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1 Introduction

Epidemiological studies typically involve data on many hundreds of individuals, and sam-
ple sizes of several thousand are not uncommon. The datasets involved are therefore large,
but although this makes accurate estimation feasible, standard parametric models almost
always fit these data poorly, detracting from the prima facie validity of model-based infer-
ence. A modern frequentist approach to this problem is to dispense with the requirement
of a correctly-specified parametric model: by stating, non-parametrically, what we want to
know about the data-generating mechanism, estimating equations and associated ‘robust’
or ‘sandwich’-based intervals provide accurate large-sample inference, at no more computa-
tional effort than fitting a generalized linear model. We investigate an analogous Bayesian
approach to model-robust inference. Taking the example of multivariate linear regression, we
show that simple Bayesian methods can provide intervals with the same model-robustness
as the frequentist approach. We also discuss where the addition of prior information may
additionally provide better small-sample properties.

The goal of multivariate linear regression is to find β such that Y = Xβ holds approxi-
mately, where Y is an n-vector of dependent variable observations, X is an n×m matrix of
covariate observations, and β is an m-vector of coefficients. Since the early work of Gauss [1]
and Legendre [2] it has been understood that the least squares criterion and the associated
estimate

β̂ls = argmin
β

n∑
i=1

(Yi −Xiβ)2

are appropriate for many applications. This paper is concerned with a Bayesian formulation
that is firmly rooted in the idea of minimizing the least squares criterion and that does not
rely on assumptions that the data follows an underlying linear relationship, or has constant
variance. Our objective is to formulate the problem such that β̂ls is the Bayesian point
estimate with an appropriate measure of uncertainty that is robust to deviations from the
standard modeling assumptions.

A model-based version of Bayesian linear regression can be found in [3]. RegardX as being
constructed of n observations of an m-vector x. Assume that Y is derived as n independent
samples from the random variable y which is distributed conditionally on x as

y|x, β, σ2 ∼ N(xβ, σ2) (1)

with minimally informative priors on the parameters p(β, σ2) ∝ σ−2. It is natural to take as
a point estimate the posterior mean

β̂model = Eβ,

and it turns out that this is the least squares estimate β̂model = β̂ls. As a measure of
uncertainty it is natural to use the diagonal of the posterior covariance matrix

σ̂model = diag [Cov(β)]1/2 ,

which turns out to be the classical frequentist standard error estimate.
The limitations of this model-based formulation are both conceptual and practical. Con-

ceptually, it is unsatisfying to assume that there is a true underlying linear relationship
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between x and the mean of y and, further, that the random deviation of y around the mean
is homoscedastic. It is an extremely rare situation in applications where we believe that a
truly linear relationship exists, and that the statistical challenge is simply to find the coef-
ficient. Rather, what we are typically interested in is finding the best approximation to a
linear relationship. Furthermore, whatever the relationship between the mean of y and x, we
generally do not know if the deviations have constant variance.

On a practical level, we are happy to use the least squares point estimate because it has a
familiar interpretation, regardless of model validity. But the uncertainty estimates are a dif-
ferent matter. It is widely held that Bayesian credible intervals should give correct frequentist
coverage if the estimation procedure is to be regarded as successful. See Chapter 4 in [3] as
well as [4], [5], [6], [7]. However, σ̂model is exactly the classical standard error estimate, and
violation of either linearity or homoscedasticity leads to asymptotically incorrect frequentist
coverage properties. This fact is well known and is easy to verify with simulation studies. An
interesting example with a discrete covariate space can be found in [8]. Reference [9] contains
a discussion in the Bayesian context with some examples.

A number of Bayesian approaches have been proposed to accommodate heteroscedasticity
and nonlinearity. A natural way to deal with heteroscedasticity is to put a more flexible
prior on the variance. Several parametric priors are described in [3], [10], and the references
therein. More generally, recently-developed non-parametric Bayes methods offer asymptotic
convergence of the fitted model to the truth, but (despite the name) this is achieved by
use of a fixed class of highly parameterized models, requiring cutting-edge computation, and
particular caution in choice of priors [11]. In any case, these methods can result in a different
point estimate from the least squares fit. We prefer the least squares paradigm due to its
familiar interpretation, regardless of model validity.

Berger has developed a Bayesian theory of robust inference that is separate from concerns
about frequentist sampling properties [12]. The focus is on robustness in selecting priors for
parameters in a given Bayesian model, but at least conceptually it is clear from the discussion
that model choice can be viewed as part of the prior specification. Given the focus on priors
for model parameters, the theory in [12] has not been directly applied to our problem. An
example application to estimating a normal mean can be found in [13].

Some previous work has elements in common with our approach. The Bayesian method
of moments [14] avoids making any assumptions about the variance structure or even the
probability distribution of the dependent variable. However, it seems that this approach
still requires assuming linearity, and its relationship to traditional Bayesian theory has been
subject to debate; see critical comments in [15] and the rejoinder in [16]. Bayesian least
squares, described in [17] and [18], emphasizes squared error losses without assuming a true
model, but it does not naturally lead to robust solution of the linear regression problem.
Finally, reference [19] uses the posterior predictive squared error loss for model selection but
does not derive point or interval estimates based on this criterion.

1.1 Generic Model

Instead of the standard modeling assumptions in equation (1), we assume that y is distributed
conditionally on x as

y|x, φ, σ2 ∼ N(φ(x), σ2(x)),
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with minimally informative priors that make the functions φ(·) and σ2(·) separately iden-
tifiable. We defer being more specific so that we can separately address the discrete and
continuous covariate scenarios, but we emphasize that we will assume neither linearity nor
homoscedasticity, as priors based on these assumptions would make everything that follows
reduce to the model-based version. We begin by describing two model-robust Bayesian for-
mulations. The first gives only point estimates, while the second gives point and interval
estimates.

1.2 Point Estimates

Our first version of a point estimate will be defined as the minimizer of the average posterior
predictive squared error (y∗(x)− xβ)2, where y∗(x) is a random variable with the posterior
predictive distribution of y conditional on x. We need to integrate over some measure on
x, and the choice of measure is based on the source of covariate observations: conditional
inference is based on assuming that the set of observed x is fixed, and population inference
is based on regarding the set of observed x as being sampled at random from an unknown
population. The question of whether conditional or population inference is preferable dates
to Fisher and Pearson [20] [21]. Some recent comments on the implications can be found in
[22] and [23] for linear regression, and in the context of case-control studies in [24] and [25].

For conditional inference, we let P(x) be the empirical probability measure based on the
n fixed observations of x, and we define the estimate

β̂∗
cond = argmin

β
E

∫
(y∗(x)− xβ)2 dP(x). (2)

For population inference, we need to specify a prior for the distribution of x in the population.
We will use a Dirichlet type prior, but for now it is enough to assume a parametric form
x ∼ P (x|λ). We define the population estimate

β̂∗
pop = argmin

β
E

∫
(y∗(x)− xβ)2 dP (x|λ). (3)

The posterior expectation is over random y∗ and λ, and β̂∗
pop can be regarded as minimizing

the expected posterior predicted squared error over the random covariate distribution.
We will see that both of these estimates are equal to the least squares fit, at least in the

case of discrete covariates. This is satisfying because the formulation does not depend on
assuming linearity or homoscedasticity. However, it is not clear how to derive uncertainty
estimates. Since the point estimates are not derived as the posterior mean of a parameter, the
typical Bayesian approach of using the standard deviation of that parameter is not available.

1.3 Interval Estimates

We now introduce a second formulation based on defining a new random parameter: the least
squares fit to φ(·), the random mean function. We obtain point and uncertainty estimates as
the expectation and standard deviation of this parameter. In the conditional inference case,
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we define the parameter

θ†cond = argmin
β

∫
(φ(x)− xβ)2 dP(x). (4)

Each realization of θ†cond is the least squares fit to a realization from the posterior of φ(·),
ranging over the fixed set of observed x values. This is precisely the quantity we are interested
in, since we are looking for a linear approximation to the variation in the mean of y as a
function of x. We define

β̂†
cond = Eθ†cond (5)

and

σ̂†
cond = diag

[
Cov(θ†cond)

]1/2

to be the associated point and uncertainty estimates. Along similar lines, we define a param-
eter for the population inference case

θ†pop = argmin
β

∫
(φ(x)− xβ)2 dP (x|λ), (6)

with
β̂†

pop = Eθ†pop (7)

and
σ̂†

pop = diag
[
Cov(θ†pop)

]1/2

as associated point and uncertainty estimates. The difference from conditional inference is
that each realization of θ†pop is the least squares fit to a realization from the posterior of
φ(·) ranging over a realization from the posterior distribution of x, rather than over fixed
observations of x.

1.4 The Sandwich Estimator

We will see in the rest of this paper that the uncertainty estimate for population inference,
σ̂†

pop, is asymptotically equivalent to the Huber-White sandwich standard error [26] [27]. This
is not surprising since both are obtained in a two step process that decouples uncertainty
estimation from the least squares optimization, allowing nonlinearity and heteroscedasticity
to affect the uncertainty estimates without changing the point estimates. The connection
with the sandwich estimator is important for a number of reasons.

First, it is known that sandwich-based intervals have asymptotically correct coverage
even when the assumptions of linearity and homoscedasticity are violated. Thus, we have
essentially achieved our objective of defining a Bayesian paradigm for linear regression that
is robust to model misspecification both conceptually (since our prior model assumes neither
linearity nor homoscedasticity) and in practice (since the resulting intervals have correct
frequentist coverage).

Second, Freedman [28] has argued that there are difficulties of interpretation for the
sandwich estimator if the mean model is misspecified. The difficulty arises only if one views
the sandwich estimator as a way to make maximum likelihood estimation more robust [29],

4

http://biostats.bepress.com/uwbiostat/paper320



and alternative frequentist interpretations are available in terms of estimating equations [30].
Our approach provides an intuitive interpretation of what is being approximated in a Bayesian
context by focusing on the best linear fit to a random mean function. In fact, at least for
discrete covariates, we obtain a decomposition of the uncertainty into two pieces: one piece
accounts for variability induced by randomness of y conditional on x, and the other piece
accounts for variability induced by nonlinearity of the true mean model and randomness of
x in the population. See equations (12), (13) and (15) in the proof of Theorem 3.

Finally, given the persistence of separate Bayesian and frequentist approaches to infer-
ence, it is hoped that identifying features common to both schools will advance the overall
development of statistical practice. The sandwich estimator is popular in frequentist analysis,
and to our knowledge the present paper is the first Bayesian derivation of equivalent interval
estimates.

1.5 Outline of Paper

The plan for the rest of this paper is as follows. In Section 2 we complete specification of
priors for the case of a discrete covariate, and we give explicit forms for the associated point
and interval estimates. In Section 3 we describe how we apply our approach in the continuous
covariate case. In Section 4, we illustrate the discrete and continuous covariate cases with
simulation examples. We conclude with a discussion in Section 5.

2 Discrete Covariate

Let ξ = (ξ1, . . . , ξK) consist ofK non-zero deterministicm-vectors that span IRm, and suppose
that the covariate x can take these values. Let nk be the number of i = 1, ..., n such that
Xi = ξk, whereXi is the ith row ofX. We let λ be the diagonal matrix with entries λ1, . . . , λK

and and take it to be the hyperparameter for the prior distribution of x, such that

P (ξk|λ) = λk,
K∑

k=1

λk = 1.

We use an improper Dirichlet prior for λ such that

p(λ) ∝
K∏

k=1

λ−1
k (0 if

K∑
k=1

λk 6= 1).

The posterior distribution of λ is also Dirichlet with

p(λ|X) ∝
K∏

k=1

λ−1+nk
k (0 if

K∑
k=1

λk 6= 1).

One way to simulate values from the posterior is to draw independent gamma variates gk

with shape parameters nk and unit scale parameters and then set λk = gk/(g1, . . . , gK) [31].
There is a connection between the posterior distribution for x and bootstrap resampling [32].
We will comment on this further in Section 5.
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The discrete covariate situation is interesting because we can assume multiple samples at
each covariate value, so it is straightforward to compute the posterior distribution for com-
pletely unstructured priors on φ(·) and σ2(·). We introduce vector notation φ = (φ1, . . . , φK),
σ2 = (σ2

1, . . . , σ
2
K) with

φk = φ(ξk), σ2
k = σ2(ξk),

and independent non-informative priors

p(φk, σ
2
k) ∝ σ−2

k .

We now present a series of three theorems characterizing our model-robust point and uncer-
tainty estimates. All of these results are proved in the appendix. The first theorem establishes
that the model-robust point estimates derived by minimizing the posterior predictive squared
error recover the least squares point estimate.

Theorem 1 For a discrete covariate space the estimates β̂∗
cond and β̂∗

pop defined by equa-
tions (2) and (3) take the form

β̂∗
cond = β̂∗

pop = (X tX)−1X tY.

The second theorem concerns conditional inference based on the mean and standard
deviation of the parameter θ†cond defined in equation (4). The point estimate is the least
squares solution, and the uncertainty estimate has a sandwich form, but with a different
covariance matrix than appears in the Huber-White version. The covariance matrix is based
only on the variability of y conditional on x. Unlike the Huber-White version, it does not
include deviations from the linear fit. This is appropriate because deviation from a linear
model does not induce variability in the point estimate if we condition on the observed x.

Theorem 2 For a discrete covariate space the estimate β̂†
cond defined by equation (5) takes

the form
β̂†

cond = (X tX)−1X tY,

and assuming there are at least four samples for each covariate value, the corresponding
uncertainty estimate has the sandwich form

σ̂†
cond = diag

[
(X tX)−1

(
X tΣ†X

)
(X tX)−1

]1/2

where Σ† is the diagonal matrix defined by

Σ†
ij =


1

nk − 3

∑
l:Xl=ξk

(Yl − ȳk)
2 if i = j and Xi = ξk

0 if i 6= j

and

ȳk =
1

nk

∑
l:Xl=ξk

Yl.
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The third theorem concerns the population inference analogue to the previous result.
Specifically it contains asymptotic results for estimates based on the mean and standard
deviation of the parameter θ†pop defined in equation (6). The point estimate is again the least
squares solution and the uncertainty estimate has a sandwich form, this time with the same
covariance matrix as the Huber-White version. It is appropriate that the covariance matrix
includes deviations from the linear fit because these can translate into increased variability
of the point estimate when we incorporate a random covariate distribution.

Theorem 3 For a discrete covariate space, assume that y conditional on x has bounded first
and second moments. The estimate β̂†

pop defined by equation (7) takes the asymptotic form

β̂†
pop − (X tX)−1X tY → 0,

and assuming there are at least four samples for each covariate value, the corresponding
uncertainty estimate has the asymptotic sandwich form

σ̂†
pop − diag

[
(X tX)−1

(
X tΣX

)
(X tX)−1

]1/2
= o(n−1)

where Σ is the diagonal matrix defined by

Σij =


(
Yi −Xi(X

tX)−1X tY
)2

if i = j

0 otherwise.

The results hold conditionally almost surely for infinite sequences of observations.

The foregoing results show that our model-robust uncertainty estimates incorporate the
appropriate sources of variability for conditional and population inference. Consistent with
this, we will see in simulation examples in Section 4 that they lead to asymptotically correct
intervals, even when the true model is heteroscedastic and/or nonlinear.

3 Continuous Covariate

We turn now to the case of a continuous covariate space. The situation is different because
we cannot expect there to be multiple realizations of each covariate value in the sampled
set. The problem of estimating φ(·) and σ2(·) as unconstrained functions is unidentifiable.
However, in applied regression settings it is almost always reasonable to assume that these
are sufficiently regular to be approximated by semi-parametric smoothing methods. This is
a very weak assumption compared to assuming linearity and/or homoscedasticity.

Any minimally informative smoothing prior for φ(·) and log σ(·) would be an appropriate
analogue to the priors from the discrete covariate case. A review of some relevant methods
for univariate and multivariate problems can be found in [33]. We describe a particular choice
of spline prior that we implement in our examples and leave the general issue of choosing
optimal smoothing priors for future work.

7
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We restrict to scalar x in a model with an intercept and approximate φ(x) and log σ(x)
with penalized O’Sullivan splines using a method based on [34], extended to allow for het-
eroscedasticity. The basic idea is that we pick Q knots spread uniformly over the potential
range of x and set

φ(x;u) = α0 + α1x+

Q∑
q=1

uqBq(x)

log σ(x; v) = γ0 + γ1x+

Q∑
q=1

vqBq(x),

where the Bq(x) are B-spline basis functions defined by the knot locations, with independent
priors αi ∼ N(0, 106), γi ∼ N(0, 106). The specification of priors for u and v involves
some transformations and amounts to the following. Define the matrix Z to incorporate an
appropriate penalty term as in Section 4 of [34] and let

φ(xi; a) = α0 + α1x+

Q∑
q=1

aqZiq

log σ(xi; b) = γ0 + γ1x+

Q∑
q=1

bqZiq

with independent priors aq ∼ N(0, σ2
a) and bq ∼ N(0, σ2

b ) and hyperparameters distributed as
(σ2

a)
−1 ∼ Gamma(0.1, 0.1) and (σ2

b )
−1 ∼ Gamma(0.1, 0.1). It is straightforward to simulate

from the posterior distributions using WinBUGS software [35] [36].
For a prior on the covariate we use the limiting case of a Dirichlet process that gives rise

to the same posterior Dirichlet distribution as we had for discrete covariates [37].

4 Simulation Examples

4.1 Discrete Covariate

We consider an example of a discrete covariate with m = 3 that can take the K = 10 values

ξ = (1)× (−10,−5, 0, 5, 10)× (1, 2)

= (1,−10, 1), . . . , (1, 10, 1), (1,−10, 2), . . . , (1, 10, 2)

and does so in the population with probabilities

p(ξ) = (0.05, 0.05, 0.1, . . . , 0.1, 0.15, 0.15).

We estimate the multivariate parameter (β0, β1, β2) in our simulations, but we single out the
β1 component for discussion and abuse notation below by omitting the subscript.
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We consider several cases for the true distribution of y given x. We specify a linear
response

flin(x) = 1 + 3.5x1 + 2x2

for which the true conditional and population least squares fits are

βlin,cond = βlin,pop = 3.50.

We also specify a nonlinear response relationship

fnonlin(x) = 1 + 3.5x1 + 2x2 + x2
1 + x2

2

for which the true population least squares fit has the known value

βnonlin,pop = 4.303,

whereas the conditional least squares fit βnonlin,cond varies depending on the sampled set of
covariate values. We also consider an equal variance model σ2

equal = 1 and an unequal variance
model σ2

unequal = (1+x2
1/25)2. Factorial combination gives four possible true models. For each

of the four models we generate 1000 random realizations of X and Y with n = 100, 200, 400.
First assuming we are interested in conditional inference, we calculate our robust Bayesian

conditional point estimate β̂†
cond and 95% credible intervals based on σ̂†

cond. In Table 1 we
compare frequentist mean bias, average interval width, and coverage to the model-based and
Huber-White sandwich-based intervals. In the case of a linear response, the Huber-White
and robust Bayesian intervals provide 95% coverage for equal and unequal variance, and
the model-based intervals are correct for the equal variance situation but are too narrow in
the case of unequal variance. Although we expect the asymptotic coverage probabilities to
be exactly 95%, the observed values deviate slightly due to finite sample sizes and Monte
Carlo error in the simulations. When the underlying response is nonlinear, the model-based
and Huber-White intervals are conservative with 100% coverage because they incorporate
deviation from the linear trend into the standard error estimates. This is not a problem with
the robust Bayesian intervals because they base the interval widths only on local variability
of the response at each value of the covariate.

In the case of population inference shown in Table 2, the situation is somewhat different.
The model-based intervals are correct for the linear equal variance situation but are too
narrow in the case of unequal variance or nonlinear response. We have shown that the
robust Bayesian intervals are asymptotically equivalent to Huber-White intervals for marginal
inference, and in the simulation study both provide correct 95% coverage for all underlying
models. It is correct to include deviation from a linear trend in the interval widths because
this correctly accounts for the fact that the line being approximated depends on the covariate
values, with the degree of dependence increasing for more nonlinearity in the response.

4.2 Continuous Covariate

We consider a second set of examples with a single continuous covariate uniformly distributed
in the interval [−10, 10]. As in the discrete covariate example we evaluate performance for

9
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four true distributions of y given x. These are obtained by taking combinations of the linear
response

flin(x) = 2 + 3.5x

and the nonlinear response
fnonlin(x) = 2 + 3.5x+ x2,

as well as the equal variance model σ2
equal = 1 and unequal variance model σ2

unequal = (1 +
x2/25)2. For each of the four models we generate 200 random realizations of X and Y with
n = 100, 200, 400. Results are given in Table 3 for conditional inference and Table 4 for
population inference.

The conclusions are identical to the discrete covariate situation. Model-based intervals fail
by being either conservative or anti-conservative in all situation except for a linear response
with equal variance. Our Bayesian robust intervals give asymptotically correct coverage for
all cases, and for population inference they are equivalent to the Huber-White sandwich
estimator. For conditional inference, the Huber-White sandwich estimator is conservative if
the true mean model is nonlinear.

5 Discussion

The main contribution of this paper is a simple Bayesian framework for linear regression
that recovers the least squares solution with uncertainty estimates that correctly account
for heteroscedasticity and nonlinearity. Our model-robust intervals can be constructed for
conditional or population inference and have good frequentist coverage properties in both
situations. The population inference estimates are equivalent to the Huber-White sandwich
estimator. It bear emphasis that in establishing this equivalence, we have decomposed the
sandwich estimator into pieces that separately account for random variability of y given x
and nonlinearity in the true mean response; see equations (12), (13), and (15).

We have used a Dirichlet prior for the covariate space in population inference so that
our estimate of the covariate distribution is essentially the sampling distribution for the
observed values. There is a connection with the Bayesian bootstrap [32], but we apply
resampling only to the covariates and not to either the dependent variable or the estimated
residuals. It is known that bootstrap procedures and the sandwich estimator are related
and are asymptotically equivalent for a broad class of regression problems [38][39]. Thus, in
some sense our results are not surprising, but they reflect a fundamentally different approach
to modeling and are not subsumed in bootstrap ideas. The appropriate role for bootstrap
methods has been the subject of much discussion; in a Bayesian context, see for example
reference [40].

In the continuous covariate case, we use splines to approximate the mean and variance
functions. This is necessary because the mean and variance are not separately identifiable
from a single sample at each covariate value. This can be regarded as a weakness in our
approach, but it also suggests an opportunity to improve on the small-sample performance
of the sandwich estimator by incorporating additional prior information. Our spline model
can work in any situation where the true mean and variance are smooth functions of the
covariates. This is a very reasonable assumption for applied problems. In fact, the implicit
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assumption of the sandwich estimator that the variance function has no structure whatsoever
seems overly permissive. By using properly calibrated splines or other semi-parametric priors,
it should be possible to improve upon the small-sample performance by borrowing information
from nearby covariate values. This approach appears particularly promising in the context
of generalized estimating equations, where there may be many samples but too few clusters
to accurately estimate a completely unstructured covariance matrix.

A Proofs of theorems

We begin with some observations and notation for the posterior of φ and the predictive
distribution y∗. Results for the posterior variance of φ are conditional on nk ≥ 4 for all k.
Conditioning on the hyperparameters we have

y|(x = ξk, φk, σ
2
k) ∼ N

(
φk, σ

2
k

)
.

It is known [41] that the posterior φ can be decomposed into its deterministic and random
components

φ = ȳ + ε (8)

such that

ȳk = ȳ(ξk) =
1

nk

∑
l:Xl=ξk

Yl,

and the εk = ε(ξk) are independent zero mean t-distributed random variables with nk − 1
degrees of freedom and variances

Var(εk) =
1

nk(nk − 3)

∑
l:Xl=ξk

(Yl − ȳk)
2. (9)

We let Φ be the n-vector defined by Φi = φ(Xi), with posterior mean

EΦ = Y = (ȳ(X1), . . . , ȳ(Xn)) . (10)

For the posterior predictive process, we let y∗ be the K-vector with entries y∗k = y∗(ξk) and
then we can write

y∗k|φk, σ
2
k = φk + ηk, ηk|σ2

k ∼ N(0, σ2
k) (11)

with the ηk independent of each other.
Denote Ex|λ as expectation with respect to the Dirichlet measure P (x|λ), and Ex as

expectation with respect to the empirical measure P(x).

Proof of Theorem 1. It follows from equations (2) and (11) that

β̂∗
cond = argmin

β
Ey∗

(
Ex

[
(y∗(x)− xβ)2])

= Ex

[
xtx

]−1
Ey∗

(
Ex

[
xty∗(x)

])
=

(
X tX

)−1
X tY

=
(
X tX

)−1
X tY.
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We exploit the repeated structures of X and Y to obtain the fourth line. For the population
inference version

β̂∗
pop = Eλ

(
Ex|λ

[
xtx

])−1
Ey∗,λ

(
Ex|λ

[
xty∗(x)

])
= Eλ[ξ

tλξ]−1Ey∗,λ (ξλy∗)

=
(
X tX

)−1
X tY.

In the last line, we use equation (11) to get the expected value of y∗, and we exploit the
property of the posterior Dirichlet distribution Eλk = nk/n.

Proof of Theorem 2. Similarly to the first set of calculations in the proof of Theorem 1,
we use the definition of θ†cond in equation (4) to get

θ†cond = (X tX)−1X tΦ.

We use the expected value of Φ from equation (10) and the repeated structures of X and Y
to obtain

Eθ†cond =
(
X tX

)−1
X tY.

This establishes the first equality in the theorem. The second equality follows by using
equation (9) to calculate the variance of θ†cond and rearranging terms so the covariance matrix
in the sandwich is diagonal.

For the asymptotic results in Theorem 3 we need the following lemma, which is a version of
the exchangeable central limit theorem. An equivalent formulation of the Dirichlet posterior
weights has a vector λ̃ = (λ̃1, . . . , λ̃n) corresponding to probabilities of resampling each of
the observed (x1, . . . , xn).

Lemma 1 Let {anj} be a bounded triangular array of constants such that

1

n

n∑
j=1

(anj − ān)2 → σ2,

where ān = 1
n

∑n
j=1 anj. Then

1√
n

n∑
j=1

(
anjλ̃j − ān

)
d−→ N(0, σ2).

Proof. The result is a special case of Lemma 4.6 in [42].

Proof of Theorem 3. We condition on an infinite sequence of observations of x and y and
in everything that follows implicitly index by n. By the law of large numbers, the ȳ(x) are
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http://biostats.bepress.com/uwbiostat/paper320



uniformly bounded for all n. We begin by analyzing β̂†
pop,

β̂†
pop = Eφ,λ

{
Ex|λ[x

tx]−1Ex|φ,λ[x
tφ(x)]

}
= Eλ

{
Ex|λ[x

tx]−1Ex|λ[x
tȳ(x)]

}
+ Eε,λ

{
Ex|λ[x

tx]−1Ex|ε,λ[x
tε(x)]

}
= Eλ

{
Ex|λ[x

tx]−1Ex|λ[x
tȳ(x)]

}
.

The last line uses the fact that ε(x) has zero mean. Convergence of β̂†
pop − (X tX)−1X tY

to zero follows from the mean values of the Dirichlet weights and the continuous mapping
theorem, since ȳ(x) is uniformly bounded.

To calculate the variance of θ†pop, we note that

Var(θ†pop) = Varφ,λ

{
Ex|λ[x

tx]−1Ex|φ,λ[x
tφ(x)]

}
= Varε,λ

{
Ex|λ[x

tx]−1Ex|ε,λ[x
t (ȳ(x) + ε(x))]

}
(12)

= Varλ

{
Ex|λ[x

tx]−1Ex|λ[x
tȳ(x)]

}
+ Varε,λ

{
Ex|λ[x

tx]−1Ex|ε,λ[x
tε(x)]

}
.

The first two lines follow from equations (6) and (8). To verify the third line, note that the
terms involving ȳ and ε are uncorrelated since conditional on λ, ȳ is deterministic and ε has
mean zero.

We calculate sandwich forms for the two variances on the right hand side of (12) and
complete the proof by comparing the sum of the respective covariance matrices to Σ. First
we show that

Varλ

[
Ex|λ[x

tx]−1Ex|λ[x
tȳ(x)]

]
− (X tX)−1

(
X tΣ̃X

)
(X tX)−1 = o(n−1) (13)

with Σ̃ defined by

Σ̃ij =


(
Y i −Xi(X

tX)−1X tY
)2

if i = j

0 otherwise.

This is equivalent to showing that

Varλ

[
Ex|λ[x

tx]−1Ex|λ[x
tψ(x)]

]
− (X tX)−1

(
X tΣ′X

)
(X tX)−1 = o(n−1) (14)

with Σ′ defined by

Σ′
ij =


(
Ψi −Xi(X

tX)−1X tΨ
)2

if i = j

0 otherwise,

where ψ(x) is the true mean of y conditional on x, and Ψ is the n-vector defined by
Ψi = ψ(Xi). The equivalence follows from the law of large numbers because Σ̃ and Σ′
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are asymptotically the same, and the first terms in (13) and (14) can be seen to have the
same limit by applying Lemma 1 and the bootstrap delta method [38] to each. The same
delta method argument establishes that the first term in (14) is asymptotically equivalent
to the sampling variance for the linear regression problem with fixed response ψ(x). The
second term in (14) is just the Huber-White sandwich estimator for that problem. Since
the sandwich estimator is aymptotically consistent for the sampling variance, equation (14)
follows.

Next we note that since ε(x) has mean zero, the second term on the right hand side of (12)
can be written

Varε,λ

[
Ex|λ[x

tx]−1Ex|ε,λ[x
tε(x)]

]
= Eλ

{
Varε

(
Ex|λ[x

tx]−1Ex|ε,λ[x
tε(x)]

)}
.

It follows from equation (9), moment properties of the posterior Dirichlet weights given in
[32], and the continuous mapping theorem that

Eλ

{
Varε

(
Ex|λ[x

tx]−1Ex|ε,λ[x
tε(x)]

)}
− (X tX)−1

(
X tΣ†X

)
(X tX)−1 = o(n−1), (15)

where Σ† is the diagonal matrix defined previously by

Σ†
ij =


1

nk − 3

∑
l:Xl=ξk

(Yl − ȳk)
2 if i = j and Xi = ξk

0 if i 6= j.

To finish the proof, we use that by elementary calculations∑
i:Xi=ξk

Σii =
∑

i:Xi=ξk

(
Σ̃ii + Σ†

ii

)
holds for each k = 1, . . . , K, up to degrees of freedom corrections.
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