posterior probabilities as weights. Examples include
applications to air pollution research (Clyde, 2000; Koop and Tole, 2004).

More recently, Crainiceanu et al. (2008) have made the case that it can
be dangerous to use approaches originally designed for prediction and me-
chanically translate their use to effect estimation with adjustment uncer-
tainty. In adjustment uncertainty, the goal of the modeling is to minimize
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BAYESIAN EFFECT ESTIMATION ACCOUNT. FOR ADJUST. UNCERTAINTY 3

the MSE of the exposure effect estimate (Dominici et al., 2004; Peng et al.,
2006; Crainiceanu et al., 2008). Crainiceanu et al. (2008) introduced a new
approach to estimate an exposure effect accounting for adjustment uncer-
tainty to ultimately obtain an estimate of the effect with desirable inferential
properties. This approach (denoted by the authors’ initials CDP) can be de-
scribed in two steps. In the first step, CDP regresses exposure on a large
set of potential confounders and selects confounders that are strongly associ-
ated with exposure. In the second step, CDP regresses outcome on exposure,
after including as covariates the confounders identified at the first step. In
addition, Crainiceanu et al. (2008) examined the strength and limitation of
BMA for estimation and pointed out that BMA is designed for minimizing
prediction error but that it might not be appropriate for effect estimation.
This happens because the posterior model probabilities used to weight the
model-specific estimates of the exposure effect might not reflect the ability
of the model to provide an estimate of the exposure effect properly adjusted
for confounding. For example, it can occur that large weights are assigned
to models that do not adequately adjust for confounders, leading to a biased
estimate of the exposure effect. In simulations that are realistic for air pollu-
tion research, BMA can be severely biased while the CDP method produces
an estimate of the exposure effect that is unbiased and has smaller MSE
than BMA.

Here our goal is to develop a Bayesian approach to handle adjustment
uncertainty by considering the selection of confounders as a random vari-
able, as in model averaging, while overcoming the pitfalls of BMA identi-
fied by Crainiceanu et al. (2008). To this end we introduce a novel BMA
approach tailored to estimation of exposure effects accounting for adjust-
ment uncertainty. Our approach estimates the exposure effect by a weighting
strategy constructed to assigns high weight to models that are likely to in-
clude all the necessary confounders. Specifically, first, we build an exposure
model having X as the dependent variable and a large set of potential con-
founders as independent variables. We introduce model selection parameters
αX = (αX

1 , ..., αX
M )T ∈ {0, 1}M such that αX

m = 1 when the mth potential
confounder is included. Second, we build an outcome model having Y as the
dependent variable, X as independent variable, and also introduce model
selection parameters αY . A key assumption in our approach is that, condi-
tional on the selection indicators αX , any predictors of X for which αX

m = 1
is automatically included in the outcome model. Using this approach we
develop a new set of model-specific probabilities P (αX , αY |Data) that are
likely to assign high weights to outcome models that are properly adjusting
for confounding.
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4 C. WANG ET AL.

The paper is organized as follows. In section 2, we introduce the statis-
tical framework and illustrate the different implications of uncertainty in
variable selection for effect estimation and prediction. In section 3, we intro-
duce our newly proposed Bayesian methodology to account for adjustment
uncertainty in effect estimation. In section 4, we present simulation studies
to rigorously compare our approach with the CDP and BMA approaches.
In section 5 we apply our methods to time series data in Nassau, NY to
investigate the effect of PM2.5 on the hospitalization rate of cardiovascular
disease. In section 6, we discuss the strength and weakness of the methods
and future work.

2. Concepts and Notation. Consider building a model for estimating
the effect of exposure X on outcome Y. We assume that a set of L covariates
Z = {Z1, . . . , ZL} are always included in the model. We also consider M
potential confounders U = {U1, . . . , UM} selected a priori so that they are
likely to affect the response Y , although the effect could potentially be weak.
These are either included or excluded from the model, depending on a vector
of indicators α = (α1, . . . , αM )T ∈ {0, 1}M . Here αm = 1 whenever Um is
included in the model. Covariates that are highly associated with X but not
with Y are not potential confounder and ideally should not be included in
the candidate set U . Consider the following linear regression model:

(2.1) E{yi} = βαxi +
L∑

l=1

γα
l zil +

M∑

m=1

αmδαm uim,

where xi and yi are the exposure and outcome levels at observation i. The
unknown parameters are the binary vector of unknown model selection pa-
rameters α, the effect of interest βα, the additional coefficients γα

l and δαm .
The intercept term can be included among the covariates in Z. In Equa-
tion (2.1), and throughout, we use a notation that explicitly keeps track of
the fact that regression coefficients differ in meaning as we change α. This
is especially important when one attempts to make inferences that involve
estimates of the exposure effect obtained using different models.

When studying confounding adjustment it is useful to consider the small-
est model that includes all the necessary confounders. We denote this by
α∗, and refer to it as the minimal model. The true effect of X on Y is the
coefficient of X in this model. We denote it by β∗ = βα∗

. A key observa-
tion here is that all models that contain at least as many predictors as the
minimal model will provide estimates of the exposure effect that are also
interpretable as estimate of β∗, while models that do not, as for example

https://biostats.bepress.com/jhubiostat/paper157



BAYESIAN EFFECT ESTIMATION ACCOUNT. FOR ADJUST. UNCERTAINTY 5

Fig 1. An illustrative example. Solid lines indicate strong correlations while dashed lines
indicate weak correlations.

models that do not include a key confounder, simply estimate a parameter
having a different interpretation. Formally, we say α ⊆ α′ if the model α

is nested within model α′. Then all models nesting α∗ estimate the same
true effect, so βα = β∗ whenever α∗ ⊆ α. In this setting, our goal is the
estimation of β∗ when α∗ is unknown.
Example 1: Before we describe the methodology, it is useful to frame the
issues using a simple example. Consider the situation depicted in Figure 1,
where U = {U1, U2, U3, U4, U5} and Z = ∅. The U ’s are related as repre-
sented in Figure 1: U1 is highly correlated with both exposure and outcome
(solid arrows); U2 is highly correlated with the exposure, but weakly corre-
lated with the outcome; U3 is highly correlated with outcome and weakly
correlated with exposure; U4 is highly correlated with outcome and uncor-
related with exposure; and lastly U5 is uncorrelated with both exposure and
outcome. In this scenario, U1,U2, and U3 are potential confounders of the as-
sociation between X and Y and must be included into the regression model
as covariates. The minimal model that can provide a correctly adjusted ef-
fect of X on Y is α∗

1 = α∗
2 = α∗

3 = 1, α∗
4 = α∗

5 = 0. The true model is
α1 = α2 = α3 = α4 = 1, α5 = 0: this includes the minimal model and also
allows to estimate the correct exposure, potentially with greater accuracy
than the minimal model. However neither the definition of β∗ nor the success
of our methodology depend on whether the true model is included in the set
of models considered. The full model (α1 = α2 = α3 = α4 = α5 = 1) also
contains α∗ and a correctly defined coefficient. On the other hand, models
that do not nest α∗ will estimate parameters that are not properly adjusted
by confounding. For example, the model α′(α′

1 = α′
3 = α′

4 = 1, α′
2 = α′

5 = 0)
will not provide a proper estimate for the exposure effect. However, it may
still be a useful model in terms of model fitting and prediction.

To further illustrate this point, we construct a simulated data set where

Hosted by The Berkeley Electronic Press



6 C. WANG ET AL.

the covariates satisfy the relationships in Figure 1, that is:

Xi = δX
1 U1i + δX

2 U2i + δX
3 U3i + ǫX

i

Yi = βXi + δY
1 U1i + δY

2 U2i + δY
3 U3i + δY

4 U4i + ǫY
i ,

(2.2)

where i = 1, ..., 1000 and ǫX
i , ǫY

i independently follow N(0, σ2
X) and N(0, σ2

Y )
respectively. The variables Ujis are independently distributed as N(0, σ2

U ). In
our simulation, we set δX

1 = δX
2 = 1, δX

3 = 0.1, δY
1 = δY

3 = δY
4 = 1, δY

2 = 0.1,
β = 0.1, σX = σY = σU = 1. The correlation matrix is:




X U1 U2 U3 U4 U5 Y
X 1.00 0.57 0.58 0.04 0.01 −0.01 0.41
U1 0.57 1.00 0.00 −0.06 0.03 −0.03 0.51
U2 0.58 0.00 1.00 −0.02 0.01 0.04 0.09
U3 0.04 −0.06 −0.02 1.00 0.02 −0.03 0.48
U4 0.01 0.03 0.01 0.02 1.00 −0.01 0.50
U5 −0.01 −0.03 0.04 −0.03 −0.01 1.00 −0.02
Y 0.41 0.51 0.09 0.48 0.50 −0.02 1.00




,

which reflects the correlation structure in Figure 1. Using this data set, we
estimate β using maximum likelihood estimation under two models: one is
the true model for Y in (2.2), and the other is:

(2.3) Yi = βXi + δY
1 U1i + δY

3 U3i + δY
4 U4i + ǫY

i ,

which, unlike (2.2) does not include the confounder U2. The results are shown
in Table 1 and in Table 2. The values of AIC (Akaike, 1973) for the true
model described in Equation (2.2) and for the model described in Equation
(2.3) are very similar indicating that these two models fit the data equally
well. We also report the Bayesian Information Criterion (BIC) (Schwarz,
1978) for comparison. The likelihood ratio test for the difference between the
model in Equation (2.2) and the model in Equation (2.3) is not significant
(p-value=0.087). However, the two models provide widely different estimate
of the exposure coefficient. The two models are estimating exposure effects
with different interpretation and only the larger model in (2.2) provides a
properly adjusted effect.

This simple example illustrates that effective model selection approaches
for adjustment uncertainty in effect estimation are not necessarily the same
as model selection approaches whose goal is prediction of the response. In
the former, models are valuable to the extent that they estimate correctly a
single parameter of interest. In the latter, models are valuable to the extent
they predict the reponse well —which can often be achieved even by models
that provide systematically biased estimate of the exposure effect β.

https://biostats.bepress.com/jhubiostat/paper157



BAYESIAN EFFECT ESTIMATION ACCOUNT. FOR ADJUST. UNCERTAINTY 7

model (2.2) model (2.3)

β̂ 0.121 (0.059, 0.183) 0.160 (0.116, 0.203)

SE(β̂) 0.032 0.022

AIC 2847.874 2848.803

BIC 2882.228 2878.249

Table 1

Comparison of model fitting and the estimation of β from model (2.2) and model (2.3).
The true value is 0.1.

3. Methods.

3.1. Bayesian Model Averaging (BMA). In the context of effect estima-
tion, Raftery (1995); Hoeting et al. (1999) suggests to calculate the posterior
distribution of β by taking average over all models weighted by their poste-
rior probabilities:

(3.1) P (β|D) =
∑

α
P (β,α|D) =

∑

α
P (β|α, D)P (α|D),

where D denotes the observed data. We will refer to this approach as BMA.
In practice, this approach can be interpreted and implemented in two

ways: one is to force exposure in the model (denoted by FBMA) and only
take summation over models that always include the exposure covariate.
The other is not to force exposure in the model (denoted by NBMA). For
a model that does not include exposure, the distribution of β is simply a
point mass at zero.

The approach described in Equation (3.1) is intuitive because of its anal-
ogy to the BMA approach for adjusting for model uncertainty in prediction.
However, adjustment uncertainty and model uncertainty are different and
we need to investigate this approach more carefully. Assume the minimal
model is α∗, then Equation (3.1) can be decomposed into two parts:

P (β|D) =
∑

α⊇α∗

P (β|α, D)P (α|D) +
∑

α+α∗

P (β|α, D)P (α|D).
(3.2)

The second term of Equation (3.2) averages P (β|α, D) across models α

that do not include α∗. This leads to assigning potentially large weights to
models estimating β’s that are different from β∗. The ratio of the weights
given to models α1 and α2 is

P (α1|D)

P (α2|D)
=

P (D|α1)

P (D|α2)

P (α1)

P (α2)
.

Hosted by The Berkeley Electronic Press



8 C. WANG ET AL.

model β̂ SE(β̂) AIC BIC FBMA weight BCA weight

(1,1,1,1,0) (model (2.2)) 0.121 0.032 2847.874 2882.228 0.0602 0.9852

(1,0,1,1,0) (model (2.3)) 0.160 0.022 2848.803 2878.249 0.9269 0.0000

(1,1,1,1,1) 0.122 0.032 2849.572 2888.834 0.0013 0.0148

(1,0,1,1,1) 0.160 0.022 2850.416 2884.771 0.0117 0.0000

(1,1,1,0,0) 0.096 0.044 3515.806 3545.253 0.0000 0.0000

Table 2

Comparison of model posterior from FBMA and BCA, estimate from FBMA is 0.158
with standard error 0.025, that from BCA is 0.122 with standard error 0.031.

When the prior is the same for all models,

(3.3)
P (α1|D)

P (α2|D)
=

P (D|α1)

P (D|α2)
,

where P (D|α1)
P (D|α2) is the Bayes Factor (Kass and Raftery, 1995). This empha-

sizes the well known fact that that posterior model probabilities in BMA are
determined by a model’s ability to make prediction, which may be different
from is ability to properly adjust for confounding in effect estimation. The
sixth column in Table 2 lists the model weights used by BMA in Example
1, highlighting that most of the weight (92.7%) is assigned to model (2.3),
which provides an estimation of β equal to 0.160 and a 95% C.I. (0.116,
0.203). In contrast, only 6% of the weight is assigned to the true model (2.2)
which estimates the correct β∗. Thus, the BMA estimate for β becomes seri-
ously biased with an associated 95% C.I. (0.109, 0.207) that does not cover
the true value of 0.1.

3.2. Bayesian Confounding Adjustment (BCA). In developing a model
for effect estimation, when a true confounder is added or removed from
the regression model, the interpretation of the exposure coefficient changes;
however, when a model includes all true confounders, and one adds an addi-
tional covariate that is not associated with X or that is not associated with
X nor Y , the interpretation of the exposure coefficient does not change. This
is in contrast to the prediction framework, in which the outcome typically
maintains the same interpretation across models. This important difference
suggests that a novel BMA-like approach, that acknowledges the fact that
only a fraction of the models harbor the coefficient of interest, could be suc-
cessful in addressing adjustment uncertainty from a Bayesian standpoint.

We propose to pursue this idea via a weighting mechanism called Bayesian
Confounding Adjustment (BCA) that considers jointly the exposure and

https://biostats.bepress.com/jhubiostat/paper157



BAYESIAN EFFECT ESTIMATION ACCOUNT. FOR ADJUST. UNCERTAINTY 9

outcome models. The exposure model is:

(3.4) E{xt} =
L∑

l=1

γαX

l ztl +
M∑

m=1

αX
mδα

X

m utm ,

where the unknown αX indicates which potential confounders are included
and therefore predictive of the exposure. Those are the requisite confounders
for appropriate adjustment in the outcome model described in Equation
(2.1). We therefore propose to define the outcome model as

(3.5) E{yt} = βαY

xt +
L∑

l=1

γαY

l ztl +
M∑

m=1

αY
mδα

Y

m utm.

where αY indicates which potential confounders are included and is depen-
dent on αX in that P (αY

m = 1|αX
m = 1) = 1, m = 1, . . . , M . In this way,

requisite confounders will be automatically included in the outcome model,
while additional ones may be included to improve fit. For brevity, we will
often refer to α’s as ”models”.

The posterior distribution of β∗ (exposure coefficient under the minimal
model) may be written as:
(3.6)
P (β∗|D) =

∑

αX ,αY

P (β∗, αX , αY |D) =
∑

αX ,αY

P (β∗|αX , αY , D)P (αX , αY |D).

For αY nesting the minimal model, βαY

= β∗ so that P (β∗|αX , αY , D) =

P (βαY

|αX , αY , D). BCA is designed to assign large weights to models that
are nesting the minimal model, so that, approximately:

(3.7) P (β∗|D)
.
=

∑

αX ,αY

P (βαY

|αX , αY , D)P (αX , αY |D),

which may be estimated from observed data.
This idea can be illustrated using the simulation based on Figure 1 as an

example. The seventh column of Table 2 listed the model posterior weights
based on BCA: 98.5% of the weight is assigned to the true model, compared
to only 6% assigned to the same model by FBMA. No weight is assigned to
models not nesting the minimal model, compared to 92.9% in total assigned
by FBMA. This result illustrates that BCA can assigns large weights models
including the minimal model while at the same time BMA can fail to do so.
The large difference between BCA and FBMA is due to the fact that BCA
incorporates additional information from the exposure models, and thus is
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10 C. WANG ET AL.

more likely to include covariates that are correlated with both exposure and
outcome, which are usually important in effect estimation but may not be
as important in model prediction.

Algorithmically, Monte Carlo methods are used for computing. Equations
(3.4) and (3.5) jointly define the likelihood function, and via Bayes rule, the
posterior distribution P (β∗, αY , αX |D). According to (3.6), the sampled
βs approximate a draw from P (β∗|D) and thus may be used to estimate
P (β∗|D). The parameters (β∗, αX , αY ) can be sampled using, for example,
the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990).

According to (3.7), β∗ may be replaced by βαY

when sampling from its
conditional distribution given (αX , αY ).

In our implementation, we assume the following priors:

(γαX

, δαX

) ∼ N(µ0αX , (τX)−1Σ0αX ), (βαY

, γαY

, δαY

) ∼ N(µ0αY , (τY )−1Σ0αY ),

τX , τY ∼ Gamma

(
ν

2
,
νλ

2

)
,

where ν, λ, the (L+M)-vector µ0αX , the (L+M +1)-vector µ0αY , the (L+
M)×(L+M)-matrix Σ0αX and the (L+M +1)×(L+M +1)-matrix Σ0αY

are chosen hyperparameters. In practice, we chose those hyperparameters
following Raftery et al. (1997).

We assume that (βαY

, Y ) are independent of αX given αY , and that

X is independent of αY given αX . We also assume (βαY

, X) and αY are

independent given Y ∗ = Y −βαY

X, and αX and Y ∗ are independent given
αY . For a sample with n observations, if X, Y and Y ∗ denote the vectors of
observed data for X ,Y and Y ∗, then the three full conditional distributions
of interest are:

P (αX |X, Y , αY , β∗)
.
=

P (αX)P (αY |αX)P (X|αX)

P (X, αY )
∝ P (αX)P (αY |αX)P (X|αX)

P (αY |αX , β∗, Y , X)
.
= P (αX)P (αY |αX)P (Y ∗|αY ) ∝ P (Y ∗|αY )P (αY |αX)

β∗|αX , αY , X, Y ∼̇tn+ν(βnαY , σ2
nαY ).

The definition of βnαY , σ2
nαY and the derivation of these conditional dis-

tributions are shown in Appendix. Using results in Raftery et al. (1997), we

https://biostats.bepress.com/jhubiostat/paper157



BAYESIAN EFFECT ESTIMATION ACCOUNT. FOR ADJUST. UNCERTAINTY11

obtain

P (X|αX) =
Γ(ν+n

2 )(νλ)ν/2

πn/2Γ(ν
2 )|In + WαXΣ0αX W ′

αX |1/2

× [λν + (X − WαX µ0αX )′(In + WαXΣ0αX W ′
αX )−1(X − WαX µ0αX )]−(ν+n)/2

P (Y ∗|αY ) =
Γ(ν+n

2 )(νλ)ν/2

πn/2Γ(ν
2 )|In + WαY Σ0αY W ′

αY |1/2

× [λν + (Y ∗ − WαY µ0αY )′(In + WαY Σ0αY W ′
αY )−1(Y ∗ − WαY µ0αY )]−(ν+n)/2.

(3.8)

where In is the n×n identity matrix, WαX , WαY are the design matrices
of the exposure and outcome regressions respectively.

In this way, samples from the first two conditional distributions can be
generated using the MC3 method proposed by Madigan and York (1995).
For the third conditional distribution, we can directly sample from a t-
distribution. Software for BCA is available upon request.

3.3. The CDP method. Crainiceanu et al. (2008) developed a two-stage
frequentist method, here called CDP, to account for adjustment uncertainty
in exposure effect estimation in regression modeling with large number of po-
tential confounders. Their method has two steps. In the first step, the CDP
method regresses X on potential confounders U and identifies predictors of
the exposure. More precisely, the exposure model space is divided into M +1
subsets, or orbits, where the mth orbit is the set of all regression models αX

with the the same number, m, of potential confounders. Within each orbit,
the maximum likelihood model is selected and denoted by αX

m. The region
where the deviance difference function, D(αX

m) − D(αX
m+1), becomes small

identifies a range for the required dimensionality of the exposure model.
This identifies a set of confounders highly correlated with X. In the second
step, CDP identifies strong predictors of outcome among the remaining con-
founders, which are weak predictors of exposure. The same orbit searching
procedure is applied to regression models for outcome with the constrain that
covariates selected from the first step are always included. Software is avail-
able at www.biostat.jhsph.edu/∼ccrainic/webpage/software/STEADy.zip.

The BCA method proposed in section 3.2 parallels the CDP method, but
has some important differences. For example, by averaging models according
to their ability to estimate the exposure effect, BCA summarizes information
in a Bayesian way and arguably considers uncertainty more fully. In contrast,
CDP considers the problem from a frequentist prespective and models are
evaluated based on the change in deviance between adjacent orbits. How-
ever, both methods have the same ultimate goal, which is effect estimation
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accounting for adjustment uncertainty. In this paper we show that, when
implemented correctly, both philosophies can produce the similar results.

4. Simulations. In this section, we conduct simulations studies to illus-
trate and compare the practical properties of the Bayesian Confounding Ad-
justment (BCA) procedure versus the method developed by Crainiceanu et al.
(2008) (CDP), and versus Bayesian Model Averaging (BMA). For BMA, we
consider two different implementations: the first is forcing the exposure to
always be in the model (FBMA), while the second one (NBMA) is not.

Our first scenario is similar to the one in Crainiceanu et al. (2008) and
considers the following true model:

(4.1) Yi = βXi + δ1U1i + δ2U2i + ǫi,

where i = 1, ..., 1000. (Xi, U1i, U2i) are independent normal vectors with
mean zero and a covariance matrix, Σ = (σkl)3×3, where σkk = 1, k = 1, 2, 3,
σ12 = σ21 = ρ, and σ13 = σ23 = σ31 = σ32 = 0. The set of potential
confounders U includes U1, U2 as well as 49 additional independent N(0, 1)
random variables. In our simulation, ρ is set to 0.7 and β = δ1 = δ2 = 0.1. We
generated 25 data sets from model (4.1). For each data set, we calculated
the Maximum Likelihood Estimate (MLE) of β from the true model and
compared it with the estimates from the four estimation methods: BCA,
CDP, FBMA and NBMA. The point estimates of β from these methods
are shown in Figure 2 for all 25 simulated data sets. BCA (dashed line
with triangles) and CDP (dotted line with plus signs) produce very similar
estimates, both close to the estimates obtained from the true model, shown
as a solid line with filled dots. As expected, the true model’s estimates
oscillate around 0.1, the true value of β. In contrast, most of the point
estimates based on FBMA (dot-dashed line with asterisk sign) are larger
than 0.1, indicating that FBMA systematically overestimates the exposure
effect in this example. The point estimates based on NBMA (long dashed
line with diamonds) are much more variable than those base on BCA: the
standard error of those point estimates based on NBMA is 0.082, compared
to 0.045 for estimates based on BCA.

The difference between BCA and CDP on one side, and BMA approaches
on the other, is even more pronounced when comparing confidence intervals
(CI), shown in Figure 3. The 50% CIs based on BCA and CDP cover the true
value of the parameter, 0.1, in roughly 50% of the simulations (11 of 25),
whereas the C.I.s based on FBMA cover 0.1 only in 7 out of the 25 simula-
tions. A close inspection of the lengths of CIs indicates that the variability of
FBMA point estimates is not typically larger than that for BCA and CDP.
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Fig 2. Estimation of β from four methods along with the true model in 25 simulated data
sets in the first scenario (β’s true value is shown by a horizonal dot-dashed line)
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Fig 3. 50% C.I.s of β from the four methods in 25 simulated data sets in the first scenario
(β’s true value is shown by a horizonal dot-dashed line). The solid dots indicating C.I.s of
length zero.

In other words, FBMA estimates have larger bias and similar variance with
respect to BCA and CDP estimates. For the CIs based on NBMA, some of
the confidence intervals collapsed to a single point, 0, corresponding to no
exposure effect. The reason is that more than 50% of the weight is assigned
to models that do not include exposure, which estimate β as zero.

To gain more insight into these differences, it is helpful to inspect the
results for one specific simulation. For example, in the second simulated
data set, BCA provides a point estimate of 0.106 with 50% C.I. (0.074,
0.137), which covers the true value, 0.1, while FBMA estimate β to be
0.151 with 50% C.I. (0.128, 0.176). The reason why FBMA overestimates
the exposure effect in this example is that FBMA averages over models that
do not include U1, while in this case U1, which is strongly associated with
the exposure X and less strongly associated with outcome Y , is a critical

Hosted by The Berkeley Electronic Press



14 C. WANG ET AL.

variable in confounding adjustment. Ignoring the joint distribution of (Y, X)
and focusing only on the distribution of Y leads to overestimation. While in
this case BMA overestimates the exposure effect, in general, the sign of the
bias is hard to predict without conducting a more appropriate adjustment.

Table 3 further summarizes the simulation results. If β̂i is the point es-
timate based on the ith simulated data set and β0 is the true value of β,
we define the mean, M(β̂), and mean square error, MSE(β̂), for a given
estimation procedure as

(4.2) M(β̂) =
1

25

25∑

i=1

β̂i, MSE(β̂) =
1

25

25∑

i=1

(β̂i − β0)
2.

We also define the mean standard error, SE(β̂), and the standard error
across point estimates, ŜE(β̂), as

(4.3) SE(β̂) =

√√√√ 1

25

25∑

i=1

Var(β̂i), ŜE(β̂) =

√√√√ 1

25 − 1

25∑

i=1

(β̂i − M(β̂))2,

where Var(β̂i) is the variance of β̂i.
We conclude that in this simulation, the MSE of BCA and CDP estimates

are roughly the same as the MSE of estimates based on the true model. In
addition these MSE are much smaller than the MSE of FBMA estimates.
The mean of point estimates based on NBMA is 0.110, which is close to
the means for BCA and CDP. Despite this good average behavior, NBMA
produces the worst results. Indeed, the MSE for NBMA is 0.007, which is
much higher than 0.002 for BCA and CDP. Moreover, the C.I.s based on
NBMA cover 0.1 only in 4 out of the 25 simulations. The histogram of the
point estimates from NBMA (Figure 4) reveals why NBMA has small bias
and large MSE: the distribution has three modes, and while it is centered
roughly around the true value, this value falls in a region of low mass. Thus,
NBMA rarely provides an estimate close to the true value, even though the
average of the point estimates across data sets is close to it.

Our second simulation scenario considered a larger number of covariates
that are correlated with the exposure variable and also associated with the
outcome. We considered both covariates highly and weakly correlated with
exposure and assumed the following true outcome model:

(4.4) Yi = βXi + δ1U1i + ... + δ14U14i + ǫi,

where i = 1, ..., 1000 and (Xi, U1i, ..., U7i) are independent normal vectors
with mean zero and a covariance matrix, Σ = (σkl)8×8, corresponding to
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True model BCA CDP FBMA NBMA

M(β̂) 0.108 0.108 0.107 0.147 0.106

SE(β̂) 0.045 0.045 0.045 0.044 0.052

SE of β̂

across data sets 0.045 0.045 0.045 0.050 0.082

MSE(β̂) 0.002 0.002 0.002 0.005 0.006

Coverage rate
of 50% C.I. 14/25 15/25 14/25 7/25 3/25

Table 3

Comparison of estimation of β from four methods along with the true model in the first
simulation scenario. The target coverage rate is 12.5/25.

Exposure effect estimate
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Fig 4. Histogram of the point estimates based on NBMA in 25 simulated data sets in the
first scenario

an AR(1) process. More precisely, σkk = 1, σkl = ρ|k−l|, 1 ≤ k, l ≤ 8. We
also assumed that the rest of the confounders U8i, ..., U14i follows N(0, 1)
distribution and are independent of the other covariates in model 4.4. The
set of potential confounders U includes U1, ...U14 as well as 43 additional
independent N(0, 1) random variables which are independent with both X
and Y . In our simulation, β is set to be 0.1, δ1 = . . . = δ14 = 0.1 and ρ = 0.7.

Similarly to the first scenario, we generated 25 data sets from model
(4.4). For each simulated data set, we calculated the Maximum Likelihood
Estimate (MLE) of β from the known true model and compared it to the
estimates from the four methods: BCA, CDP, FBMA and NBMA. Similarly
to Figure 2, 3 and Table 2 in the first scenario, we obtained the results shown
in Figure 5, 6 and Table 3.

The differences we noted between BCA and CDP on one side, and BMA on
the other, are now even more pronounced in this more complex example. In
Figure 5, the point estimate obtained using FBMA is biased and larger than
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Fig 5. Estimation of β from four methods along with the true model in 25 simulated data
sets in the second scenario (β’s true value is shown by a horizonal dot-dashed line)
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Fig 6. 50% C.I. β from the four methods in 25 simulated data sets in the second scenario
(β’s true value is shown by a horizonal dot-dashed line).The solid dots indicating C.I.s of
length zero.

True Model BCA CDP FBMA NBMA

M(β̂) 0.115 0.123 0.113 0.204 0.170

SE(β̂) 0.050 0.051 0.051 0.055 0.069

SE of β̂

across data sets 0.043 0.043 0.044 0.055 0.088

MSE(β̂) 0.002 0.002 0.002 0.014 0.012

Coverage rate
of 50% C.I. 14/25 12/25 14/25 3/25 7/25

Table 4

Comparison of estimation of β from the four methods along with the gold standard in the
second simulation scenario. The target coverage rate is 12.5/25.
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Fig 7. Posterior inclusion probability of covariates (the covariates are seperated into three
groups by two vertical dashed lines, where the first 7 covariates (group A) are in the true
model and correlated with X, the next 7 covariates (group B) are in the true model but
independent with x, the rest (group C) are covariates not in the true model and independent
with X )

the point estimates based on the true model. Only 3 of the 50% confidence
interval in the 25 simulated data sets cover the true value. In contrast, the
point estimates based on BCA and CDP are close to those based on the true
model, and the corresponding 50% C.I.s cover the true parameter value in
roughly 50% of the simulations.

We also computed the posterior inclusion probability (Barbieri and Berger,
2004) defined, for the ith covariate, as:

(4.5) pi =
∑

α:αi=1

P (α|D).

pi can be estimated by the proportion of appearances of covariate i in the
chain of outcome models. Figure 7 shows the estimated posterior inclusion
probability for all the covariates based on a simulated data set from our
second scenario, using BCA. The first seven covariates have high posterior
inclusion probability, indicating that they are important for estimating the
exposure effect β. This is consistent with their high correlation with X.

5. Estimating the Effect of PM2.5 on CVD Hospitalization Rate.

In this section we applied BCA, CDP, FBMA, and NBMA to daily time se-
ries data on emergency hospital admissions, weather variables, and daily
PM2.5 levels in Nassau County NY for the period 1999-2005. A more ex-
tensive description of this data set can be found in Dominici et al. (2006).
The goal is to estimate the increase in hospitalization rate of cardiovascu-
lar disease (CVD) associated with a 10µg/m3 increase in PM2.5. To start,
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Full model BCA CDP FBMA NBMA

β̂ 0.291 0.220 0.221 0.140 0.007

SE(β̂) 0.092 0.081 0.089 0.077 0.033

95% C.I. (0.110, 0.471) (0.068, 0.373) (0.045, 0.396) (-0.008, 0.298) (0.000, 0.131)

Table 5

Comparison of estimation of PM2.5 effect on CVD hospitalization rate based on BCA,
CDP, FBMA, NBMA and the full model. The data is a time series data set from

Nassau, NY for the period 1999-2005.

we consider a full model that is large enough to include all the necesssary
confounders (Dominici et al., 2004; Peng et al., 2006):

Yt = PM2.5t + Dow + Age

+ ns(Tempt, dfTemp) + ns(Tempt1−3, dfTemp) + ns(Dew, dfDew)

+ ns(Dewt1−3, dfDew) + ns(t, dft) + ns(t, 4) × Age + ǫt

(5.1)

where Yt =
√

number of hospital admissions of CVD on day t
size of population at risk on day t serves as outcome. PM2.5t

denotes the level of particulate matter having diameter less than 2.5 mi-
crometer on day t, DOW is a categorical variable indicating the day of the
week, Age is age group indicators (≥75 or not). Tempt and Tempt1−3 are
temperature on day t and the three day running mean respectively. Dewt

and Dewt1−3 are the dew point on day t and the three day running mean.
ns(, .df) is a natural cubic spline with df degree of freedom. ns(t, dft) is to
capture the seasonal effect and ns(t, 4)×Age is the interaction terms of sea-
sonal effect and age. In this example, dfTemp is set to 12 and dfDew are set to
12 while dft are set to 16 per year. The residues ǫt are assumed to be inde-
pendent and identically distributed with a normal distribution (N(0, σ2)).
After dropping some covariates due to collinearity, there were 164 covariates
left, which forms the set of potential confounders.

As in the simulations, we consider 4 approaches: BCA, CDP, FBMA,
and NBMA. The estimated PM2.5 effect (×10, 000) denoted by β̂ is listed
in Table 5: BCA and CDP provide an estimate of the short-term effect
of PM2.5 on CVD hospital admissions with a 95% posterior interval and
95% confidence interval that do not include 0. The point estimates of the
exposure effect obtained under the full model, BCA and CDP are similar.
Moreover, BCA and CDP provide smaller standard errors than the one
obtained under the full model. In comparison, FBMA and NBMA provide
a very different and non statistically significant estimate of the exposure
effect. This illustrates that in practical applications BMA and BCA can
lead to different conclusions.
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6. Discussion. Estimating an exposure effect accounting for the uncer-
tainty in the adjustment for confounding is complex, and direct application
of methods designed to handle model uncertainty in prediction can give
misleading results. Building upon work by Crainiceanu et al. (2008), in this
paper we further explore the difference between model uncertainty and ad-
justment uncertainty, and develop a fully Bayesian solution to adjustment
uncertainty called Bayesian Confounding Adjustment (BCA). By providing
examples and simulation studies we illustrate that adjustment uncertainty
and model uncertainty need to be addressed using different inferential pro-
cedures.

Given a set of potential confounders, the approach presented in this paper
is to specify joint models for both the outcome and the exposure of interest,
and constrain confounders that are included in the exposure model to also
appear in the outcome model. In simulation studies, we show that BCA pro-
vides posterior distributions of the parameter of interest based on averaging
across models that are highly likely to include the necessary confounders for
adjustment. While we discussed our methods in the setting of linear models,
BCA is a general concept and is not constrained to the linear case. For ex-
ample, at least conceptually, it can be easily extended to generalized linear
models.

We also show that the standard BMA method is not adequate to address
adjustment uncertainty in effect estimation, possibly because the model-
specific estimates of the parameter of interest are weighted based on the
model ability of making good prediction, which can be different from their
ability to properly adjust for confounding. We conduct simulation studies
under two scenarios with different degree of confounding. Our results show
that BCA and CDP can provide estimate for exposure effect with small
MSE in both scenarios. In contrast, BMA may lead to highly biased esti-
mate. We also compare different methods by conducting a data analysis of
time series data from Nassau, NY. In this specific example BCA and CDP
provide statistically significant positive estimates for the PM2.5 effect on
CVD hospitalization rate, while BMA does not.

As BMA, BCA will take weighted average over models rather than mak-
ing inference based on a single model. However BCA attempts to provide an
estimate of the exposure effect by combining information across regression
models that all include a model including all the requisite confounders, to
ensure that the regression coefficient of interest maintains the same inter-
pretation across models. A nice feature of BMA that is retained by BCA
is that the importance of confounders can be evaluated based on posterior
inclusion probability. This information may reveal underlying connections
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between exposure and confounders, which may become of interest for future
research. BCA is more computationally intensive than CDP and BMA.

As with CDP, the successful application of BCA may rely on assump-
tions that are hard to verify. First, we need to assume that there are no
unobserved confounders. Second, we need to define a large enough model
to include all the potential observed confounders. Third we must assume
that this large set of potential confounders do not include covariates that
are highly predictive of X but that are not associated with Y . Scientific
knowledge is required to ensure that these assumptions are valid. Statistical
methods may also help to check whether there is evidence for the existence
of unmeasured confounders. For example, one can decompose the associa-
tion between exposure and outcome into distinct spatio-temporal scales and
check for the consistency in the estimation of exposure effect across these
spatio-temporal scales (Janes et al., 2007).

If there are no unmeasured confounders , the full model, that is the model
including all variables that are correlated with X and Y , and those that are
correlated with Y only, as well as potentially others that are not associated
with either, can provide unbiased estimate for the exposure effect. How-
ever, using the full model we will generally have wider confidence intervals
compared to BCA. By combining estimation from different smaller models,
especially from models that only include requisite confounders but do not
include many unnecessary covariates, BCA provides more precise inference
than the full model.

In summary, we hope to have provided a well motivated and practical
tool for accounting for uncertainty in the selection of confounders in effect
estimation. Our approach adopts the fully probabilistic structure of BMA
without suffering from the pitfalls we highlighted in BMA, and is likely to
contribute to a more reasoned and quantitative approach to the specification
of models used to determine health effects of common exposures, and the
reporting of the associated uncertainty.

APPENDIX A

A.1. Full conditional distribution of αX

Assume (βαY

, Y ) and αX are independent given αY ,

P (αX |X, Y , αY , β∗)
.
= P (αX |X, Y , αY , βαY

)

= P (αX |X, αY )

=
P (αX)P (αY |αX)P (X|αX , αY )

P (X, αY )
.
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Assume X and αY are independent given αX , then

P (αX |X, Y , αY , β∗)

.
=

P (αX)P (αY |αX)P (X|αX)

P (X, αY )
.

A.2. Full conditional distribution of αY

Assume (βαY

, X) and αY are independent given Y ∗,

P (αY |X, Y , αX , β∗)
.
= P (αY |X, Y , αX , βαY

)

= P (αY |Y ∗, αX)

=
P (αY )P (αX |αY )P (Y ∗|αY , αX)

P (Y ∗, αX)
.

Assume αX and Y ∗ are independent given αY ,

P (αY |X, Y , αX , β∗)
.
= P (αY )P (αX |αY )P (Y ∗|αY ).

A.3. Full conditional distribution of β
Assume βαY

and αX are independent given αY , then

P (βαY

|αX , αY , X, Y ) = P (βαY

|αY , X, Y ).

Assuming the observations of X are placed on the first column of WαY ,
from Bernardo and Smith (2000), we obtain

βαY

|αY , X, Y ∼ tn+ν(βnαY , σ2
nαY ),

where βnαY is the first element of θnαY , σ2
nαY is the (1,1) element of

S̃nαY (W ′
αY WαY + Σ−1

0αY )−1) and

θnαY = (W ′
αY WαY + Σ−1

0αY )−1(Σ−1
0αY µ0αY + W ′

αY Y )

S̃nαY = (n+ν)−1[νλ+(Y −WαY θnαY )′Y +(µ0αY −θnαY )′Σ−1
0αY µ0αY ].

Thus,
β∗|αY , X, Y ∼̇tn+ν(βnαY , σ2

nαY ).
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