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Abstract

In this paper we define a hierarchical Bayesian model for microarray expression data collected
from several studies and use it to identify genes that show differential expression between two
conditions. Key features include shrinkage across both genes and studies; flexible modeling that
allows for interactions between platforms and the estimated effect, and for both concordant and
discordant differential expression across studies. We evaluated the performance of our model
in a comprehensive fashion, using both artificial data, and a ”split-sample” validation approach
that provides an agnostic assessment of the model’s behavior not only under the null hypothesis
but also under a realistic alternative. The simulation results from the artificial data demonstrate
the advantages of a Bayesian model. Compared to a more direct combination of t- or SAM-
statistics, the 1−AUC values for the Bayesian model is roughly half of the corresponding values
for the t- and SAM-statistics. Furthermore, the simulations provide guidelines for when the
Bayesian model is most likely to be useful. Most noticeably, in small studies the Bayesian
model generally outperforms other methods when evaluated by AUC, FDR, and MDR across
a range of simulation parameters, and this difference diminishes for larger sample sizes in the
individual studies. The split-study validation illustrates appropriate shrinkage of the Bayesian
model in the absence of platform-, sample-, and annotation-differences that otherwise complicate
experimental data analyses. Finally, we fit our model to four breast cancer studies employing
different technologies (cDNA and Affymetrix) to estimate differential expression in estrogen
receptor positive tumors versus negative ones. Software and data for reproducing our analysis
are publicly available.
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1 Introduction

Microarray technologies that simultaneously measure transcriptional activity in a very large number

of genes have been widely used in biology and medicine in the last decade, and the resulting data

is often publicly available. To increase the reliability and efficiency of biological investigations, it

can be critical to combine data from several studies. However, when considering multiple studies,

variation in the measured gene expression levels is caused not only by the biological differences

of interest and natural variation in gene expression within a phenotype, but also by technologi-

cal and laboratory-based differences between studies (Irizarry et al., 2005; Consortium et al., 2006;

Kerr, 2007). Two of the most important difficulties are the presence of both absolute and rel-

ative expression measurements depending on the technology, and the challenges associated with

cross referencing measurements made by different technologies to the genome and to each other

(Zhong et al., 2007). Despite these difficulties, the results of combined analysis clearly demonstrate

the potential for increased statistical power and novel discovery by combining data from several

studies (Wu et al., 2002; Rhodes et al., 2002; Tomlins et al., 2005).

Most statistical work to date on combining microarray studies focused on identifying genes that

exhibit differential expression across two experimental conditions or phenotypes. We consider this

problem here as well. There is now a substantial literature on Bayesian approaches to assessing

differential expression across two or more experimental conditions within a single study. Both em-

pirical and fully Bayesian models have been proposed, including parametric (Baldi and Long, 2001;

Newton et al., 2001; Lönnstedt and Speed, 2002; Pan, 2002; Gottardo et al., 2003; Ishwaran and Rao,

2003; Kendziorski et al., 2003; Ishwaran and Rao, 2005; Tseng et al., 2001; Bröet et al., 2002; Ibrahim et al.,

2002; Townsend and Hartl, 2002), semi-parametric (Newton et al., 2004) and non-parametric (Efron et al.,

2001; Do et al., 2005) models. In each of these papers, a critical issue is shrinkage, and in particu-

lar borrowing strength across genes when estimating the gene-specific variance across samples. It

is well established that shrinkage of the variance estimates provides worthwhile enhancements to

single study analysis of differential expression (Dongmei Liu and Caffo, 2004).

There are several natural approaches for combining information from multiple microarray stud-

ies. One is to compute, separately for each study, statistics that summarize the relationship between

each gene and the phenotype of interest. These may then be combined using methodologies such as
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those originally devised to integrate published results in meta-analysis (Hedges and Olkin, 1985).

While initial efforts in this direction have considered combination of p-values (Rhodes et al., 2002),

subsequent papers have focused on the more efficient strategy of combining effect sizes (Ghosh et al.,

2003; Wang et al., 2004; Garrett-Mayer et al., 2007). At the opposite extreme of study combina-

tion are cross-study normalization methods (Wu et al., 2002; Parmigiani, 2002; Shen et al., 2004;

Rhodes et al., 2004; Hayes et al., 2006; Johnson et al., 2007; Choi et al., 2007) that consider di-

rectly the sample-level measurements within each study, and merge these into a single data set, to

which standard single-study analysis can be applied. A third approach, intermediate between the

two above, is to integrate information about differential expression from the available studies using

a joint stochastic model for all the available data (Choi et al., 2003; Conlon et al., 2006; Jung et al.,

2006; Conlon, 2007; Conlon et al., 2007), in which only selected features of each study, such as pa-

rameters that capture the relationship between genes and phenotypes, are assumed to be related

across studies. This perspective has the potential to offer additional efficiency over integration of

summary statistics, and to allow for a more comprehensive treatment of uncertainty. At the same

time it models the cross-study integration in a way that is tailored to the problem of interest, and

potentially relies on fewer assumptions than direct data integration.

In this article we adopt this latter, intermediate approach, and propose a fully Bayesian hi-

erarchical model to identify genes that exhibit differential expression between two experimental

conditions, and across multiple studies. In this context, use of a fully Bayesian model has several

desirable features. The model borrows strength across both genes and studies and can thereby pro-

vide better estimates of the gene-specific means, variances and effects. The model yields, through

simulation, posterior probability distributions for all unobserved quantities. These distributions

can be used to quantify the uncertainty of any parameter in the model, or to make joint inferences

about multiple genes. Lastly, for each gene, the model yields the posterior probability that the

gene is differentially expressed.

While the work of Conlon and colleagues considers several of these issues, its primary strength

is in the combination of multiple studies from the same technology. We expand this and related

work to address multi-platform analysis via several technical generalizations that are described in

detail in the methods and reviewed in the discussion. These include: modeling of overall cross-

platform correlations to allow shrinkage to be stronger across pairs of studies that are generally more
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concordant; modeling of both the mean of a gene and its phenotypic interactions with sufficient

flexibility to avoid distributional modeling of the main effects; allowing for interactions between

the technology and the effect; modeling of an adaptive smooth dependence between effects and the

variance terms.

Perhaps the most radical difference between our approach and all its predecessor is the attention

given to discordant differential expression. This occurs when a gene is more highly expressed in

one phenotype than the other in some studies, while the opposite is observed in other studies.

Earlier approaches would discount the gene: the high cross-study variance and cancelation of

overall effects would likely position it with the uninteresting genes. However, across many meta-

analyses, we have observed an excess of these discordant genes compared to what would have been

predicted by chance alone, as captured by permutation of phenotype labels. When implementing

shrinkage strategies, reliable assessments of concordant differential expression, which is typically

of primary interest, must therefore account for the possibility of discordant differential expression

across studies. We implement this by introducing a gene-specific indicator of whether a gene is

different across conditions in all three studies, but then we allow these differences to be gene and

study specific.

While concordant differentially expressed genes remain the primary focus of the analysis, discor-

dant genes can reveal important biological or technological information, and it is useful to identify

them and report them. This is for at least two reasons: first, given the heterogeneous experimental

designs that are encountered in microarrays, a discordant effect for a set of important genes may be

the result of genetic heterogeneity of the samples across study. For a simple example, consider the

comparison of administering or not administering a certain drug in two studies which, unbeknownst

to the investigators, use strains of animals where the sets of biochemical pathways activated by the

drug are not the same. Then certain genes’ expression may be increased by the drug in one strain

and decreased in the other. Another reason discordance is important is that the cross-referencing

of genes across studies is typically gene-centric. However, as many as 40 to 60% of genes are able

to produce multiple alternative transcripts (Modrek and Lee, 2002), whose expression may be pos-

itively or, as is common, negatively correlated. For example one transcript may be made primarily

under normal conditions, while the other may be made mainly in response to stress. When two

technologies measure a gene’s expression by targeting portions of that gene that are associated
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with different transcripts that are negatively correlated with each other, discordant effects will be

observed. In either case, important insight about technology, study designs and potentially the

genetics of alternative splicing can potentially be gained by following up on discordant genes.

The paper is organized as follows. In Section 2 we describe our Bayesian model and in Section

3 we define a Markov chain Monte Carlo algorithm for simulation from the resulting posterior

distribution. Section 4 describes statistics from the Bayesian model that can be used to quantify

differential expression, as well as alternative approaches for quantifying differential expression in

the context of multiple studies. The datasets used in the simulation and experimental data example

are descibed in Section 5. Sections 6 and 7 present results when applying our model to simulated

and real data with comparisons to alternative methods. Concluding remarks are in Section 8. The

software for fitting our Bayesian model is freely available from Bioconductor.

2 Bayesian hierarchical cross-study model

In this section we introduce some basic notation and our Bayesian model. The resulting method

for cross-study assessment of differential expression will be referred to as XDE.

2.1 Notation and basic assumptions

In what follows we use p and q to index studies (i.e. data sets), g to index genes, and s to index

samples (arrays) within each study. Let xgsp denote the observed expression value for gene g and

sample s in study p. Let P denote the number of available studies, G the number of common genes

and Sp the number of samples in study p. Thus the observed expression values are

{xgsp : g = 1, . . . , G; s = 1, . . . , Sp; p = 1, . . . , P}.

We assume that each study has been suitably normalized (and if necessary log-transformed) so that

the mean expression value for each study is zero and the expression values for a given gene are

approximately Gaussian under each condition. We restrict our analysis to the set of common genes

in the available studies, though our model formulation can easily be extended to a situation in

which there is substantial overlap, but not complete agreement, between the gene sets in different
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Figure 1: A graphical model representation of the hierarchical Bayesian model defined for the microarray
data sets.

studies.

In the model described below, each sample is assumed to belong to one of two possible conditions

or phenotypes. Let ψsp ∈ {0, 1} denote the phenotype of sample s in study p. (An example in

which ψsp represents the estrogen receptor of breast tumors is presented in Section 7.) In order to

model differential expression, we assume that, for a subset of the available genes, the expression

value xgsp has a different mean value in samples where ψsp = 0 than in samples where ψsp = 1.

Furthermore, for each gene we allow only two possible states of differential expression, indexed by

a binary parameter δg: either the expression values of gene g are differentially expressed in all P

studies (δg = 1), or they are not differentially expressed in any of the studies (δg = 0).

2.2 Bayesian model

We define a hierarchical Bayesian model for the expression values xgsp. In the following discussion

the graphical model representation in Figure 1 can be used as a reference.

At the lowest level we assume the expression values xgsp, conditional on some unobserved

parameters, are independent and have a Gaussian distribution. For genes that are not differentially

expressed, νgp denotes the mean value of xgsp, i.e., the mean value may be different for different

genes and studies, but is the same mean for all samples in the same study. By contrast, differentially

expressed genes have different means under the two phenotypic conditions. When δg = 1 the mean

of gene g in study p is equal to νgp − ∆gp and νgp + ∆gp for samples with ψsp = 0 and ψsp = 1,

respectively. Thus ∆gp represents half the average difference between expression levels across

phenotypes for gene g in study p. By allowing ∆ to depend on both g and p we acknowledge that
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the measured magnitude of an effect may depend on the technology. We impose no restriction that

the ∆gps should have the same sign across studies, thus allowing for the possibility of discordant

differential expression. We also allow the variance of xgsp to depend on the gene g, the study p,

and the phenotypic condition ψsp. Let σ2
g0p and σ2

g1p denote the variances of xgsp for samples with

ψsp = 0 and ψsp = 1, respectively. Our basic model may be written as follows:

xgsp | νgp, δg,∆gp, σ
2
g0p, σ

2
g1p ∼ N

(
νgp + δg(2ψsp − 1)∆gp, σ

2
gψspp

)
. (1)

At the next level in the model specification, prior distributions are selected for the model

parameters. We begin by discussing the priors for

νg = (νg1, . . . , νgP )T and ∆g = (∆g1, . . . ,∆gP )T

which represent, respectively, the means and offsets for gene g. The vectors νg and ∆g are assumed

to be independent across genes, and independent of each other. Furthermore, for every gene g, it

is assumed that νg and ∆g have a multiGaussian distribution. As we have required that the

expression values of each gene be centered around zero, we set the mean of νg and ∆g equal to

zero as well. Let Σg and Rg denote the covariance matrices of νg and ∆g, respectively, so that

νg ∼ N(0,Σg) and ∆g ∼ N(0, Rg). (2)

To specify the covariance matrices of Σg and Rg we adopt the strategy advocated in Barnard et al.

(2000), namely, to assign independent prior distributions to the standard deviation and the corre-

lation matrix of each quantity (see below for more details).

When modeling normal location and scale parameters in a hierarchical way, as we do here, two

modeling choices are common. One is independence between scale and location, and the other is

conjugacy. The latter is computationally more convenient, as it allows analytical expressions for

the full conditional distribution. However, which of these two specifications fits better can vary

from experiment to experiment, and in microarray analysis the fit is sensitive to the technology and

normalization method used, see Liu et al. (2004). Recently, Caffo et al. (2004) proposed a more

general family of models, one that encompasses both independence and conjugacy, by including a

6
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single parameter that indexes the distribution of location given scale. Here we extend this idea in

a natural way by introducing separate parameters for each individual study, and setting a common

relative scale for Σg and Rg in each study. More specifically, the diagonal elements of Σg and Rg

are given as follows:

(Σg)pp = γ2τ2
pσ

2ap
gp and (Rg)pp = c2τ2

pσ
2bg
gp p = 1, . . . , P . (3)

Here σ2
gp =

√
σ2
g0p σ

2
g1p, the parameters ap, bp ∈ [0, 1], and the parameters τ2

p > 0 are such that

τ2
1 · . . . · τ2

P = 1. Thus γ2 and ap control the overall scale and conjugacy of νg, respectively, while

c2 and bp play analogous roles for ∆g, and τ2
1 , . . . , τ

2
P control the relative scales of the different

studies.

The correlation structure of Σg (and Rg) is assumed to be the same for all genes g. Let [ρpq]
P
p,q=1

and [rpq]
P
p,q=1 denote the correlation matrices corresponding to Σg and Rg, respectively. Following

Barnard et al. (2000), the prior distribution for [ρpq] is obtained by beginning with a covariance

matrix having an inverse Wishart distribution with νρ degrees of freedom, and then integrating out

its component variances. The prior distribution for [rpq] is of the same form, with νr degrees of

freedom, and independent of the prior for [ρpq].

At the next level in the hierarchical model specification, priors are placed on the hyper-

parameters γ2, c2, τ2
p , ap and bp. To enforce model parsimony, the prior distributions for ap

and bp place positive probability mass at the values 0 and 1, corresponding to independence and

conjugacy between location and scale, respectively. More specifically, independently for each study

p, we let

P(ap = 0) = p0
a , P(ap = 1) = p1

a , ap|ap ∈ (0, 1) ∼ Beta(αa, βa) (4)

and

P(bp = 0) = p0
b , P(bp = 1) = p1

b , bp|bp ∈ (0, 1) ∼ Beta(αb, βb). (5)

Independent vague priors are assigned to the remaining hyper-parameters. For γ2 we use an

(improper) uniform distribution on (0,∞), and for c2 a uniform distribution on (0, c2
max

). Note that

an improper prior can not be used for c2 as this may result in an improper posterior distribution.

For τ2
1 , . . . , τ

2
P we assign a joint (improper) uniform distribution under the natural restrictions

7

http://biostats.bepress.com/jhubiostat/paper158



τ2
p > 0, p = 1, . . . , P and

∏P
p=1

τ2
p = 1.

In order to have a fully defined Bayesian model, it remains to specify prior distributions for the

differential expression indicators δg, and for the variances σ2
gψp used to define σ2

gp. The indicators

δg are assumed to be a priori independent, given a hyper-parameter ξ, with

P(δg = 1) = ξ and ξ ∼ Beta(αξ, βξ). (6)

The variances σ2
gψp are assumed to be independent for different genes g and studies p, given the

other hyperparameters. However, σ2
g0p and σ2

g1p should be correlated for the same gene g and study

p. To obtain this, we set

σ2
g0p = σ2

gpϕgp and σ2
g1p =

σ2
gp

ϕgp
, (7)

where σ2
gp and ϕgp have independent gamma prior distributions with E[σ2

gp] = lp, Var[σ2
gp] = tp,

E[ϕgp] = λp and Var[ϕgp] = θp. At the next level we assign independent (improper) uniform

distributions on (0,∞) for each of the hyper-parameters lp, tp, λp, θp, independently for p = 1, . . . , P .

The above prescriptions fully define the hierarchical Bayesian model visualized in Figure 1.

The observed quantities are the expression values xgsp and the conditions ψsp. Conditioning on the

observed values we get a posterior distribution for the unobserved parameters ξ, δg, ap, ρpq, γ, τ
2
p ,

νgp, c
2, rpq, bp, ∆gp, σ

2
gp, ϕpg, lp, tp, λp and θp. Hyper-parameters that have to be specified by the

user are αa, βa, αb, βb, p
0
a, p

1
a, p

0
b , p

1
b , νρ, νr, αξ, βξ and c2

max
. Default hyperparameters provided in

the R package XDE work well in most instances (see Table 4).

3 Posterior simulation

In order to evaluate the properties of the resulting posterior distribution, we adopt the Metropolis–

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) to generate realizations from it. Nice

introductions to the Metropolis–Hastings algorithm can be found in Smith and Roberts (1993) and

Dellaportas and Roberts (2003). The algorithm is iterative, and each iteration consists of two parts.

First, potential new values for one or a number of parameters are proposed according to a proposal

distribution. Second, the proposed values are accepted with a specified probability. Depending

on the mathematical form of the distribution of interest, different proposal mechanisms can be

8
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employed. In our posterior distribution we have seventeen types of parameters and to update these

we combine seven types of proposal mechanisms. In the following we specify each of the proposal

strategies used. In the description we use tilde to denote potential new values, e.g. δg and δ̃g are

the current and potential new values of the differential expression indicator for gene g, respectively.

Note that we restrict attention to the proposal distributions, as the acceptance probabilities are then

uniquely defined by the Metropolis–Hastings setup. As with many Metropolis–Hastings proposal

strategies, several of our proposal distributions include a “tuning” parameter that measures the

amount of change proposed. In the following we consistently use the same symbol ε to denote all

the tuning parameters, but, as the values used in our examples in Sections 6 and 7 suggest, one

can of course use different values when updating the different parameters.

1. The full conditionals for νg, ∆g, γ
2 and ξ have standard forms and we therefore use Gibbs

steps (see the references given above) to update each of these separately. The full conditionals

for νg and ∆g both are multiGaussians, the full conditional for γ2 is an inverse gamma

distribution, and for ξ it is a beta distribution.

2. Separately, for each of the parameters ap and bp, we use a “truncated” random walk proposal.

In particular, for ap we do the following: if ap = 0 we draw ãp from a uniform distribution

on [0, ε]; if ap = 1 we draw ãp uniformly on [1 − ε, 1]; and if ap ∈ (0, 1) we draw U from a

uniform distribution on [ap − ε, ap + ε] and set ãp = min(1,max(0, U)). We note that this is

a reversible jump type of proposal, and to get the correct acceptance probability, one needs

to use the theory introduced in Green (1995).

3. Separately, for each of the parameters σ2
gp, ϕgp, lp, tp, λp and θp, we propose a multiplica-

tive change. In particular, for σ2
pq we set σ̃2

pq = uσ2
pq, where u is sampled from a uniform

distribution on the interval [1/(1 + ε), 1 + ε].

4. When updating (τ2
1 , . . . , τ

2
P ) we must ensure that the product of the proposed new values

equals unity. We do this by randomly selecting two of the components, p and q say, drawing

U from a uniform distribution on [1/(1 + ε), 1 + ε], and setting τ̃2
p = Uτ2

p and τ̃2
q = τ2

q /U .

5. A block Gibbs update is used for c2 and all the ∆g’s for genes that have δg = 0.
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6. Separately for each g = 1, . . . , G, a block update is used for δg and ∆g. First, the potential

new value for δg is set by inverting the current value, i.e. δ̃g = 1−δg. Second, a potential new

value for ∆g is sampled from the associated full conditional (given the potential new value

δ̃g). The proposed values are then accepted or rejected jointly.

7. A block update is used for [ρpq] and γ2. A similar block update is used for [rpq] and c2. For

[ρpq] and γ2, potential new values for [ρpq] are obtained via the transformation

ρ̃pq = (1 − ε)ρpq + εTpq.

Here [Tpq] is a correlation matrix which with probability one half is generated from the prior

for [ρpq], and with probability one half is set equal to unity on the diagonal with constant

off diagonal elements. In the latter case, the value of the off diagonal elements is sampled

from a uniform distribution on (−1/(P − 1), 1). Thereafter, the potential new value for γ2

is sampled from the associated full conditional (given the potential new values [ρ̃pq]). The

proposed values are then accepted or rejected jointly.

4 Estimation of differential expression

In assessing the differential expression of genes across multiple studies, one naturally encounters

a difficulty that is not present in single study analyses. This difficulty arises from the fact that

a single differentially expressed gene g may be up-regulated in one or more studies, and down-

regulated in others. When this occurs, we say that g is discordantly differentially expressed. If

g is up-regulated in every study, or down-regulated in every study, we say that g is concordantly

differentially expressed. Although concordant differential expression is the norm, discordance can

arise from biological differences in the sample populations of each study, or from technological effects

related to the design and implementation of specific array technologies. Discordance appears to

be an unavoidable (and inconvenient) feature of multi-study analyses, one that comprehensive

multi-study analyses should take into account.

10
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4.1 Bayesian estimation

In our Bayesian model we have assumed that a gene is either differentially expressed in all of

the studies or in none of the studies. Thus the indicator δg is summarizing information across

studies. The basis for our cross-platform analysis of differential expression is the posterior mean

of δg, equivalently the posterior probability that gene g is differentially expressed. This posterior

mean is not analytically available, so in practice we have to generate samples from the posterior

distribution, as discussed in Section 3, and estimate the posterior mean by the empirical mean of

the simulated δg’s.

Let PME(g) denote the posterior mean of δg. We view PME(g) as a measure of the evidence

for the overall differential expression of g. In particular, one may classify a gene g as differentially

expressed whenever PME(g) > a for some threshold a > 0. Concordant and discordant differential

expression can also be addressed in a direct way in the context of the Bayesian model described

above. A gene g for which δg = 1 is concordantly differentially expressed if each of its offsets ∆gp,

p = 1, . . . , P has the same sign, and is discordant if its offsets include both positive and negative

values. Thus, indicators for concordant and discordant differential expression can be defined by

Cg =





1 if δg = 1 and all ∆gp, p = 1, . . . , P have the same sign,

0 otherwise
(8)

and

Dg =





1 if δg = 1 and the ∆gp, p = 1, . . . , P do not all have the same sign,

0 otherwise,
(9)

respectively. The posterior mean of each indicator can again be estimated by the empirical mean

of the corresponding simulated quantities. Let PMC(g) and PMD(g) denote the corresponding

posterior mean values. Then a gene g may be classified as concordantly or discordantly differentially

expressed whenever PMC(g) > a or PMD(g) > a for some threshold a > 0.

4.2 Alternative methods

We consider three alternatives to XDE for estimating differential expression: the implementation of

the Choi et al. (2003) random effects model in the R package GeneMeta (Gentleman et al., 2005),
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and cross-study summaries of t- and SAM-statistics. While a comparison with the Conlon et al.

(2006) paper would be interesting, software for fitting this model to expression data is not readily

available.

The study-specific statistics from which we derive cross-study summaries of differential ex-

pression are the Welch t-statistic (tgp), SAMgp (Tusher et al., 2001), and a standardized unbiased

estimate for effect size, zgp (Hedges and Olkin, 1985), discussed by Choi et al. (2003) in the context

of a cross-study microarray analysis. The Welch t-statistic allows for unequal variances between

the phenotypes, whereas the z statistic uses a pooled estimate that assumes equal variance between

the phenotypes. In contrast to the t- and z-statistics, the SAM statistic downweights genes with

small variance, favoring genes with larger effect sizes. We hereafter generically denote the study-

specific statistics by Ug = (Ug1, . . . , UgP ), and cross-study summaries of differential expression by

non-negative statistics u∗(g), where the subscript indicates whether the statistic measures overall

differential expression (E), concordant differential expression (C), or discordant differential expres-

sion (D). A gene g may then be classified as being appropriately differentially expressed if the

corresponding statistic u∗(g) exceeds a fixed constant a > 0.

For evaluating overall differential expression, we follow the discussion of Garrett-Mayer et al.

(2004), and combine the elements of Ug in a linear fashion to obtain a statistic suitable for assessing

differential expression:

uE(g) ≡ α1|Ug1| + . . .+ αP |UgP |, where (10)

αp ≡
Lp

√
Sp∑P

i=1
Li
√
Si

for p ∈ {1, . . . , P},

Here L is the covariance loading from the first principal components and S is the number of samples.

Summary measures of concordance for tgp and SAM were obtained by

uC(g) ≡ |α1Ug1 + . . .+ αPUgP |.

As an alternative, we also used the combined (across studies) estimate of effect size from the

random effects model proposed by Choi et al. (2003) directly. We denote this statistic by zC(g).

The ’borrowing of strength’ in the estimation of zC(g) is strictly across studies (as opposed to across
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genes and studies), as the study-specific effect sizes for a given gene are assumed to be a draw from

a Gaussian distribution in the second level of the random effects model. Assessments of discordant

differential expression using the tgp, SAM and z statistics are obtained by

uD(g) ≡





uE(g) sign(Ug1) = · · · = sign(UgP )

−1 × uE(g) otherwise.

5 Datasets and Software

The package XDE contains the software used to fit the Bayesian hierarchical model, as well as

convenient methods to compute the alternative statistics described in this paper. To facilitate

reproducibility of the analyses in Sections 6 and 7, the datasets used in this manuscript are available

as R objects in the R packages indicated below.

Lung cancer datasets. Parmigiani et al. (2004) applied a robust multichip average (rma; Irizarry et al.

(2003)) separately to the 203 samples in Harvard (Bhattacharjee et al., 2001) (12,453 probesets on

the Affymetrix Hu95a platform) and 108 samples in Michigan (Beer et al., 2002) (6663 probesets

on the Affymetrix HG6800 platform). Intensity ratios from the Cy5 and Cy3 channels for the

68 samples in the Stanford (Garber et al., 2001) dataset (23,100 features on the cDNA platform)

were log-transformed. Following normalization, probesets (Affymetrix) and image clone identifiers

(cDNA) in each platform were mapped to UniGene identifiers. Many-to-one mappings (multiple

probes map to one UniGene identifier) were averaged and one-to-many mappings were excluded.

The studies were then merged by UniGene identifiers, resulting in a common set of 3,171 features.

The three lung cancer datasets are available in the R package lungExpression available on the

Bioconductor website (http://www.bioconductor.org).

Breast cancer datasets. Four breast cancer studies containing phenotypic data on estrogen re-

ceptor (ER) status (Sorlie et al. (2001), Huang et al. (2003), Hedenfalk et al. (2001), and Farmer et al.

(2005)) were normalized according to platform type. In particular, Affymetrix platforms (the Farmer

and Huang datasets) were normalized by rma, whereas cDNA platforms (Sorlie and Hedenfalk)

were normalized using the methods described in Smyth and Speed (2003) and implemented in the
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R package limma. Following normalization, platform-specific annotations were mapped to Entrez

gene identifiers and the resulting lists merged to obtain a set of 2064 genes. The datasets are

availabile as a R object in the R package xdeBreastData (available from author).

6 Validation

This section is comprised of two parts. In the first, we simulate differential expression in a subset

of the genes for three lung cancer studies. As the set of genes that are differentially expressed are

known through simulation, we assess performance of our model relative to alternative approaches

using diagnostics such as the area under the ROC curve (AUC). In the second part of this section,

we evaluate the shrinkage properties of the Bayesian model by applying XDE to multiple splits of a

single study. Comparisons of XDE to alternative methods for cross-platform analysis are discussed

throughout.

6.1 Simulated data

Our simulations are based on three publicly available lung cancer datasets that we refer to by institu-

tion: Harvard (Bhattacharjee et al., 2001) , Michigan (Beer et al., 2002), and Stanford (Garber et al.,

2001). See Section 5 for a brief description of these datasets.

Simulation algorithm. We begin by describing an approach for generating artificial datasets

for which the true set of differentially expressed genes is known. We append the superscript ’⋆’ to

parameters used in the simulation to distinguish the true values from the corresponding variables

in the Bayesian model.

The simulation uses only stage I or II adenocarcinomas in the Harvard (n=83), Stanford (n=11),

and Michigan (n=61) studies. Late stage adenocarcinomas were excluded as the heterogeneity of

these tumors is likely to be much greater. Letting S denote the total number of samples for each

study in the simulated dataset, we randomly assigned the clinical variable ψ⋆ = 0 to half of the

samples and ψ⋆ = 1 to the remaining half. Although there is non-trivial heterogeneity within the

adenocarcinomas, these differences become small (on average) after random assignment into classes

and provide a background noise that would be difficult to simulate de novo. Independently for each
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gene, we simulate δ⋆g = 1 from a Bernoulli with some probability ξ⋆ that is common to all genes, and

set δ⋆g = 0 otherwise. For genes with δ⋆g = 1 we thereafter generate “true” offsets (∆⋆
g1,∆

⋆
g2,∆

⋆
g3)

from a multivariate normal distribution




∆⋆
g1

∆⋆
g2

∆⋆
g3



∼ N



k⋆




s
g1

s
g2

s
g3



,

1

c⋆




s2
g1

r⋆
1
s

g1
s

g2
r⋆
2
s

g1
s

g3

r⋆
1
s

g2
s

g1
s2

g2
r⋆
3
s

g2
s

g3

r⋆
2
s

g3
s

g1
r⋆
3
s

g3
s

g2
+ s2

g3






, (11)

where s
g1

, s
g2

and s
g3

are the empirical standard deviations for the adenocarcinoma samples in

Harvard, Michigan, and Stanford, respectively, and k⋆, c⋆ and r⋆ are parameters in the simulation

procedure. Letting xgsp denote the original adenocarcinoma expression values, we generate the

corresponding artificial data as

x⋆gsp =





xgsp + (2ψ⋆sp − 1)∆⋆
sp if δ⋆g = 1,

xgsp otherwise.
(12)

We consider a gene g as differentially expressed if δ⋆g = 1. Differential expression is concordant if

∆⋆
g have the same sign in all studies and discordant if ∆⋆

g have opposing signs. Concordant and

discordant differential expression are special cases of differential expression that we consider sepa-

rately. Note that the simulation parameters r⋆, c⋆, and k⋆ control the proportion of differentially

expressed genes that are concordant in the simulation. For instance, increasing r⋆ and c⋆ have the

effect of increasing the percentage of concordantly differentially expressed genes. See Table 1 for a

complete listing of the simulation settings evaluated.

For each of the Simulations A-R in Table 1, we develop summary measures, referred to as

scores, to quantify concordant (C), discordant (D), or the union of (differentially) expressed (E)

genes. Section 4.2 discusses the summary statistics proposed for the Bayesian model, as well as

alternative methods for summarizing differential expression. We emphasize that for a gene g, Cg,

Dg, and Eg are defined on a set of studies, as opposed to differential expression in a single study.

To illustrate, recall that in our simulations, a gene g is differentially expressed in all studies when

the indicator δ⋆g = 1. Table 2 illustrates the possible patterns of differential expression for P = 2

studies and G = 4 genes.
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Simulation k⋆ S c⋆ r⋆ ξ⋆

A† 0.5 4 0.5 (0.1, 0.2, 0.4) 0.10
B · · · · 0.50
C · · · (0.8, 0.9, 0.92) 0.10
D · · · · 0.50
E† · 8 0.5 (0.1, 0.2, 0.4) 0.10
F · · 1 · 0.10
G · · · · 0.50
H · · · (0.8, 0.9, 0.92) 0.10
I · · · · 0.50

Simulation k⋆ S c⋆ r⋆ ξ⋆

J† 0 16 10 (0.1, 0.2, 0.4) 0.10
K · · · · 0.50
L · · · (0.8, 0.9, 0.92) 0.10
M · · · · 0.50
O · 32 20 (0.1, 0.2, 0.4) 0.10
P · · · · 0.50
Q · · · (0.8, 0.9, 0.92) 0.10
R · · · · 0.50

Table 1: Each row in the table displays parameters used to simulate an artificial dataset of three studies with
S samples in each. From Equation 11, k⋆ and c⋆ control the location and scale of the simulated Gaussian
offsets, respectively. Together, r⋆, k⋆, and c⋆ control the degree of concordance of the simulated offsets. The
probability that a gene was differentially expressed was ξ⋆. † Ten artificial datasets were generated from
one set of simulation parameters (S, k⋆, c⋆, r⋆, ξ⋆) but with different seeds for the random number generator.
By varying only the seed for the random number generator, we can assess the sensitivity of performance
measures such as AUC to randomly generated quantities in the simulation (e.g., the set of genes with δ⋆ = 1).
In general, simulation parameters were selected such that the AUC statistic from the simulations ranged
between 0.6 and 0.9.

gene δ⋆ sign (∆⋆) E C D

1 0 · 0 0 0
2 1 {−,−} 1 1 0
3 1 {−,+} 1 0 1
4 1 {+,+} 1 1 0

Table 2: A trivial example of a dataset with four genes and two studies. For each gene, we evaluate three
possible truths for differential expression defined over the set of studies: concordant differential expression in
both studies (Cg = 1), discordant differential expression (Dg = 1), and differential expression that is either
concordant or discordant across studies (Eg = 1).

Evaluation procedures

Let u∗(g) denote any of the scores defined above for a gene g. If, for a fixed threshold a > 0, we

classify each g as being (overall, concordantly or discordantly) differentially expressed if u∗(g) > a,

then we obtain a standard two-by-two table containing the number of false negatives FN(a), false

positives FP(a), true negatives TN(a), and true positives TP(a). For example, the number of true

negatives is given by

TN(a) =
G∑

g=1

I(u∗(g) ≤ a and δ⋆g = 0), (13)
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and the remaining entries of the table are defined in a similar fashion. The false positive and true

positive rates associated with the statistics Ug and threshold a are then

FPR(a) =
FP(a)

TN(a) + FP(a)
and TPR(a) =

TP(a)

FN(a) + TP(a)
, (14)

respectively. Plotting FPR(a) against TPR(a) as a varies produces the standard receiver operating

characteristic (ROC) curve associated with the statistics Ug. The area under the ROC curve, AUC,

is a nonparametric measure of the quality of the statistic, with values close to unity (i.e., a statistic

that simultaneously achieves FPR close to zero and TPR close to one) being the best.

As an alternative to ROC curves, which are based on false and true positive rates, we also

considered the false discovery rate (FDR) of the statistics u∗(g) as a function of the number of

genes determined to be differentially expressed. Specifically, for each threshold a, we plotted the

number of discoveries,
∑G

g=1
I(u∗(g) > a), against

FDR(a) =
FP(a)

FP(a) + TP(a)
.

As expected, the FDR increases as the number of overall discoveries increases. Curves close to the

horizontal axis are preferable to those having a more rapid increase of FDR with the number of

discoveries. Similarly, we plotted the number of non-differentially expressed genes,
∑G

g=1
I(u∗(g) <

a), against the missed discovery rate

MDR =
TN(a)

FN(a) + TN(a)
.

Again, curves close to the horizontal axis are preferable to those having a more rapid increase of

MDR with the number of negative discoveries.

Simulation results

We generated artificial datasets for Simulations A - R in Table 1 as described previously. Initial

model parameter values for XDE were chosen to specify little prior knowledge: αa = βa = αb =

βb = 1, p0
a = p1

a = p0
b = p1

b = 0.1, νρ = νr = 4 and αξ = βξ = 1. The values for the tuning

parameters in the Metropolis–Hastings algorithm were chosen to achieve a robust algorithm, not
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to optimize convergence and mixing properties for this particular data set. In all updates of type

(iii) we used ε = 0.01. For updates of type (iv) we used ε = 0.5 in updating σ2
gp and ϕgp, and

ε = 0.1 in updating lp and λp. In updates of types (v), (vi) and (vii) we used ε = 0.1, ε = 0.05

and ε = 0.02, respectively.

To monitor convergence and mixing properties, we inspected trace plots of the various simulated

variables, as in Supplementary Figure 9. We observed that most parameters converge relatively

quickly and that the model parameters coincide in many cases with the true values in the simulation.

For instance, 10% of the genes were simulated to be differentially expressed in Simulation A (ξ∗

= 0.10) and traceplots of the ξ parameter in the Bayesian model show that this parameter has

converged to a value near 0.12.

For each simulation, performance of the cross-study scores were assessed by the AUC, FDR,

and MDR criteria. A graphical display of the results for Simulation A is shown in Figure 2. The

Bayesian model has a higher AUC (panel 1), as well as a lower FDR and MDR than the alternative

scores over a range of cut-offs for evaluating C (panels 2 and 3, respectively). Figure 3 plots the

AUC for C in Simulations A-R. The corresponding AUC statistics for E and D are provided in

Supplementary Figures 10(a) and 10(b). The t-score generally does worse than the other methods

for small samples sizes. This is likely a result of inflated signal to noise ratios in genes with very

small variation across the four samples. That SAM is notably better than the t in such situations is

consistent with this observation.

The different seeds used in the simulations produce different artificial datasets as both the

δ∗ and ∆∗ are randomly generated. To assess the sensitivity of the AUC to the seed used for

random number generation, Figure 4 plots the AUC for datasets simulated from the same simulation

parameters, differing only by seed.

Because of the extensive nature of the simulations, we visually assess the relative performance

of the Bayesian method to alternative approaches in scatterplots of the AUC (Figures 3 and 4).

Points beneath the identity line are simulations in which the Bayesian score had a higher AUC

than an alternative method evaluated on the same dataset. In general, the Bayesian model outper-

forms the four alternative methods for cross-study analysis of differential gene expression across a

range of simulated parameters (Figure 3). Our overall assessment does not appear to be sensitive

to the random quantities simulated in these datasets (Figure 4). As the sample sizes of the indi-
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Figure 2: Performance diagnostics for scores quantifying C in Simulation A. The letter d in the legend
corresponds to the Bayesian score. Although the SAM-score does markedly better than the t-score when
the the individual studies are small (S = 4), considerable improvement can be obtained by a more formal
borrowing of strength across studies in the Bayesian and z-scores.

vidual studies increase, the relative benefit of borrowing strength across genes and studies in the

hierarchical model diminishes. Instances in which the z-score has a better AUC than the corre-

sponding Bayesian statistic (e.g., panel[2, 1] in Figure 3), most often occurred when the simulated

data was particularly noisy and the AUC from all methods were at the low-end of the range. In

such instances, scatterplots of the study-specific effect sizes were largely uncorrelated (data not

shown). Scatterplots of a study-specific statistic for effect-size, such as t, may be a useful indicator

of whether the Bayesian model is likely to improve on simpler alternatives. In instances where the

data is negatively correlated across studies, this may induce the ’wrong’ borrowing of strength.

In simulated datasets with no signal (data not shown), gene-specific posterior probabilities in the

Bayesian model were approximately zero.

6.2 Split study validation

To assess the baseline behavior of XDE, we split the Huang study into four disjoint parts, treating

each part as an independent study. We randomly assigned 5 estrogen receptor (ER) negative

and 16 ER positive samples to each split. Split study validation has been used by others to

assess meta-analytic methodologies for gene expression analysis. In particular, Gentleman et al.

(2005) use split study validation to illustrate their implementation of the cross-platform statistic

introduced by Choi et al. (2003). In this simplified setting, we avoid the potential difficulties of

19

http://biostats.bepress.com/jhubiostat/paper158



z

z

z

z

0.89 0.91 0.93

0.89

0.90

0.91

0.92

0.93

0.94

s

A − D

S=4

z

z

z

z

0.90 0.92 0.94 0.96 0.98

0.90

0.92

0.94

0.96

0.98

t

t

t

s

s

E − I

S=8

z

z
z

z

0.75 0.80 0.85 0.90

0.75

0.80

0.85

0.90

t

t

s

s

J − M

S=16 z

z

z

z

0.68 0.72 0.76 0.80

0.68

0.70

0.72

0.74

0.76

0.78

0.80 t

t

t

t s

s

s

O − R

S=32

AUC − XDE

A
U

C
 −

 a
lte

rn
at

iv
es

Figure 3: The AUC for concordant differential expression in Simulations A - D (top left), E - I (top right),
J - M (bottom left), and O - R (bottom right) was calculated for each of the alternative methods (t, SAM,
and z) and plotted against the AUC obtained from the Bayesian model. The diagonal line in each panel is
the identity. The lower limit for the axes are based on the minimum of the AUC’s from the Bayesian and
z-scores; hence the t and SAM scores are not always plotted. See Table 1 for the simulation parameters.

cross-platform analyses that can arise from technological and/or biological differences between

studies. For instance, differences in the annotation of the probes or ethnic composition of the study

populations may each contribute to discrepant results in a meta-analysis, but such concerns are

reduced when splitting a single study.

After fitting the Bayesian model to the four splits, traceplots for the parameters a, b, l, t, γ2,

c2, τ2, ξ, ρ, and r (each of which are updated by Metropolis-Hastings proposals) were used to

evaluate convergence (see Supplementary Figure 11). We define the Bayesian effect size BES for

gene g and platform p, by
δg∆gp

cτpσ
bp
gp

, and use this as a study-specific Bayesian estimate of differential

expression, contrasting it with the z, t, and SAM statistics. Scatterplots of the study-specific t-, z-,
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Figure 4: To evaluate the extent to which random draws of δ∗ and ∆∗ influence the performance of the
different methods, we simulated 10 artificial datasets for Simulation A† (top row), E† (row 2), and J† (row 3)
using different seeds for the random number generator. In each panel, we plot the AUC from the Bayesian
model (horizontal axis) against the AUC from the z-score (vertical axis). Not shown are the AUC from
the SAM- and t-scores. The columns depict the three different ways to evaluate differential expression.
Posterior averages for the Bayesian statistic (Section 4) were calculated from 1000 iterations (saving every

20th iteration of 20,000 iterations) following a burnin of 2000 iterations.

and BES statistics are shown in Figure 5. If we consider the t, SAM (not shown), and z statistics as

evidence of differential expression in a single study, we observe that the evidence is study-dependent

with only moderate correlation of these statistics across the splits (Figures 5(c) and 5(d)). Hence,

scatterplots of the study-specific statistics provide two important pieces of information: first, even

in a scenario that minimizes inter-study discordance, the variation across studies of the effect size

statistics underscore the difficulty of identifying genes that show consistent evidence of differential

expression; secondly, while the scatterplots do not lend themselves directly to identifying a list of

genes for follow-up, the moderate correlation among the study-specific statistics does motivate an

approach that uses the information from all of the studies.

A set of concordant differentially expressed genes emerges from the visualization of the BES

scatterplots in Figure 5(b). Through modeling the inter-relationships of genes and studies at higher
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levels of the model, the Bayesian model shrinks noisy genes to zero without requiring extensive

filtering prior to the analysis. The cigar-shaped pattern in Figure 5(b) is typical when fitting the

Bayesian model, though the correlation is higher than what one may expect to observe when the

studies are independent and use different platforms (see Section 7). In choosing a list of genes to

follow for subsequent laboratory investigation, the PMC(g), displayed in Figure 5(a), can be used

to rank the evidence of concordant differential expression.

Validation of microarray experiments typically involves assaying RNA transcript abundance

of candidate genes selected from the high-throughput technologies by low-throughput platforms,

such as qRT-PCR. As the PMC(g) identifies genes whose differential expression is relatively study-

and/or platform-independent, validation of the gene list selected by PMC(g) may be less likely

to result in false discoveries as suggested by the simulations in the previous section. Hence, in

addition to increasing the power to detect differentially expressed genes in the context of small

sample size, meta-analysis could potentially result in a cost-savings downstream of the analysis.

However, the more likely scenario with meta-analysis is the attempt by an impartial investigator

not directly associated with the primary studies to synthesize the information. Reporting the genes

and pathways that are affected in each of the studies, as well as the genes and pathways that appear

discordantly regulated are important. Whether the goal is to produce a gene list that is likely to be

validated by other platforms, or to explore more deeply the biological explanations of concordance

and discordance, the Bayesian model provides a useful mechanism for achieving these goals.
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Figure 5: Top left: Distribution of the posterior probability for concordant differential expression, PMC(g).
Panels 2-4 are scatterplots of study-specific measures of differential expression in the split-study validation.
t and z statistics, estimated independently for each study, show considerable variation across studies with
discordance that is probably within the noise of the experiment. The modest correlation of the study-specific
statistics motivates an approach that more effectively models the inter-study and inter-gene relationships.
The BES (top right) shows how noisy genes are shrunk towards zero, whereas genes in quadrants (+, +)
and (-, -) that show some evidence of differential expression in each of the studies are shrunk less. As the
PMC(g) is useful for ranking concordant differential expression in multiple studies or platforms, the highest
ranked genes are typically genes whose differential expression was not platform- or study-dependent. As
the goal of many microarray experiments is to select genes for subsequent validation by other platforms for
measuring transcript abundance (such as qRT-PCR), a ranking that is not platform- and study-dependent
may facilitate this effort.
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7 Experimental data example

Estrogen receptor is an important risk factor for breast cancer tumorigenesis and several gene

expression studies have collected phenotypic information on estrogen receptor (ER) status (positive

or negative). In this section, we fit the Bayesian model to four publicly available datasets described

in Huang et al. (2003) (Huang), Hedenfalk et al. (2001) (Hedenfalk), Farmer et al. (2005) (Farmer),

and Sorlie et al. (2001) (Sorlie), using ER status as the clinical variable. Table 3 shows the

distribution of ER for the four breast cancer studies. The main purpose of the integration of

the breast cancer studies is to define a profile of differentially expressed genes using our Bayesian

hierarchical model that is less likely to be platform-dependent. See Section 5 for a brief description of

the data and pre-processing steps. Because the studies involve different gene expression platforms,

we cross-reference the study-specific gene annotations by Entrez gene identifiers and focus our

discussion on the set of 2064 Entrez genes that were present in each of the four studies.

platform ER- ER+

Hedenfalk cDNA 6 10
Sorlie cDNA 30 81

Farmer Affymetrix hu133a 22 27
Huang Affymetrix hu95av2 23 65

Table 3: Distribution of the estrogen receptor in the three studies

When fitting the Bayesian hierarchical model to the breast cancer datasets, we found it unneces-

sary to change the hyperparameters and tuning parameters for the Metropolis–Hastings algorithm

from their default values (see Table 4). To monitor the convergence and mixing properties of the

Markov chain, we used visual inspection of trace plots of the various variables simulated. The slow-

est convergence and mixing properties occurs for the four hyper-parameters θp, λp, tp and lp, see

for example the trace plots of lp, p = 1, 2, 3 in Supplemental Figure 12. A burn-in of 5000 iterations

is sufficient for convergence in most instances, but this should be evaluated on a case by case basis.

We calculated posterior statistics using every 20th iteration after 2000 iterations burnin.

The histograms in Figure 6 display PME(g), (top), PMC(g) (middle), and PMD(g) (bottom).

Among the 77% of genes that are differentially expressed, 42% are concordant and 35% are discor-

dant. The Bayesian model likely overestimates the true proportion of genes that are differentially

expressed. This is a consequence of the model putting a very small variance on the ∆ parameter.
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In particular, c2 becomes small. In our formulation, differential expression (whether concordant or

discordant) is defined as a departure of any magnitude from ∆ = 0. The model is likely sensitive

to systematic artifacts in the data that are confounded with phenotype. Nevertheless, the overall

ranking of the genes and the main conclusions of the analysis are not affected. Estimates of concor-

dant differential expression, the most common goal of most integration efforts, appear unaffected

by the ξ inflation– the posterior expected proportion of false positives for the experimental data

were low for a range of reasonable cutoffs for differential expression. In particular, the posterior

expected proportion of false positives using thresholds of 0.5 and 0.9 for PMC(g) ranges from 0.22

to 0.04, respectively (Efron and Tibshirani, 2002). The software implementation of the Bayesian

model flags instances of small c2 alerting the user that the posterior averages may be miscalibrated.

Evaluating different priors for ∆ is a future direction of this research.

We explore concordant and discordant differential expression separately, combining visualiza-

tions that are effective for summarizing the overall reproducibility (pairwise scatterplots of effect

size) with statistics from the Bayesian model that can be used to target a specific subgroup of

genes that appear to be concordantly (Figure 7) or discordantly (Figure 8) regulated in the differ-

ent studies. Genes in the highest decile of PMC(g) (to the right of the vertical dashed line in Figure

7(a)) are plotted with a different symbol (circles) and color (black) in the pairwise scatterplots of

BES, t-, and z-statistics. The Bayesian model shrinks noisy estimates of the effect size towards

zero (panel b, Figure 7(b)), whereas consistent estimates of differential expression in the studies

are shrunk less and appear in quadrants (-, -) and (+, +) of the pairwise scatterplots of BES in

panel b.

Figure 8 explores discordance. Panels b - d are the same as in Figure 7, but with an emphasis

on inter-study discordance identified by thresholding the upper 5% of genes by the PMD(g) (genes

to the right of the vertical dashed line in Figure 8(b)). Again, emphasis is placed on a subset

of genes through different plotting symbols (“x”) and color (black). Note that almost all of the

discordance in the scatterplots shown in Figure 8b - d arise from pairwise comparisons of cDNA

platforms (Sorlie and Hedenfalk) to the Affymetrix platforms (Farmer and Huang). Discordance

between Affymetrix and cDNA platforms may arise, for instance, as a result of probes hybridizing

to different transcripts of the same gene. Note that the scatterplots comparing like platforms

(Sorlie versus Hedenfalk (both cDNA) and Farmer versus Huang (both Affymetrix)), the effect size
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estimates of the highlighted genes are positively correlated. Exploring the discrepancies across the

different platforms is an interesting future direction of this research.
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Figure 6: Histograms of gene-specific posterior probabilities for differential expression {PME(g)}, concordant
differential expression {PMC(g)}, and discordant differential expression {PMD(g)}. The top figure suggests
that a high proportion of the genes (77%) show some evidence of differential expression in one of more
studies. In the analysis of multiple studies, the differential expression can be further classified as concordant
(35%) or discordant (42%). We emphasize the utility of the ranks of these statistics for identifying genes
whose differential expression is consistent (rank of PMC(g)) or inconsistent (rank of PMD(g)) across studies.
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Figure 7: Ranking genes by the PMC(g) is useful for exploring inter-study agreement of differential ex-
pression. Here, we threshold genes by the 90th percentile of the distribution for the posterior average of
concordant differential expression, PMC(g) (panel a). Pairwise scatterplots of the study-specific statistics for
the four breast cancer studies are provided in panels b - d. A different plotting symbol (circles) and color
(black) is used for the genes in the highest decile of PMC(g). The posterior expected proportion of false
positives corresponding to this threshold is approximately 0.04.
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Figure 8: The posterior average of the probability of discordant differential expression, PMD(g) (panel a),
can be used to explore discordance. Here we threshold pairwise scatterplots of the study-specific statistics
from the four breast cancer studies (panels c and d) by the 95th percentile of the PMD(g) distribution (panel
a). Again, we use a different plotting symbol (x) and color (black) for genes surpassing this threshold to
emphasize the discordance. In particular, note that almost all of the discordance in the scatterplots of panels b
- d arise from pairwise comparisons of cDNA platforms (Sorlie and Hedenfalk) to the Affymetrix platforms
(Farmer and Huang). For the two scatterplots comparing more similar platforms (Sorlie versus Hedenfalk
and Farmer versus Huang), the effect size estimates of the highlighted genes are positively correlated.
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8 Closing remarks

In this paper we define a hierarchical Bayesian model for microarray expression data collected from

several studies and use it to identify genes that show differential expression between two conditions.

We evaluated its performance using artificial data, real data, and a novel ”split-sample” validation

approach that provides a model-free assessment of the behavior of the model not only under the

null hypothesis but also under a realistic alternative. The simulation results from the artificial

data demonstrate the advantages of a Bayesian model. Compared to a more direct combination

of t- or SAM-statistics, the 1 − AUC values for the Bayesian model are roughly half of the corre-

sponding values for the t- and SAM-statistics. Furthermore, the simulations provide guidelines for

when the Bayesian model is most likely to be useful. In small studies the Bayesian model generally

outperforms other methods when evaluated by AUC, FDR, and MDR across a range of simulation

parameters, and these differences diminish for larger sample sizes in the individual studies. The

split-study validation illustrates appropriate shrinkage of the Bayesian model in the absence of

platform-, sample-, and annotation-differences that otherwise complicate experimental data analy-

ses. Using experimental data from four high-thoughput gene expression studies for breast cancer,

we evaluate differential expression using estrogen receptor status (positive or negative) as the clin-

ical covariate of interest. We evaluate concordant and discordant differential expression separately,

using posterior averages from the Bayesian model to identify subsets of genes that may be partly

explored in-silico. For instance, Figure 8 identified a subset of genes in the breast studies that were

discordant across platforms (cDNA versus Affymetrix) but remain positively correlated within a

platform (cDNA versus cDNA and Affymetrix versus Affymetrix). Further filtering this list by

genes with known alternative transcripts that may be measured differently by platform (probes

hybridizing to different splicoforms) may add insight to the differential expression of splicoforms of

a gene. Because such in-silico hypotheses can only be validated by laboratory based methods such

as qRT-PCR, we leave this as an open thread for future investigation.

Of the models previously proposed in the literature, the model of Conlon et al. (2006) is con-

ceptually closest to ours. The Conlon model is designed for cross-study within-platform analyses

and was not directly applicable to the case studies in our article. However, it is useful to contrast

the technical features of the two approaches. Both are hierarchical Bayesian models, and both have
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a differential expression indicator for each gene. Differences emerge in how each model handles

the increased variation in expression values for differentially expressed genes. We assign separate

distributions to the expression values of samples in each condition. Conlon et al. (2006) assume

that the expression values for differentially expressed genes are independent, but with an increased

variance; they do not make use of the condition information for each sample. In addition, we adopt

a more refined and flexible model for the covariance structure of the expression values. A practical

consequence of these differences is in the application of the models to gene expression data from

different platforms. In particular, our model can be fit to multiple studies regardless of platform,

whereas Conlon et al. (2006) is most applicable for combining replicates from a single platform.

In this sense, the Conlon et al. (2006) model could be viewed as a special case of our model when

the technological differences in scale and variation are approximately zero and conjugacy between

location and scale is true.

Our hierarchical model does not require that studies be measured on the same platform and this

generality has advantages and disadvantages. One advantage is that we model the differences in

scale and variation of expression intensities across platforms directly, removing some of the need for

extensive normalization and nonparametric rank-based approaches. However, in any multi-study

analysis, discordance can arise from biological differences in the sample populations of each study, as

well as technological effects related to the design and implementation of specific array technologies.

Modeling gene expression in a hierarchical way, we borrow strength across studies and genes, by

shrinking noisy estimates to zero and capturing correlated signals from the different studies. If

the discordant signal is stronger than the concordant signal, this may induce a ’wrong’ borrowing

of strength in which concordant differential expression is seen as noise and shrunk towards zero.

Simple scatterplots of study-specific measure of effect size, such as the SAM statistic, are a very

simple diagnostic that can be performed before fitting the Bayesian model. Typically, one may see

a cloud of effect size statistics near zero and some correlation in the positive (+, +) and negative

(-, -) quadrants. In such situations, the Bayesian model will shrink the cloud to zero, providing less

shrinkage of the concordantly differentially expressed genes and more shrinkage of the discordant

differentially expressed genes.

It is common in the analysis of high-throughput gene expression data to apply a gene-selection

procedure prior to the formal analysis of differential expression. For instance, when estimating

30

Hosted by The Berkeley Electronic Press



differential expression by a statistic that has in its denominator an estimate of the across-sample

variation, one may wish to remove genes of low abundance that show very low across-sample

variation. In our Bayesian model, each gene has a parameter representing the numerical value of

its differential expression. The priors for these parameters have a point mass at zero, corresponding

to no differential expression. Such a parameterization removes the need to apply gene selection

techniques prior to the analysis of differential expression, permitting a more direct and model-based

procedure. See also the discussion in Ishwaran and Rao (2003, 2005).

When fitting the Bayesian model to pure noise, the model behaves appropriately and the es-

timated proportion of differentially expressed genes (the union of concordant and discordant) is

approximately zero. Also, the simulated data examples illustrate that the proportion of differen-

tially expressed genes, as estimated by the posterior mean of ξ, is typically calibrated. Nevertheless,

in the experimental data example we observed a ξ of 0.77. Of these, 35% are predicted to be discor-

dant and 42% are predicted to be concordant, and the distribution of these posterior probabilities

show a large number of genes with values below .5 (Figure 6). Better calibration of ξ is a future

direction of this research and may be possible by exploring different priors for the ∆.

Our Bayesian model can be modified and generalized in several respects. First, the possibility

of missing gene expression observations can easily be included. The missing xgsp can simply be

integrated out from the posterior distribution. Second, in the current model we have assumed the

same set of genes in all the studies. Partly overlapping gene sets can of course be included in the

model just by considering expression values corresponding to genes that are not present in a study

as missing. However, to design a more efficient computational algorithm one should integrate out

both these xgsp’s and the corresponding ∆′

gps from the model, as is possible to do. Third, it is also

technically straightforward to allow for missing observations in the phenotype. In that case we need

to assign an additional probabilistic model for the ψsp’s and simulate the unobserved ones within

the Metropolis–Hastings algorithm. This will in effect produce a prediction of the unobserved

clinical variables. However, if the number of unobserved clinical variables is large, we expect it to

be necessary to use block updates in the Metropolis–Hastings algorithm to avoid slow convergence

and mixing.

Our results provide a strong indication that borrowing strength across both genes and studies

can be effective in the analyis of multi-platform studies. As is the case for most complex multilevel
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models, this comes at the price of added computational effort, and an increased burden of proof

that the modeling assumptions are tenable.

References

Baldi, P. and Long, A. D. “A Bayesian framework for the analysis of microarray expression data:
Regularized t–test and statistical inferences of gene changes.” Bioinformatics, 17(6):509–519
(2001).

Barnard, J., McCulloch, R. R., and Meng, X.-L. “Modelling Covariance Matrices in Terms of Stan-
dard Deviations and Correlations, with Application To Shrinkage.” Statistica Sinica, 10:1281–
1311 (2000).

Beer, D. G., Kardia, S. L., Huang, C.-C., Giordano, T. J., andDavid E. Misek, A. M. L., Lin, L.,
Chen, G., and et al. “Gene-expression profiles predict survival of patients with lung adenocarci-
noma.” Nature Medicine, 8(8):816–824 (2002).

Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti,
J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson,
B. E., Golub, T. R., Sugarbaker, D. J., and Meyerson, M. “Classification of human lung carci-
nomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.” Proceedings
of the National Academy of Sciences USA, 98:13790–13795 (2001).
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9 Supplemental Material

hyperparameters

αa 1
βa 1
p0
a 0.1
p1
a 0.1
αb 1
βb 1
p0
b 0.1
p1
b 0.1
νr P + 1
νρ P + 1
αξ 1
βξ 1

c2max 1

Table 4: Default values of the hyperparmeters in the Bayesian model for a dataset with P studies. For each
of the simulated and real datasets in this paper, we used the default hyperparameters with P = 3.
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Figure 9: Trace plots of Metropolis-Hastings parameters obtained from fitting the Bayesian model to a
simulated dataset of three studies. The parameters used to simulate the data are provided in row 1 of Table
1. A thinning interval of 20 was used in this plot, hence only 1100 out of 22,000 iterations are plotted. The
first 4000 iterations were discarded before calculating posterior statisics of interest.
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(a) Differential expression (E)
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(b) Discordant differential expression (D)

Figure 10: In each panel, we plot the AUC obtained from alternative methods on the vertical axis and the
AUC from the Bayesian model (XDE ) on the horizontal axis. Differential expression (E) and discordant
differential expression (D) are considered separately. In several instances, the AUC corresponding to the t-
and SAM-scores were lower than the limit used for the scatterplots and were not plotted.
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Figure 11: A single dataset, the Huang study, was split into four disjoint parts with 5 ER negative and 16
ER positive samples in each. Plotted are traces for a subset of the Metropolis-Hastings parameters.
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Figure 12: Traceplots for Metropolis-Hastings parameters in the experimental data example.
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