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Methods for Exploring Treatment Effect
Heterogeneity in Subgroup Analysis: An

Application to Global Clinical Trials

I. Manjula Schou and Ian C. Marschner

Abstract

Multi-country randomised clinical trials (MRCTs) are common in the medical lit-
erature and their interpretation has been the subject of extensive recent discussion.
In many MRCTs, an evaluation of treatment effect homogeneity across countries
or regions is conducted. Subgroup analysis principles require a significant test of
interaction in order to claim heterogeneity of treatment effect across subgroups,
such as countries in a MRCT. As clinical trials are typically underpowered for tests
of interaction, overly optimistic expectations of treatment effect homogeneity can
lead researchers, regulators and other stakeholders to over-interpret apparent dif-
ferences between subgroups even when heterogeneity tests are insignificant. In
this paper we consider some exploratory analysis tools to address this issue. We
present three measures derived using the theory of order statistics which can be
used to understand the magnitude and the nature of the variation in treatment
effects that can arise merely as an artefact of chance. These measures are not in-
tended to replace a formal test of interaction, but instead provide non-inferential
visual aids allowing comparison of the observed and expected differences between
regions or other subgroups, and are a useful supplement to a formal test of inter-
action. We discuss how our methodology differs from recently published methods
addressing the same issue. A case study of our approach is presented using data
from the PLATO study, which was a large cardiovascular MRCT that has been
the subject of controversy in the literature. An R package is available from the
authors on request.
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Abstract

Multi-country randomised clinical trials (MRCTs) are common in the med-
ical literature and their interpretation has been the subject of extensive recent
discussion. In many MRCTs, an evaluation of treatment effect homogeneity
across countries or regions is conducted. Subgroup analysis principles require a
significant test of interaction in order to claim heterogeneity of treatment effect
across subgroups, such as countries in a MRCT. As clinical trials are typically
underpowered for tests of interaction, overly optimistic expectations of treat-
ment effect homogeneity can lead researchers, regulators and other stakeholders
to over-interpret apparent differences between subgroups even when heterogene-
ity tests are insignificant. In this paper we consider some exploratory analysis
tools to address this issue. We present three measures derived using the the-
ory of order statistics which can be used to understand the magnitude and the
nature of the variation in treatment effects that can arise merely as an artefact
of chance. These measures are not intended to replace a formal test of interac-
tion, but instead provide non-inferential visual aids allowing comparison of the
observed and expected differences between regions or other subgroups, and are
a useful supplement to a formal test of interaction. We discuss how our method-
ology differs from recently published methods addressing the same issue. A case
study of our approach is presented using data from the PLATO study, which
was a large cardiovascular MRCT that has been the subject of controversy in
the literature. An R package is available from the authors on request.

Keywords: clinical trial; heterogeneity; interaction; multi-country study; subgroup
analysis

1 Introduction

Multi-country randomised clinical trials (MRCTs) evaluating new drug therapies are
popular as they efficiently pool resources to provide faster recruitment and more
generalisable results across patient populations, ethnicities and disease management
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paradigms. MRCTs also have the advantage of providing country-specific data that
can be used for local regulatory dossiers that may otherwise require bridging studies,
and local reimbursement applications for countries that have government funded phar-
maceutical schemes. As a supplement to the overall analysis, MRCTs often present
country-specific results that effectively correspond to a subgroup analysis. These sub-
groups may be defined by the individual countries participating in the study, or by
pooling several countries in a geographical region, to avoid issues of low power or ana-
lytical complications that can arise from low enrolment in individual countries. In this
paper we will focus on the interpretation of these country- or region-specific subgroup
analyses, and will use the terms country and region interchangeably.

Clinical trials often assess the consistency of the treatment effect across pre-specified
subgroups and generally accepted principles of subgroup analysis have been developed
[1, 2]. In MRCTs, there is typically an assessment of treatment effect homogeneity
across subgroups defined by regions. According to subgroup analysis principles, a test
of interaction is the standard assessment of treatment effect heterogeneity across sub-
groups. However, as most studies are only designed with adequate power to detect an
overall clinically meaningful difference between treatments in the primary endpoint, the
test of interaction to assess heterogeneity of treatment effect across regions in a MRCT
can often be underpowered [3, 4]. Indeed, the power decreases further as the number of
regions in the subgroup analysis increases. Therefore, when there is a non-significant
p-value from a test of interaction in the presence of seemingly heterogeneous treatment
effects across regions, speculation of a type II error can arise making interpretation
of the regional results difficult. It is very important that such speculation takes due
account of the fact that random variation can result in some regions showing a lack
of benefit even when there is no underlying heterogeneity and the treatment effect is
beneficial. To this end, it is prudent to investigate whether potential differences exist
between regions that can plausibly lead to differential treatment benefit and to appro-
priately design a study with this in mind [5]. A design paper or the study analysis plan
can also be used to pre-emptively document and help inform researchers of the extent
of chance variation to anticipate in a planned MRCT [6].

Consideration of potential differences between region-specific treatment effects is
important at both the design stage and the analysis stage of a MRCT. At the design
stage it is useful to understand the nature and extent of chance differences that can
be expected to arise between regions, under the assumption of treatment effect homo-
geneity. At the analysis stage it is useful to compare the observed regional treatment
differences with the expected regional treatment differences and assess the magnitude
of any differences. As such, the intent of this approach is not to determine how the
methodology performs under heterogeneity. Instead, it assesses the potential extent of
chance variation under an assumption of homogeneity. A previous paper focused on
considerations at the design stage [6], and in the present paper we adapt and extend this
approach for application at the analysis stage. Our methods are based on the theory
of order statistics for heteroscedastic normally distributed variables, which is applied
to the collection of region-specific treatment differences. This allows various compar-
isons of expected subgroup-specific effects to be made with the actual observed effects
under an assumption of treatment effect homogeneity. Specifically, we investigate the
expected and observed effects via a comparison of order statistics, the probability of
subgroups favouring the control, and the distribution of the range of treatment effects.
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The resulting collection of graphical presentations provides a useful supplementary
tool to the test of interaction and can equip researchers with a visual summary of
the concordance between the observed treatment differences across regions and those
expected due to chance. Although we will focus on regional differences in MRCTs, the
methodology that we propose is equally applicable to other subgroup analyses.

Over recent years there has been a high level of research activity on statistical
considerations relating to treatment effect heterogeneity in MRCTs and multi-centre
studies, reflecting the practical importance of this issue [4, 5, 6, 7, 8, 9, 11, 12, 13].
In the next section we will begin by reviewing past methods of relevance to those dis-
cussed here, including a very recently published approach which, like ours, is based on
the theory of order statistics [13]. We then introduce our methodological extensions, as
well as providing a discussion of the fundamental differences between our approach and
previous approaches, particularly our use of absolute treatment effects rather than stan-
dardised treatment effects in assessing the concordance between observed and expected
treatment effect heterogeneity. Although this introduces methodological complexities
compared to past approaches [13], we argue that this leads to more interpretable ex-
ploratory analysis tools. Finally we consider a detailed case study of the methods
based on the PLATO study, which was a large MRCT of ticagrelor and clopidogrel
for the prevention of cardiovascular events in patients with acute coronary syndromes
[14]. Application of our methods to the PLATO study, which has been the subject
of much discussion in the literature, suggests that the apparently large variation in
country-specific treatment effects is consistent with the play of chance.

2 Overview of previous research

We begin with an overview of previous work which our research extends, together with
an introduction of the assumptions and notation that will be used throughout the
paper.

2.1 Assumptions

Consider the comparison of two treatment groups, a control treatment group and an
experimental treatment group, in a MRCT conducted over R regions. The sample size
for treatment group i in region r is nir, for i = 1, 2 and r = 1, . . . , R. It is assumed that
there is a parameter δ which measures the treatment effect, with δ = 0 corresponding
to no difference between the treatments. In principle the parameter δ could depend
on r, meaning that there is genuine treatment effect heterogeneity across the regions.
However, here we will make the assumption that δ does not depend on r, because
our methods are aimed at assessing the extent of chance variation that could arise
in the observed region-specific treatment effects under the assumption that there is
underlying homogeneity.

The treatment effect δ could take a variety of forms depending on the type of
primary endpoint that is being used in the MRCT. For example, with continuous
endpoints δ may be a mean difference, with binary endpoints δ may be a risk difference,
log relative risk or log odds ratio, while for time-to-event endpoints δ may be a log
hazard ratio. Regardless of the type of treatment effect that δ measures, it will be
assumed that for each region there is a region-specific estimator Dr of δ, which has a
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normal distribution
Dr ∼ N

(
δ, s2r

)
r = 1, . . . , R. (1)

This distributional assumption will be reasonable for most types of treatment effect
measures on an appropriate scale, at least under a large sample assumption with ap-
proximate normality. Furthermore, it is assumed that the region-specific estimators
are independent random variables. Other than these general assumptions it is not
necessary for us to make any specific assumptions about the type of endpoint or the
treatment effect measure δ. In the case study described in Section 4 we will make
use of the above model with a time-to-event endpoint where δ is a log hazard ratio
parameter and Dr are country-specific log-hazard ratio estimators. However, it is also
applicable for other treatment effect measures, and has been used for relative risks and
risk differences in other contexts [6, 15].

The form of s2r in (1) can be derived in terms of the proportion of the study enrol-
ment allocated to region r and the design parameters used in the overall sample size
calculation, including the power, significance level and the homogeneous treatment
difference δ. This form of sr is useful for the assessment of expected treatment effect
heterogeneity at the design stage, as illustrated by Marschner [6]. At the analysis stage
s2r will not be known in general, so a standard error estimate must also be available as
discussed further in Section 3.5.

2.2 Expected range

Marschner [6] proposed the expected range of region-specific treatment effects as a
useful benchmark for the expected treatment effect variation. The expected range can
be derived based on the distribution function of the smallest and largest order statistics,
D(1) and D(R), which are respectively

F(1)(x) = 1−
R∏
i=1

{1− Fi(x)} = 1−
R∏
i=1

{
1− Φ

(
x− δ

si

)}
and

F(R)(x) =
R∏
i=1

Fi(x) =
R∏
i=1

Φ

(
x− δ

si

)
.

Here, Fi is the distribution function of the normal distribution in equation (1) with
r = i, while Φ is standard normal distribution function.

Using these distribution functions, the expectations of D(1) and D(R) can be calcu-
lated, as can the expectation of the range of treatment effects, V = D(R)−D(1) [6]. The
expectation E(V ) provides a measure of the range of the treatment differences that
can be expected due to chance, under an assumption of treatment effect homogeneity
across the regions. The intent of this measure was to facilitate a comparison of the
range of observed and expected treatment differences, thus providing a non-inferential
complement to the primary assessment based on a test of interaction of treatment ef-
fect differences across regions. Subsequently the expected range has also been used
in a more inferential capacity by Chen et al. [13], although this was not the original
intention.
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2.3 Probability of at least one region favouring the control

An alternative measure that is also based on the extreme order statistics and provides
information about the expected variation in region-specific treatment effects is the
probability of at least one region favouring the control [6, 16]. The motivation for
considering this quantity is that an inconsistent region-specific treatment effect in a
study that shows an overall benefit in favour of the experimental treatment will often
prompt further investigation and interpretation. Quantifying the probability of this
event, and the extent to which it is likely or unlikely, therefore provides a benchmark
against which the occurrence of an inconsistent region-specific treatment effect can be
interpreted.

Assuming δ is scaled such that a negative value for the treatment difference indicates
benefit in favour of the experimental treatment, then the probability of at least one
region favouring the control is given by

Pr
(
D(R) > 0

)
= 1−

R∏
i=1

Fi(0) = 1−
R∏
i=1

Φ

(
−δ

si

)
.

As with the expected range, the intent of this measure is to provide a non-inferential
tool to calibrate expectations about whether all treatment effects should lie in a consis-
tent direction. If the probability is substantial, then it should not be too surprising if an
inconsistent treatment effect is observed in a particular region, and over-interpretation
of such an observation should be avoided. Such information can be taken into consid-
eration alongside the test of interaction.

2.4 Normal scores

While the extreme order statistics D(1) and D(R) provide information about treatment
effect heterogeneity, it is natural to consider more informative methods based on all
order statistics. A recently proposed alternative approach of Chen et al. [13] does
this. This approach assesses treatment effect heterogeneity using normal probability
plots comparing the ordered standardised treatment differences with their associated
normal scores. Specifically, the approach uses the standardised quantity referred to as
the weighted least squares residual defined as er = (Dr − δ̂)/sr. Here

δ̂ =
R∑

r=1

wrDr

is an unbiased estimator of δ with the weights wr = s−2
r /

(∑R
i=1 s

−2
i

)
reflecting the

amount of statistical information provided by region r, or equivalently the precision of
the region-specific estimator Dr. Under the assumption of treatment effect homogene-
ity, the weighted least squares residuals are distributed as

er =
(Dr − δ̂)

sr
∼ N

(
0, 1− wr

)
. (2)

It then follows from (2) that the standardised weighted least squares residual ẽr =
er/

√
1− wr has a standard normal distribution. The method proposes comparing
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the ordered standardised weighted least squares residuals ẽ(r), r = 1, . . . , R, with the
standard normal scores which can be readily obtained using standard tables or software
[17, 18]. The main tool for undertaking this comparison is a normal probability plot.
In the special case of a homoscedastic normal outcome where δ is the mean difference
and the treatment group sizes are equal within each region, the weights wr reduce to
the proportion of the overall sample size that comes from region r [13]. However, the
above approach applies more generally, and can be used for other treatment difference
measures that conform with the basic assumption (1).

In the present paper, our most significant contribution is to adapt this normal scores
method to make use of the absolute order statistics D(r) in place of the standardised
order statistics ẽ(r). In the next section we consider the substantial methodological
complexities this introduces, but also explain why we believe this leads to a more
interpretable assessment of treatment effect heterogeneity.

3 Methodological extensions

In this section we consider various extensions and adaptations of the methods reviewed
in the previous section. We will focus on three measures that can be used in comparing
the observed variation in treatment effects with what would be expected by chance
under the assumption of treatment effect homogeneity across regions.

3.1 Overview of extensions

The first of the three measures we consider is the expected value of the rth order statistic
of the region-specific treatment effects, E

(
D(r)

)
, for each r = 1, . . . , R. Comparison of

these expected order statistics with the sample order statistics D(r), for example using
a normal probability plot, provides an alternative version of the comparison described
in Section 2.4, between ẽ(r) and the normal scores. Although it may seem like a
natural alternative to use of the absolute treatment effects rather than the standardised
treatment effects, this introduces a number of complexities because the D(r) quantities
are the order statistics from a heteroscedastic sample. These complexities are addressed
in the next section. Despite the additional complexity we argue in Section 3.4 that this
comparison provides a preferable assessment of treatment effect heterogeneity than the
use of standardised treatment effects as used by Chen et al. [13].

The second measure involves using the full distribution of the number of regions
that favour the control, rather than the more restrictive quantity discussed in Section
2.3, the probability of at least one region favouring the control. This distribution will
be helpful in interpreting studies where more than one region favours the control, which
is not uncommon in MRCTs involving a large number of regions.

Finally, the third measure we consider is the full probability distribution of the
treatment effect range, D(R) − D(1), which is helpful in interpreting the treatment
effect range observed in a MRCT. Use of the full distribution generalises the expected
range approach described in Section 2.2, which is based just on the expected value
of the effect range distribution. In principle this approach could also be generalised
to other range-based distributions, such as the distribution of the inter-quartile range
of region-specific treatment effects. Here, however, we restrict our focus to the range
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of treatment effects which, as described in Section 2.2, has been the focus of prior
research.

3.2 Order statistic distribution

All of our methods depend fundamentally on the distribution of the order statistics of
the region-specific treatment effects. This involves considering the order statistics from
a sample of R heteroscedastic normal variates. We now consider this distribution and
then describe how it can be used to derive the three measures of expected treatment
effect heterogeneity.

The distribution function of D(r) is

F(r)(x) = Pr
(
D(r) ≤ x

)
= Pr (At least r of R treatment differences do not exceed x)

=
R∑
i=r

∑
S∈Si(R)

{∏
k∈S

Fk(x)
R∏

k=1
k/∈S

[
1− Fk(x)

]}
(3)

where Si(R) is the family of all subsets of size i from {1, . . . , R} [19].
On expansion and simplification of (3) we get

F(r)(x) =
R∑
i=r

cir
∑

S∈Si(R)

∏
k∈S

Fk(x) (4)

where

cir = (−1)i−r

(
i− 1

r − 1

)
.

In the special case where the Drs are independent identically distributed random
variables with sr = s, equation (4) reduces to

F(r)(x) =
R∑
i=r

cir

(
R

i

)
F (x)i,

and is equivalent to the familiar representation [17]

F(r)(x) =
R∑
i=r

(
R

i

)
F (x)i

[
1− F (x)

]R−i
.

However, our formulation allows for a fully heteroscedastic specification which is re-
quired to allow for different regions having different sample sizes.

Applying the product rule for differentiation on the distribution function, the prob-
ability density of the rth order statistic is

f(r)(x) =
R∑
i=r

R∑
j=1

cirfj(x)
∑

S∈Si(R)

1{j ∈ Si(R)}
∏
k∈S
k ̸=j

Fk(x) (5)

where 1{·} is the indicator function. Although this theoretical specification appears
unwieldy, it is straightforward to compute.
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As with F(r)(x), a simplified version of (5) is achieved in the special case where the
Drs are independent identically distributed random variables with sr = s, and is given
by

f(r)(x) =
R∑
i=r

icir

(
R

i

)
f(x)F (x)i−1.

A simplified illustrative example of the order statistic distribution is provided for
a MRCT with R = 3 regions and treatment differences D1, D2, and D3. In this case,
consider the distribution of D(2). Here, the family of sets S2(3) and S3(3) would be
given by S2(3) = {{1, 2} , {1, 3} , {2, 3}} and S3(3) = {{1, 2, 3}}. The distribution and
density functions of D(2) follow readily from (4) and (5) and the fact that c22 = 1 and
c32 = −2, namely

F(2)(x) = F1(x)F2(x) [1− F3(x)] + F1(x)F3(x) [1− F2(x)]

+ F2(x)F3(x) [1− F1(x)] + F1(x)F2(x)F3(x)

= c22 × {F1(x)F2(x) + F1(x)F3(x) + F2(x)F3(x)}
+ c32 × {F1(x)F2(x)F3(x)}

and

f(2)(x) = c22 × {f1(x)F2(x) + f1(x)F3(x) + f2(x)F1(x)

+f2(x)F3(x) + f3(x)F1(x) + f3(x)F2(x)}
+ c32 × {f1(x)F2(x)F3(x) + f2(x)F1(x)F3(x) + f3(x)F1(x)F2(x)} .

The forms of F(2)(x) and f(2)(x) in this simplified 3-region example illustrate the link
between equations (3) and (4) and the role of the cir constants in specifying the order
statistic distribution.

As foreshadowed in Section 3.1, the general order statistic distribution for het-
eroscedastic treatment effects can now be used to derive several useful measures of
chance treatment effect variation that extend and improve upon the measures dis-
cussed in Section 2.

3.3 Measures of chance variation

The first measure described in Section 3.1, the expectation of the rth order statistic of
the region-specific treatment differences, can now be obtained using (5)

E
(
D(r)

)
=

∫ ∞

−∞
xf(r)(x)dx. (6)

Although this form is not explicit, it can be straightforwardly computed using standard
routines for numerical integration. As explained later in the paper, all computations
presented here were performed in R [18].

Once computed, these expected order statistics can be compared graphically with
the observed ordered treatment differences to assess whether the observed spread of
region-specific treatment differences is unusual relative to what would be expected by
chance under the assumption of treatment effect homogeneity. One such plot would a
simple box plot of the observed and expected order statistics which provides a graphical
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generalisation of the approach of comparing the observed and expected ranges [6]. An-
other approach would be a plot of the observed versus expected treatment differences,
which is a type of normal probability plot that conveys information about any depar-
tures of the observed region-specific treatment effects from what would be expected by
chance.

Treatment differences that align consistently across regions in terms of direction
of effect are straightforward to interpret and explain. Sometimes, however, chance
variation will lead some regions to have a treatment effect estimate that goes in the
opposite direction to the overall effect. This can potentially lead to speculation and
over-interpretation. Therefore, being able to compare the observed number of regions
favouring the control with the probability distribution of the number of regions favour-
ing the control provides a useful benchmark by which to assess the role of chance
variation. This leads to the second of the three approaches introduced in Section 3.1,
which generalises the previously suggested approach discussed in Section 2.3.

Like the other quantities discussed in this section, the probability distribution of
W , the number of regions favouring the control, is connected to the order statistic
distribution discussed in Section 3.2 through the relationship

Pr(W ≥ w) = Pr
(
D(R−w+1) > 0

)
= 1− F(R−w+1)(0) w = 1, . . . , R. (7)

Assuming a positive treatment difference signifies an effect in favour of the control
treatment, and letting pi be the probability that region i favours the control, we have
the following

pi = Pr
(
Di > 0

)
= 1− Fi(0) = 1− Φ (−δ/si) .

It then follows from equations (3) and (7) that the probability function of the number
of regions favouring the control is

PW (w) = Pr(W = w) = Pr(W ≥ w)− Pr(W ≥ w + 1)

= F(R−w)(0)− F(R−w+1)(0)

=
∑

S∈Sw(R)

∏
k∈S

pk

R∏
l=1
l/∈S

(1− pl) w = 0, . . . , R (8)

where, for notational purposes, we define F(0)(0) = 1 and F(R+1)(0) = 0. For example,
in the 3-region illustration discussed previously, the probability that two regions favour
the control is

PW (2) = Pr(W = 2) = p1p2(1− p3) + p1p3(1− p2) + p2p3(1− p1).

Once this distribution has been computed, the observed number of regions favouring the
control can be compared with PW (w) in order to assess whether the observed number
is unusual compared with what would be expected by chance under the assumption of
homogeneous treatment effects. A natural summary measure of the extent to which
the observation W = wo is consistent with chance variation, is the probability of
obtaining an observation at least as extreme as W = wo, namely, PE = Pr

(
W ≥ wo

)
.

Although we are not recommending PE as a p-value for formal hypothesis testing, it
does nonetheless provide a non-inferential quantification of the extent to which the
observed number of inconsistent regions is unusual relative to what would be expected
by chance.
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Finally, the third approach introduced in Section 3.1 is based on the probability
distribution of the range of region-specific treatment effects, V = D(R) − D(1). This
distribution is well known in the homoscedastic case based on the joint distribution
of D(1) and D(R) [17]. In the heteroscedastic generalisation that we are using in this
paper, the density function of the range can be expressed as follows for x ≥ 0.

fV (x) =

∫ ∞

−∞

R∑
i=1

R∑
j=1
j ̸=i

fi(y)fj(y + x)
R∏

k=1
k ̸=i,j

[Fk(y + x)− Fk(y)] dy. (9)

As in equation (6), equation (9) requires numerical integration which we have under-
taken in R using the integrate routine [18]. Once computed, the observed range can
be compared with the probability distribution fV (x) to assess whether the observed
range of treatment effects is unusual relative to what would be expected by chance
under an assumption of treatment effect homogeneity. As with W above, a natural
summary measure of the extent to which the observation V = vo is consistent with
chance variation, is provided by the probability of obtaining an observation at least as
extreme as V = vo, which in this case is PE =

∫∞
vo

fV (x)dx.
An R package that implements all three approaches can be made available by the

authors on request.

3.4 Comparison of the methods

While our methods and those of Chen et al. [13] both make use of assessments that
are based on the theory of order statistics, there are important differences between the
two approaches. Most significantly, our approach uses the observed region-specific
treatment differences whereas the approach proposed by Chen et al. [13] uses the
standardised treatment differences in the form of the weighted least squares residuals.
In view of these differences, a discussion of the distinction between the two approaches
is necessitated.

Statistically, the key distinction between using the absolute order statistics D(r) and
the standardised order statistics ẽ(r), is that the former depends only on the treatment
effects themselves, while the latter depends on a combination of the departure of the
treatment effects from the overall effect and the associated standard error. Therefore,
an ordering of the standardised weighted least squares residuals is essentially an or-
dering of the departure of the treatment effects from the overall effect, relative to the
region-specific standard error, with the size of the standard error playing a critical role
in the ordering. This may mean that the D(r) and ẽ(r) values are ordered in different
ways. Indeed, this may mean that the two versions of order statistics convey different
messages about whether the observed region-specific treatment effects are consistent
with what would be expected by chance, and we provide an example of this in the case
study discussed in Section 4.

The fact that the absolute and standardised treatment effects can convey different
messages makes it important to consider how subgroup analyses are interpreted and
used in practice by stakeholders. While the standardised treatment effects are what
drives the formal test of heterogeneity, they are not the primary focus of subsequent
informal assessments of the region-specific differences in treatment effects. Such in-
formal assessments, which would typically follow an insignificant test of heterogeneity,
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tend to focus on the absolute magnitudes of the treatment difference in each region.
The spread in these absolute treatment effects is what then has the potential to lead
to over-interpretation of apparent treatment effect variation. It therefore makes sense
to focus on the expected variation in absolute treatment effects as a benchmark for the
observed variation in absolute treatment effects. It is this use of actual rather than
standardised treatment effects in the assessment and interpretation of heterogeneity
that has led us to base our measures of expected variation on the actual treatment
effects.

3.5 Implementation issues

In practice, there are several implementation issues that we discuss prior to considering
a case study. Firstly, it requires noting that the various quantities discussed in the pre-
vious section are dependent on the unknown values of δ and sr. This means that at the
analysis stage of a study, sample estimates δ̂ and ŝi are required so that computations
of the expected variation in treatment effects can be undertaken. If the individual pa-
tient data are available, the overall treatment effect estimated using these data would
be the most appropriate estimate of δ, as an assumption of treatment effect homo-
geneity underpins the assessment of chance variation. However, if only region-specific
treatment effect estimates are available, the aggregated estimate of δ, as discussed in
Section 2.4, would be used.

With regards to the standard error si, there are two possible approaches to esti-
mation. The first, as used in this paper, would be to use the standard errors of the
region-specific treatment effects as estimated separately within each region. This pro-
vides a more empirical estimate of standard error than the second approach which is to
use the overall estimate of standard error, weighted by the proportion of subjects from
each region. The latter approach enforces an assumption of region-level homoscedastic-
ity and results in smaller regions being weighted less and larger regions being weighted
more. This is a more natural approach to take at the design stage when no data is
available.

A further implementation issue relates to the computational complexity of the meth-
ods. In Section 3.3 we presented theoretical expressions associated with the various
measures of heterogeneity, that can be computed exactly with the aid of a routine to
undertake numerical integration. In practice, it is also possible to approximate all of
the required quantities using simulation. Although this is potentially computationally
expensive, the computations themselves are trivial and obvious with the availability of a
large number of simulated samples D1, . . . , DR from the normal distributions N

(
δ̂, ŝ2r

)
,

for r = 1, . . . , R. Since the theoretical computations required to compute the quanti-
ties described in Section 3.3 are based on combinatorial sets, there will generally be
a point at which simulation becomes more efficient than direct computation. Based
on our experience with the case study described in Section 4, the simulation approach
tends to be preferable for R > 20.
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4 Case study

4.1 PLATO study

As a case study, we consider the PLATO study which was a 43-country, double-blind,
randomised trial comparing the experimental treatment ticagrelor with the control
treatment clopidogrel, for the prevention of cardiovascular events in 18,624 subjects
with acute coronary syndrome [14]. The primary endpoint of this study was the time
to first occurrence of a cardiovascular event (death from vascular causes, myocardial
infarction, or stroke). The study was designed to have 90% power to detect a relative
risk reduction of 13.5%.

On completion, the overall study showed a significant reduction in cardiovascular
events in favour of ticagrelor (hazard ratio 0.84, p < 0.001). Treatment effect hetero-
geneity was assessed in 33 separate subgroup analyses, one of which was an assessment
of the heterogeneity of treatment effects across regions (Asia/Australia, Central/South
America, Europe/Middle East/Africa and North America). The p-value for this test
of interaction was 0.045 with the treatment effect in North America having an ob-
served value that favoured the control, although insignificantly so. The investigators
concluded that this finding may have been a chance result due to multiple testing,
and that although no apparent explanations had been found, questioned whether the
differences between patient populations and treatment practice patterns may have con-
tributed to this result.

Although a p-value of 0.045 in the context of 33 subgroup analyses is not particu-
larly surprising, the PLATO study was subsequently subjected to extensive post hoc
analysis of country-specific heterogeneity in treatment effects. These analyses focused
particularly on the observation that the USA treatment effect was in the direction
favouring the control. The Food and Drug Administration (FDA) conducted its own
review of the data following the sponsor’s proposal of a potentially negative association
between the dose of aspirin and the benefit of treatment with ticagrelor, finding that
the dose of aspirin was higher in the USA subgroup compared with the non-USA sub-
group [20]. A further review of this possible explanation was subsequently published
together with a claim that differences in primary site monitoring by an independent
contract research organisation (in the USA) and the study sponsor (in most other coun-
tries) may offer an alternative explanation requiring further investigation [21]. These
proposals of a potential biological explanation (aspirin dose) and an operational ex-
planation (site monitoring) were followed by a statistical assessment concluding that
the country-specific treatment effect variation was consistent with the play of chance
[22] and a further analysis concluding that the findings in the USA were likely not due
to chance [13]. Here we use our methods to provide further exploration of the play
of chance as a potential explanation for country-specific treatment effect differences in
the PLATO study.

4.2 Data and analyses

In our analyses, we used published country-specific hazard ratios and 95% confidence
intervals for all countries except the smallest (Hong Kong), which had only 16 patients.
This led to R = 42 countries with sample sizes varying from 51 to 2666. We refer the
reader to Figure 1 of Serebruany [21] for a full listing of the countries, sample sizes and
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hazard ratios used in our analyses. The overall treatment effect δ was taken to be the
log hazard ratio, for which assumption (1) is reasonable. The overall estimate δ̂ was
calculated using an inverse variance weighting method based on country-specific log
hazard ratios and standard errors calculated from the published confidence intervals.

As well as analyses of the treatment effects for all 42 countries, we also considered
analyses restricted just to the countries with the largest sample sizes. These additional
analyses served two purposes. Firstly, they enabled an assessment of the extent to
which any conclusions are robust to the larger variation expected in small countries,
which was raised as a concern by Chen et al. [13]. Secondly, these analyses served to
illustrate the behaviour of the methodology on data sets having various R values. In
our analyses we consider the results restricted to the largest 10, 15 and 20 countries,
in addition to the full collection of 42 countries.

4.3 Order statistics

Figures 1 and 2 present the expected order statistics of the country-specific treatment
differences displayed as box plots and normal probability plots. These plots are dis-
played for the entire collection of 42 countries, as well as analyses restricted to the
largest 10, 15 or 20 countries. Also shown, in Figure 2 Panels B and D, are normal
probability plots corresponding to the standardised weighted least squares residuals
of Chen et al. [13], as discussed in Section 2.4. Since formal tests of heterogeneity of
treatment effects are statistically insignificant (p > 0.1 in all cases), we intend that
these graphical displays are used as a non-inferential supplement to a formal test of
heterogeneity, in which the observed variation in treatment effects is compared with
the expected variation in treatment effects. With this in mind, these figures do not
identify any remarkable differences between what was observed and what would be
expected due to chance variation. Figure 1 clearly displays the expected increase in
treatment effect variation as more countries are included in the analysis, but does
not suggest that the observed variation is inconsistent with what was expected under
the hypothesis of homogeneity. Indeed, for the analyses involving larger numbers of
countries (Panels C and D) it appears that the PLATO study actually exhibits less
variation in country-specific treatment effects than would have been expected due to
chance. This is also evident in Figure 2 Panel C, where the shallow gradient for all but
the most extreme order statistics is indicative of smaller variation than expected.

Of particular interest is the comparison of Panels A and B of Figure 2, which
is a comparison of the normal probability plots for absolute treatment effects and
standardised treatment effects, for the analysis restricted to the largest 15 countries.
Panel A, based on absolute treatment effects, displays no departure from the expected
variation of treatment effects, with the possible exception of the smallest order statistics
that suggest lower variation than expected. On the other hand, the standardised
treatment effects displayed in Panel B show one outlying country, the USA, which
seems to have a standardised treatment effect that departs from the other countries.
This illustrates the potential for different qualitative messages to emerge from these
two methods.
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Figure 1: Observed and expected country-specific treatment differences from the
PLATO study. The expected treatment differences for the largest 10 (Panel A), 15
(Panel B), 20 (Panel C) and 42 (Panel D) countries are plotted. The dotted line de-
notes the overall observed treatment difference.

4.4 Range of treatment effects

The expected range of treatment effects depicted in the extremities of the boxplots in
Figure 1 can be generalised to the full distribution of the range of treatment effects, as
discussed in Section 3.3. Plots of this distribution, together with the observed range
of treatment effects, are provided in Figure 3. It can be seen that the observed range
of country-specific treatment effects in the PLATO study is highly consistent with the
distribution of the range of treatment effects under the assumption of treatment effect
homogeneity. This conclusion is true regardless of whether analyses are restricted to
the largest countries or include all countries. A useful summary measure of the extent
of consistency is PE, which was described in Section 3.3. In the present context, PE

is the probability of observing a treatment effect range at least as extreme as the one
observed, under the assumption of treatment effect homogeneity. With PE = 0.55, the
overall analysis in Panel D of Figure 3 shows that a treatment effect range as large as
the one observed in the PLATO study is highly likely, and could therefore plausibly
have arisen through chance variation. The same conclusion would also be reached using
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Figure 2: Observed and expected treatment differences from the largest 15 (Panel
A and B) and 42 (Panel C and D) countries in the PLATO study. Panels A and C
use absolute treatment effects whereas Panel B and C use the standardised weighted
least squares residuals.

the PE values restricted to the largest countries, as displayed in Panels A–C of Figure
3.

As a supplement to Figure 3, in Figure 4 we have displayed the observed and ex-
pected range of country-specific treatment effects for analyses restricted to the largest
R countries, where R ranges from 10 through 42. It is clear from Figure 4 that regard-
less of whether the expected range of treatment effects is restricted to just the very
large countries, or whether it includes the smaller countries with larger expected vari-
ation, the observed range of treatment effects is always consistent with the expected
range.

4.5 Countries favouring the control

One feature that often causes concern in MRCTs with an overall experimental treat-
ment benefit, is the occurrence of inconsistent country-specific treatment effects; that
is, one or more country-specific treatment effects in the direction favouring the control
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Figure 3: Probability density of the treatment effect range for the largest 10 (Panel
A), 15 (Panel B), 20 (Panel C) and 42 (Panel D) countries in the PLATO study. The
dotted line denotes the observed range.

treatment. This was certainly a concern in PLATO, particularly because one of these
countries was the USA. In a study with as many countries as PLATO and a moderate
overall treatment benefit, it is virtually certain that at least one country will have
a treatment effect favouring the control, even if the treatment effect is homogeneous
across countries. However, PLATO had 12 countries out 42 with treatment effects
favouring the control, and when restricted to the largest countries, had 7 inconsistent
effects out the largest 20 countries, 4 inconsistent effects out of the largest 15 countries,
and 3 inconsistent effects out the largest 10 countries. These numbers of inconsistent
countries may seem large, but when benchmarked against the probability distribution
of the number of treatment effects favouring the control, as described in Section 3.3,
it can be seen that they are not unusually large. Figure 5 displays these distributions,
together with the observed numbers of inconsistent countries, and the the summary
measure PE which is the probability of an observation as least as extreme as the one
observed. With PE = 0.72 for the overall analysis in Panel D of Figure 5, it can be seen
that an observation of 12 or more inconsistent countries is highly likely even under the
assumption of treatment effect homogeneity. This conclusion is not altered by restrict-
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Figure 4: The range of observed and expected country-specific treatment effects in
the PLATO study, restricting the analysis to the largest R countries, where R ranges
from 10 to 42.

ing the analysis to the largest countries, as in Panels A–C of Figure 5, all of which
also show that the observed number of inconsistent countries is not unusual relative to
what would be expected by chance. Thus, these analyses suggest that any speculation
about the causes of inconsistent country-specific treatment effects in PLATO, should
acknowledge chance variation as a highly plausible explanation.

4.6 Conclusions

Despite all of the post hoc analysis and interpretation that the PLATO study has been
subjected to, we conclude from our results that there is nothing particularly remarkable
about the spread of treatment effects across countries. In a global study as large as
the PLATO study, with over 40 countries, it is to be expected that wide variation in
treatment effects will be observed. Consistent with earlier more limited analyses [22],
our methods provide a suite of presentations suggesting that chance variation is a very
plausible explanation for the spread of country-specific treatment effects observed in
the PLATO study.
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Figure 5: Probability distribution for the number of countries favouring the control
for the largest 10 (Panel A), 15 (Panel B), 20 (Panel C) and 42 (Panel D) countries
in the PLATO study. The dotted line denotes the observed value.

Finally, we note that our analyses were repeated to investigate how the various
measures changed when a proportionally weighted overall standard error was used to
estimate the sr standard errors, as discussed in Section 3.5, instead of the individual
country-specific standard errors used in the above analyses. It was found that there
was very little difference between this approach and the approach presented in this
section for the PLATO study.

5 Discussion

Assessment of heterogeneity of treatment effects between subgroups is a key element
of clinical trial analysis. Recently, subgroup analysis of regional differences in MRCTs
has become a prominent issue in the literature. In this paper we provide some new
tools that aid interpretation of subgroup-specific treatment effects, and have illustrated
these using a case study from a MRCT.

When a test of interaction is underpowered, and treatment effects are seemingly
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different between subgroups, speculation may arise that there is heterogeneity of treat-
ment effects that was not detected by the test of interaction. The approach we propose
here is a non-inferential supplement to a formal test of interaction. A non-inferential
approach has been suggested given that the same limitation of low power for a test
of interaction will likely affect any new inferential technique one might develop to as-
sess treatment effect heterogeneity. The suite of graphical tools introduced in this
paper provide a multi-faceted visual assessment of the extent to which the observed
treatment differences align with those that would be expected under an assumption of
treatment effect homogeneity. That is, the intent is not to assess how these methods
will perform under heterogeneity, but rather to quantify the potential extent of vari-
ation resulting from the play of chance under an assumption of homogeneity. Given
the attention heterogeneity of treatment effects across regions has received in some
MRCTs [14, 21, 23], our approach provides additional tools for evaluating the extent
of chance variation expected in a MRCT, and can be used to benchmark expectations
and pre-empt any over-interpretation. The graphical nature of our methods make it
amenable for interpretation by all stakeholders including non-statisticians.

Treatment differences in typical clinical trial subgroups such as age and sex may
present a plausible biological mechanism that explains the difference. However, treat-
ment differences between regions are often more complex to understand because region
is a composite of many variables that can potentially influence the outcomes of an in-
tervention [4]. Thorough evaluation of potential treatment differences between regions
at the design stage of a study is critical, and can assist with the interpretation of any
apparent heterogeneity that emerges at the analysis stage.

Our methods differ from a recently published method by Chen et al. [13] in that we
use the observed treatment differences whereas Chen et al. [13] use the standardised
treatment differences as defined by the weighted least squares residuals. Although this
difference may seem trivial, the results and their interpretation can be quite different
as the ordering proposed by Chen et al. [13] depends on the relative magnitude of
the departure of the region-specific treatment effect from the overall effect, compared
with its standard error. We advocate the use of the observed treatment differences as
these are required in practice for such activities as cost-effectiveness analyses and risk
stratification in addition to the direct relevance they have for the physician and the
patient.

In conclusion, our methods provide a non-inferential yet visually informative sum-
mary of the subgroup-specific variation in treatment effects that can arise as an artefact
of chance. The appeal of these methods is their broad applicability, not just to global
clinical trials as discussed here but also to other types of subgroup analysis, as well as
the accessibility of the visual displays to all stakeholders including non-statisticians.
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