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ABSTRACT

In environmental epidemiology, exposure X and health outcome Y vary in space and

time. We present a method to diagnose the possible influence of unmeasured con-

founders U on the estimated effect of X on Y and to propose several approaches

to robust estimation. The idea is to use space and time as proxy measures for the

unmeasured factors U . We start with the time series case where Xt and Yt are

continuous variables at equally-spaced times and assume a linear model. We define

matching estimator β̃(u)s that correspond to pairs of observations with specific lag

u. Controlling for a smooth function of time, St, using a kernel estimator is roughly

equivalent to estimating β with a linear combination of the β̃(u)s with weights that

involve two components: the assumptions about the smoothness of St and the nor-

malized variogram of the X process. When an unmeasured confounder U exists, but

the model otherwise correctly controls for measured confounders, the excess variation

in β̃(u)s is evidence of confounding by U . We use the plot of β̃(u)s versus lag u,

lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on

Y . We use appropriate linear combination of β̃(u)s or extrapolate to β̃(0) to obtain

novel estimators that are more robust to the influence of smooth U . The methods

are extended to time series log-linear models and to spatial analyses. The LEP plot

gives us a direct view of the magnitude of the estimators for each lag u and provides

evidence when models did not adequately describe the data.

KEY WORDS: confounding, coefficient decomposition, time series, log-linear model,

matching estimator, Laggard-Estimator-Plot
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1 INTRODUCTION

Particulate matter (PM) air pollution is a public health problem around the world.

In developing countries, with the rapid urbanization and industrialization, the PM

air pollution has worsened, reaching concentrations at which serious adverse health

outcomes are well documented (Aekplakorn et al., 2003; Chhabra et al., 2001; Ostro

et al., 1999a, 1999b; Vichit-Vadakan et al., 2001). In developed countries, in spite

of declining PM concentrations during the past 20 years due to stricter air quality

standard, adverse health effects of particulate air pollution remain a regulatory and

public health concern (Dominici et al., 2006, 2007; Jerrett et al., 2005a, 2005b; Ostro

et al., 2006; Samet et al., 2000a, 2000b).

There are two major sources of evidence about the relationship of air pollution

and health outcomes: cohort and time series studies. Prospective cohort studies

provide important evidence on the long-term risks of particulate matter by comparing

mortality rates adjusted for personal characteristic across cities with different long-

term average levels of pollution. However, only a small number of cohort studies have

been carried out due to the long follow up time, the complexity and costs of such

studies. These studies can also be confounded by other unmeasured dissimilarities

among city populations being compared.

Time series studies of adverse health effects (e.g. hospitalization and death) com-

pare the same population on different days with varying pollution levels, thereby

avoiding confounding by unmeasured population differences. However, this associa-

tion can be confounded by time-varying factors (Schwartz et al. 1996; Katsouyanni

et al. 1996; Peng et al. 2005). We can control the effect of measured confounders

by including them in a regression model or by matching. Unmeasured confounders
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U are variables which either cannot be measured directly or had not been controlled

for in the study design. When U is associated with both outcome and PM, failure to

take U into account will bias our estimation of the true association, either upward or

downward.

One commonly used approach for time series of mortality or morbidity counts is to

fit a Poisson log-linear model with linear terms of PM air pollution levels and smooth

functions of time to adjust for the time-varying confounders (McCullagh and Nelder,

1989; Hastie and Tibshirani, 1990, 1995; Dominici et al., 2004). In such a model,

we control for the effect of unmeasured confounders that vary smoothly in time by

including functions of time in the model as proxies.

The case-crossover design has been increasingly applied to epidemiologic studies

to investigate the association between short-term exposure to ambient air pollution

and acute adverse health effects. We compare a case’s exposure during the event

interval with that same person’s exposure at “otherwise similar reference” times and

estimate an odds ratio as the measure of association using conditional logistic re-

gression (Maclure 1991; Bateson and Schwartz, 1999). The case-crossover design is

appealing because it involves cases only and it controls for the effect of unmeasured

confounders by matching.

Lu and Zeger (2007) have shown that the case-crossover method is a special case

of a time series log-linear model. Both methods control for confounding in their

respective regression models, and it is equally important for both methods to evaluate

key modeling assumptions about the nuisance function that represents the effect of

potential temporal confounding.

In this paper, we propose a new model checking method: decomposition of re-
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gression estimators by lag or distance to explore the possible influence of unmeasured

confounders on the estimation of the true association. The first step is to decompose

the data into pairs to obtain pairwise regression coefficients. The second step is to

combine our pairwise coefficients with the same lag u to construct matching estima-

tor β̃(u). We proposed the LEP (Lagged-Estimator-Plot) as a new model-checking

method, which is the graph of β̃(u) versus lag u. When the model adequately captures

the structure of unmeasured confounders, LEP will be a roughly horizontal line. In

this article, we introduced the LEP plot for time series linear model, compared the

performance of several proposed estimators using simulation study, and extended the

results to the log-linear time series model and to log-linear spatial model.

2 METHODS AND RESULTS

2.1 Linear Time Series Model

2.1.1 Model

Before we proceed to the log-linear model motivated by our time series application,

we start with the simple case of a Gaussian time series. Suppose we have time series

data, generated from the true model Yt = β0 + βXt + St + εt = µt + St + εt, where Yt

is a health outcome, Xt is our risk factor of interest such as PM level, St is the effect

of unmeasured confounders, and εt is an independent N(0, σ2) deviation.

If we ignore St and fit Model I: E(Yt) = β0 + βXt, we obtain the least squares

estimator β̂. The conditional expectation of β̂ given X = (X1, . . . , XT ) and S =

5

Hosted by The Berkeley Electronic Press



(S1, . . . , ST ) is

E
(
β̂|X,S,

)
= β −

∑
i<j(Si − Sj)(Xi −Xj)∑

i<j(Xi −Xj)2
.

The bias depends on the covariance between the independent variable X and the time-

varying S. If X and S satisfy
∑

t (Xt − X̄)(St − S̄) = 0, then the simple regression

estimator will be unbiased. A simple special case is when Si = Sj for all i and j,

ie. St is constant. However, there usually exists long-term or seasonal trends in both

X and S for time series data, making the cross-product non-zero, in which case the

estimator β̂ from Model I is biased.

2.1.2 Coefficient decomposition

If we look at each data pair (Xi, Yi) and (Xj, Yj) individually, we can crudely estimate

β using a pairwise regression estimator β̂i,j = (Yi − Yj)/(Xi − Xj), which will be

unbiased if Si = Sj. If given X and S, the εt are iid N(0, σ2), the variance of

β̂i,j is V ar(β̂ij) = 2σ2/(Xi − Xj)
2. The estimator β̂i,j has been called “elemental

regression” for simple linear regression (Mayo and Gray, 1995; Sheynin, 1973). Back

in 1841, Jacobi first reported that the least squares estimator β̂ can be written as

the weighted average of β̂ij for all i, j, with the weight proportional to V ar(β̂ij)
−1:

β̂ =
∑T

t=1(Xt − X̄)(Yt − Ȳ )/
∑T

t=1(Xt − X̄)2 =
∑

i<j(Xi −Xj)
2β̂ij (Sheynin, 1973).

The estimator β̂ uses information from all possible data pairs. However, β̂ is biased

in the presence of unmeasured time-varying confounders.

Matching has been used to control for potential confounders. If we match day t

with days t + u and t− u, we can combine pairs of observations with lag u to obtain

6
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matching estimator β̃(u). Here

β̃(u) =

∑T−u
t=1 (Yt − Yt+u)(Xt −Xt+u)∑T−u

t=1 (Xt −Xt+u)2

=
T−u∑
t=1

(
Yt − Yt+u

Xt −Xt+u

) (
(Xt −Xt+u)

2

∑T−u
t=1 (Xt −Xt+u)2

)

=
T−u∑
t=1

β̂t,t+uwt(u), (2.1)

where wt(u) = (Xt −Xt+u)
2/

∑T−u
t=1 (Xt −Xt+u)

2.

We can also use matrix notation to get (See Appendix I for details)

β̃(u) =
XtDu

tDuY

XtDu
tDuX

= HuY, (2.2)

where Hu = XtDu
tDu/XtDu

tDuX is a vector of length T . Let β̃ = (β̃(1), . . . , β̃(T −
1))t and H be the (T − 1) × T matrix with Hu as the uth row. Then we have

β̃ = HY, which follows multivariate normal distribution and its covariance matrix is

Σ = σ2HHt.

The bias for β̃(u) will vary with lag u. If St is a smooth function of time, in

particular, smoother than Xt, we would expect β̃(u) to have little bias for small u.

Note that the least squares estimator β̂ can be expressed as a weighted average of

7
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β̃(u)

β̂ =

∑T−1
u=1

∑T−u
t=1 (Yt − Yt+u)(Xt −Xt+u)∑T−1

u=1

∑T−u
t=1 (Xt −Xt+u)2

=
T−1∑
u=1

∑T−u
t=1 (Yt − Yt+u)(Xt −Xt+u)∑T−u

t=1 (Xt −Xt+u)2

∑T−u
t=1 (Xt −Xt+u)

2

∑T−1
u=1

∑T−u
t=1 (Xt −Xt+u)2

=
T−1∑
u=1

β̃(u)w(u), (2.3)

where w(u) =
∑T−u

t=1 (Xt − Xt+u)
2/

∑T−1
u=1

∑T−u
t=1 (Xt − Xt+u)

2. Here we can see that

the least squares estimator β̂ is a linear combination of matching estimators (β̃(u)s)

that compare day t to days t + u and t − u. How to optimally combine the β̃(u)

involves a trade-off of bias and variance as described below.

Another method to control for potential confounders is by modeling St. We can

fit the following Model II: E(Yt) = β0 + βXt + St, where St is estimated by Ŝt, a

smooth function of t with ν degrees of freedom. The estimator β̂Ŝ is the same as

regressing Y ∗
t = Yt − Ŝt on Xt, where Ŝ = (Ŝ1, . . . , ˆST−1). We can again using the

pairs with lag u to obtain

β̃Ŝ(u) =

∑T−u
t=1 (Yt − Ŝt − Yt+u + Ŝt+u)(Xt −Xt+u)∑T−u

t=1 (Xt −Xt+u)2
. (2.4)

Similar to Equation 2.3, the estimator β̂Ŝ can be expressed as the weighted average

of β̃Ŝ(u), β̂Ŝ =
∑T−1

u=1 β̃Ŝ(u)w(u).

If Ŝt adequately captures the structure of St, we would expect Y ∗
t = Yt − Ŝt

to be uncorrelated with the unmeasured time-varying confounders. The matching

estimators β̃Ŝ(u) would be unbiased for all us, thus resulting in an unbiased β̂Ŝ.
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As an obvious extension, we have measured confounders Zt, we can fit Model

III: E(Yt) = β0 + βXt + γZt + St, and obtain β̃Ŝ,Z,(u) using Y ∗
t = Yt − γ̂Zt − Ŝt and

Xt.

2.1.3 Connections between β̃(u) and β̂Ŝ

As we mentioned before, unmeasured confounder can be controlled by matching or

modeling. Lu and Zeger (2007) have established connections between case-crossover

design and time series log-liner model for counts outcome, which are examples of

controlling by matching and modeling. An obvious question is: what is the connection

between matching and modeling for this linear model?

The estimator β̃(u) can be obtained by matching day t with days t + u and t− u,

while β̂Ŝ can be calculated by modeling S with Ŝ. In this section, we establish a

connection between β̃(u) and β̂Ŝ.

Suppose we fit a model E(Yt) = β0 + βXt + St for t = 1, . . . , T . Here we use

symmetric weighted running mean smoother to estimate St by defining Ŝt = Ỹt =
∑T−t

u=−t+1 λuYt+u with
∑T−t

u=−t+1 λu = 1, where λu is symmetric, i.e. λu = λ−u. We

usually have λu = 0 for u > k, where k depends on the number of degrees of freedom

in smoothing. For t < k + 1 and t > T − k, there exists edge effect.

9

Hosted by The Berkeley Electronic Press



We can write β̂Ŝ as the following expression (See APPENDIX for details)

β̂Ŝ =

∑T
t=1(Xt − X̄)(Yt − Ŝt − Ȳ )∑T

t=1(Xt − X̄)2

=
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
Xt −

T−t∑
u=−t+1

λuXt+u

]}

=
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
Xt − X̃t

]}
, (2.5)

where X̃t =
∑T−t

u=−t+1 λuXt+u is the symmetric weighted running mean smoother of

Xt using the same smoothing method as estimating Ŝt = Ỹt. This result holds even

when there exists edge effect, as far as we use the same smoothing method for both

X̃t and Ỹt.

The matching estimator β̃(u) can be written as

β̃(u) =

∑T−u
t=1 (Yt − Yt+u)(Xt −Xt+u)∑T−u

t=1 (Xt −Xt+u)2

=
1

∑T
t=1 Xt

[
Xt − X̃t(u)

]
T∑

t=1

Yt

[
Xt − X̃t(u)

]
, (2.6)

where X̃t(u) = (2Xt + Xt+u)/3 for t < u + 1, X̃t(u) = (Xt−u + Xt + Xt+u)/3 for

u + 1 ≤ t ≤ T − u, and X̃t(u) = (2Xt + Xt−u)/3 for t > T − u. It can be shown that

α(u)β̃(u) is exact the same as β̂Ŝ using Ŝt = Ỹt(u), where

α(u) =

∑T
t=1 Xt(Xt − X̃t(u))∑T

t=1 Xt(Xt − X̄t)

= 1−
∑T

t=1 Xt(X̃t(u)− X̄t)∑T
t=1 Xt(Xt − X̄t)

.

Hence the estimator obtained by matching day t with days t + u and t− u is propor-
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tional to estimating St using running average of Yt−u, Yt, and Yt+u. The factor α(u)

depends on the pattern of Xt and X̃t(u).

For the least square estimator β̂, we have

β̂ =
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt(Xt − X̄)

}
,

hence β̂ corresponds to using Ŝt = Ȳ , with β̂0 = Ȳ − S̄ = 0.

We extend the data beyond [1, T] by Xt+u = Xt+u−T for t + u > T and Xt−u =

Xt−u+T for t − u < 1 to avoid edge effect. The data were analyzed using circular

pattern, here λu = λ−u = λT−u = λu−T . The matching estimator β̃(u) can be written

as

β̃(u) =

∑T
t=1(Yt − Yt+u)(Xt −Xt+u)∑T

t=1(Xt −Xt+u)2

=
1

∑T
t=1 Xt

[
Xt − X̃t(u)

]
T∑

t=1

Yt

[
Xt − X̃t(u)

]
, (2.7)

where X̃t(u) = (Xt−u + Xt + Xt+u)/3.

Denote V (u) =
∑T

t=1(Xt−Xt+u)
2 and VT =

∑T−1
u=1

∑T
t=1(Xt−Xt+u)

2 = 2T
∑T

t=1(Xt−
X̄)2 (Note that VT = T

∑T
t=1(Xt−X̄)2 if we don’t use data circularly). For

∑T−t
u=−t+1 λu =

1, we have λ0 +
∑T−1

u=−T+1 λu = 2
∑T−t

u=−t+1 λu = 2. We can obtain the linear combina-

tion of β̃(u)s

β̂V =
T−1∑
u=1

V (u)

VT /T
λuβ̃(u)

=
1∑T

t=1(Xt − X̄)2

T∑
t=1

{
Yt

[
Xt −

T−t∑
u=−t+1

λuXt+u

]}
, (2.8)
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which is exactly the same as estimator β̂Ŝ using smoothing function Ŝt =
∑T−t

u=−t+1 λuYt+u

(See APPENDIX for details). Hence the estimator β̂Ŝ obtained by modeling St with

Ŝt = Ỹt =
∑T−t

u=−t+1 λuYt+u can be calculated as a linear combination of β̃(u)s, where

the weight is proportional to λu and the variogram for each lag u. If we don’t use

data circularly, the result is approximate due to the edge effect.

2.1.4 Model-checking and Proposed Estimators

In the previous sections, we introduced a matching estimator β̃Ŝ(u) after modeling

S using Ŝ. The estimator β̂Ŝ can be written as a linear combination of β̃(u)s, and

the weight is related to how we smooth Y to obtain Ŝ. There are two questions we

want to answer in this section: (1) How to assess whether Ŝt adequately captures the

structure of St? (2) If Ŝt is not adequate, can we still obtain a less biased estimator?

As we mentioned above, when Ŝt adequately captures the structure of St, we would

expect β̃Ŝ(u) to be unbiased for all u, hence the plot of β̃Ŝ(u) versus lag u would on

average be a horizontal line. We propose a model checking method by plotting β̃Ŝ(u)

vs lag u, and we call it the Lagged-Estimator-Plot, LEP.

First we need to fit a model E(Yt) = β0 +βXt +St to obtain Ŝt, then β̃Ŝ(u) can be

calculated using Equation 2.4, and the variance of β̃Ŝ(u) is σ2(u) = 2σ2/
∑T−u

t=1 (Xt −
Xt+u)

2. The LEP plot will give us a visual display of how β̃Ŝ(u)s change with u,

which reflects the possible impact of unmeasured confounders on the true association

or mis-specification of the model for measured confounders.

In order to test the equivalence of β̃Ŝ(u)s, we need to a test statistics. Under the

assumption Yt = β0 + βXt + St + εt = µt + St + εt , if Ŝt captures the structure of

12
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St, we would expect Y ∗
t = Yt − Ŝt to be approximately independent normal variates

with mean µt and variance σ2. The vector β̃Ŝ = HY∗ follows a multivariate normal

distribution with estimated covariance matrix ΣŜ = σ̂2
ŜHHt.

Let β(u) denote the limit of β̃(u) when the total number of days T goes to ∞.

First we want to test the null hypothesis βŜ(1) = . . . = βŜ(u) = · · · = βŜ. Denote the

vector (β̃Ŝ(1)− β̃Ŝ, . . . , β̃Ŝ(T − 2)− β̃Ŝ)t as ∆β̃Ŝ = Mβ̃Ŝ = MHY∗, where β̃Ŝ is the

mean of all the T − 1 β̃Ŝ(u)s.

One obvious test statistics is D1 = ∆β̃t
Ŝ
[ ˆCov(∆β̃Ŝ)]−1∆β̃Ŝ, where ˆCov(∆β̃Ŝ) is

the estimated covariance matrix for ∆β̃Ŝ. However, the test statistics D1 equals to

the residual degrees of freedom for the model. We can rewrite the test statistics as

(MHY∗)t[MHHtMt]−1MHY∗/σ̂2
Ŝ, where (MHY∗)t[MHHtMt]−1MHY∗ equals

sum squared error of the model, while σ̂2
Ŝ is the mean squared error. Hence the test

statistics is not a random variable, but a constant, which is the residual degrees of

freedom.

We can construct another test statistics D2 = ∆β̃t
Ŝ
[ ˆV ar(∆β̃Ŝ)]−1∆β̃Ŝ, where

ˆV ar(∆β̃Ŝ) is the estimated diagonal variance matrix. Note that D2 equals to
∑T−1

u=1 [(β̃Ŝ(u)−
β̂Ŝ)2/σ̂2(u)], where σ̂2(u) is the estimated variance of β̃Ŝ(u). Because the β̃Ŝ(u)s are

dependent, D2 does not have a χ2(T−2) distribution and we will use time series boot-

strap method to obtain a p-value for the test statistics as well as the 95% interval

under the null hypothesis.

The bootstrap scheme introduced by Efron (Efron, 1979) was first geared toward

independent data. When we apply the i.i.d. bootstrap to dependent data, the es-

timates of variances are typically inconsistent (Singh, 1981; Babu and Singh, 1983).

Because the i.i.d. bootstrap “scrambles” the data, all information about dependence

13
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will be lost. In order to preserve the possible autocorrelation in the time series data,

we use block resampling instead of the i.i.d. bootstrap (Künsch, 1989).

The bootstrap procedure we used is the following. After fitting the model, we

have Yt = Ŷt + et. The time series of residuals et, t = 1, . . . , T is divided into disjoint

m day strata to preserve the possible autocorrelation within blocks. The strata are

sampled with replacement and we acquire a new sequence of Y N
t using Y N

t = Ŷt + eN
t

for each bootstrap replicate. Bootstrap percentile p-value is then obtained. For each

bootstrap step, we can calculate the matching estimator β̃Ŝ(u). We then obtain the

95% interval of the β̃Ŝ(u) under the null hypothesis. We use different values of m to

check the sensitivity of the result to the size of the strata.

Another question we want to answer is how to obtain a less biased estimator of

β when Ŝt does not adequately describe St. If St changes smoothly with time, β̃(u)

tend to have little bias for small lag u. We can use the weighted average of β̃(u) for

small u as our estimator (eg, β̃(u) for u ≤ k).

Since our goal is to estimate “the true effect” of an exposure on human health, we

want to know the relative risk of adverse health outcome with or without the exposure

for the same population, keeping all the other factors constant. Our scientific interest

is actually the counterfactual parameter β(0). Another proposed estimator is obtained

by extrapolating to β̃(0) by fitting a regression model of β̃(u) as a smooth function

of u. We used a natural spline with 3 degrees of freedom.

14

https://biostats.bepress.com/jhubiostat/paper159



2.1.5 Simulation study

A simulated data set is used to illustrate the LEP model-checking method. First we

used the outcome Yt, the daily morality for persons 75 years and older and the expo-

sure Xt, the previous day daily average temperature in Chicago from March 1 to Octo-

ber 31, 1996. Data for this application are available at the Internet-based Health and

Air Pollution Surveillance System (iHAPSS) website (URL: http://www.ihapss.jhsph.edu/data/data.htm).

We fit a linear regression model Yt = β0 +Xtβ +S(t, df = 3)+εt, using natural spline

of t with three degrees of freedom as the smoothing function. The estimated co-

efficient and smoothing function were used as the true β and St in the simulation

study. We used the same set of observed Xt in the simulation and simulated Yt using

Yt ∼ N(Ŷt, σ
2), where σ2 was the estimated variance from the linear regression. The

true β is 0.1367.

The following four models were fit to the simulated data, and we obtained esti-

mators β̂Ŝ and β̃Ŝ(u)s for each of them.

Model 1: E(Yt) = β0 + Xtβ. Here we ignore St.

Models 2, 3 and 4: E(Yt) = β0 + Xtβ + S(t, ν), where S(t, ν) is a natural spline

of t with ν degrees of freedom, for ν = 1, 3, 10, respectively.

Simulation Study I: model-checking

A standardized residual plot is commonly used in model checking. The standard-

ized residuals should have mean 0 and constant variance when the model is valid.

Figure 1 is the residual plots for each of the four models using one realization of the

simulated data, and the solid lines are the smooth spline curve of the standardized

residuals with 3 degrees of freedom. However, from the residual plot itself, it is very
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difficult to detect lack of fit and especially difficult to appreciate how any lack of

fit affects the estimate of scientific interest β. The smooth spline lines suggest that

Models 1 (ignore St) and 2 (ν = 1) have a little bit of U shape in the mean of the

standardized residuals, while Models 3 (ν = 3) and 4 (ν = 10) have standardized

residuals with roughly mean 0 and constant variance.

Figure 2 is our proposed model checking method, the LEP plots using the same

realization of the simulated data. The horizontal lines are the true β, and the dotted

lines are the bootstrap 95% intervals under the null hypothesis using 5000 bootstrap

iterations. We used block sizes 5, 7, and 10 days to investigate the sensitivity of

the bootstrap on the block size, and the results turned out to be very similar. For

models using less than enough degrees of freedom in estimating St (Models 1 and 2),

we can clearly see the U shape curve of β̃(u). The LEP plots give us more obvious

evidence that Models 1 and 2 did not adequately describe the data in so far as our

goal to estimate β. Had they done so, the β̃(u) would be roughly independent of u.

Moreover, the LEP plots give us a direct view of the magnitude of the estimators for

each lag u. If we test the null hypotheses that β(u) = β for all u, we reject with

p = 0.00.

The LEP plots for both models 3 and 4 turn out to be roughly horizontal (p-

value=0.47 and 0.16, respectively). Model 3 uses the correct degrees of freedom in

estimating St, while Model 4 uses too many degrees of freedom. Both models should

generate estimators with less bias. However, Model 4 will be more variable.

Simulation Study II: robust estimators

Using simulated data, we fit Models 1 through 4 as described in the model-checking

session, and calculate β̃Ŝ(u) for each lag u. For each model, we obtain the following
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estimators:

Method A: The estimator of β obtained using the model.

Method B: (a)Weighted average of the first 20 β̃(u)s. Weight w(u) =
∑T−u

t=1 (Xt−
Xt+u)

2/
∑T−1

u=1

∑T−u
t=1 (Xt −Xt+u)

2.

(b)Weighted average of all the β̃(u)s. This estimator should be the same as in

Method A.

Method C: (a)Regress the first 20 β̃(u)s on natural spline of u with 3 degrees of

freedom, weighted by w(u). The intercept β̃(0) is our estimator.

(b) Similar to C(a), but using all the β̃(u)s. Table 5.2 is the mean and standard

deviation (in parenthesis) of the estimates using 1000 simulations for the models and

methods mentioned above.

The results confirm that Method A and Method B(b) generate the same estimator

as shown in Equation 2.3, showing that β̂Ŝ can be written as the weighted average

of β̃Ŝ(u)s for linear models. When we use less than enough degrees of freedom for

St (Models 1 and 2), extrapolation to lag 0 (Method C) gives a less biased estimator

than the weighted average (Method B). Using the first 20 β̃Ŝ(u)s produces less bias

results than using all the pairs. The variance using all pairs is smaller reflecting a

bias-variance trade-off.

When we used enough degrees of freedom for St (Models 3 and 4), we will have

similar estimates for all the 5 methods, which suggests that when Ŝt captures the

structure of St, the β̃Ŝ(u) will be roughly constant across u. Method C(a) is the least

biased estimator for all models, but it has the biggest variance.
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2.2 Log-Linear Time Series Model

For environmental time series data, we often have mortality or morbidity counts as

the outcome. One commonly used approach is to fit a Poisson log-linear model with

linear terms of PM air pollution levels and smooth functions of time to adjust for the

time-varying confounders.

2.2.1 Model

We assume the true model is log µt = β0 +βXt +St, where Yt is the number of events

with E(Yt) = µt and V ar(Yt) = φµt, Xt is the exposure such as air pollution, and

St is the value of a smooth function of time which represents the combined effect

of unmeasured confounders. Time series log-linear models allow for over-dispersion

relative to the Poisson variance, where φ is the over-dispersion parameter.

Suppose we ignore St and fit Model I: log(µt) = β0 + βXt to obtain β̂ . For each

data pair (Xi, Yi) and (Xj, Yj), we can obtain the estimator by solving estimating

equation Xi[Yi − exp(β0 + βXi)] + Xj[Yj − exp(β0 + βXj)] = 0, however, there is no

closed form solution. Similar to the linear time series linear model, for each data pair

(Xi, Yi) and (Xj, Yj), we can crudely estimate β using β̂i,j = (log Yi − log Yj)/(Xi −
Xj). The estimator β̂ obtained using Model I is roughly the weighted average of

β̂i,j, and the weight is reciprocal to the variance of β̂i,j. The variance of β̂i,j is

(1/µ̂i + 1/µ̂j)/(Xi −Xj)
2, which is a function of X as well as µ. Note that for linear

model, the least squares estimator is exactly the weighted average of β̂i,j, and the

weight is proportional to (Xi −Xj)
2.

Using the results given by Lu et al. (2007), the expectation of the estimating
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equation for the model can be written as

E[U(β)] =
T∑

t=1

Xte
βXt

[
exp(St)− E[exp(Ŝt(β))]

]

=
T∑

t=1

Xte
βXt∆eSt(β), (2.9)

where ∆eSt(β) is the difference between true exp(St) and the expectation of the

estimated exp(Ŝt(β)).

We can combine pairs of observations with lag u to obtain a matching estimator

β̃(u) =
T−u∑
t=1

(
log Yi − log Yj

Xt −Xt+u

) (
(Xt −Xt+u)

2/(1/µ̂t + 1/µ̂t+u)∑T−u
t=1 (Xt −Xt+u)2/(1/µ̂t + 1/µ̂t+u)

)

=
T−u∑
t=1

β̂t,t+uwt(u), (2.10)

where wt(u) = (Xt − Xt+u)
2/(1/µ̂t + 1/µ̂t+u)/

∑T−u
t=1 (Xt − Xt+u)

2/(1/µ̂t + 1/µ̂t+u).

Here, β̃(u) is approximately the estimator obtained using symmetric bidirectional

case-crossover design using days t− u and t + u as the control days for event day u.

We can also fit Model II: log(µt) = β0 + βXt + St to obtain β̃Ŝ(u), and use the

proposed model-checking method in the linear model section as well as obtain the

proposed estimators.

2.2.2 Simulation study

Another simulation study was conducted. We used the same data set as in the linear

model section and we fit a log-linear regression model log(µt) = β0+βXt+S(t, df = 3),

using natural spline of t with three degrees of freedom as the smoothing function. The
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estimated coefficient and smoothing function were used as the true β and St in the

simulation study. We used the same set of observed Xt and simulated Yt using Yt ∼
Poisson(µt). The true β is 2.379, which is approximately the percentage increase of

the mortality rate for every 10 degrees of increase in previous day temperature. We

fit 4 models as before:

Model 1: log(µt) = β0 + βXt. Here we ignore St.

Models 2, 3 and 4 are log(µt) = β0 + βXt + S(t, ν), where S(t, ν) is a natural

spline of t with ν degrees of freedom, for ν = 1, 3, 10, respectively.

We again used one realization of the simulated data to perform model-checking.

The standardized residual plots (Figure 3) and the LEP plots (Figure 4) show similar

pattern as for linear time series model. It is very difficult to detect lack of fit from

the standardized residual plot itself, even though the smooth spline lines suggest that

models 1 (ignore St) and 2 (ν = 1) have a little bit of U shape. Our proposed LEP

plots clearly indicate the U shape curve of β̃(u) for models 1 and 2, which suggest

that those two models did not adequately describe the data. The dotted lines in the

LEP plots are the bootstrap 95% intervals under the null hypothesis, β(u) = β for

all u, using block re-sampling bootstrap. We reject the null hypothesis with p = 0.00

for models 1 and 2. The LEP lots for both models 3 (ν = 3) and 4 ν = 10 turn out

to be roughly horizontal (p=0.43 and 0.08, respectively). Using block sizes 5, 7, and

10 generates very similar result.

We used 1000 simulations to calculate mean and standard deviation of the pro-

posed estimators (Table 5.2). The simulation results have shown that Method A and

Method B(b) generate very similar results, which confirmed that β̂Ŝ can be approx-

imated using the weighted average of β̃Ŝ(u)s for log-linear models. Because there
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is no closed-form solution for the log-linear model estimating equation, we can not

compute the bias and variance directly. This approximation allows us to compute the

estimator and variance without iterations. When we used less than enough degrees of

freedom in St, extrapolation to lag 0 (Method C) gives less biased results comparing

with weighted average (Method B), and using the first 20 β̃Ŝ(u)s gives less biased

results than using all the pairs, but again we have bias-variance trade-off. When we

used enough degrees of freedom in St (Models 3 and 4), we will have similar estimates

for all the 5 methods, which suggests that when Ŝt captures the structure of St, the

β̃Ŝ(u) will be roughly constant across u. Method C(a) is the most robust estimator,

even though it has the biggest variance.

The simulation results have shown that matching estimators can be used to per-

form model-checking, compute bias and variance, and construct robust estimators for

log-linear models.

2.3 Extension to Spatial Log-linear Model

In the previous sections, we considered time series models. In environmental epi-

demiology, we often have spatial data, which is more complicated because space is

two-dimensional. We often have mortality or morbidity counts as the outcome, so

need to fit log-linear model with linear terms of PM air pollution levels and smooth

functions of space to adjust for the space-varying confounders. Usually we need to

adjust for measured confounders such as SES and smoking due to differences be-

tween populations at different locations. The city studies can also be confounded by

other unmeasured differences between city populations being compared, which makes

spatial analyses more challenging.
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Let’s use the Medicare Cohort Air Pollution Study (MCAPS) data as a motivating

example. We have average PM2.5 concentration and non-accidental mortality for 1055

zipcodes across the United states in the Medicare system. We divided the US into

three geographical regions (Western Coast, Central US, and Eastern US). Suppose

we are interested in the association between the numbers of deaths Ys and average

PM2.5 level Xs for each region. We also take into account of number of people at

risk Ns, and control for measured confounders Zs, SES status (proportion with high-

school education, proportion with degree, proportion living in poverty, proportion

unemployed, median income) and the chronic obstructive pulmonary disease (COPD)

standardized mortality ratio as a surrogate for smoking. We assume a spatial log-

linear model log(µs) = β0+βXs+γZs+Us+log(Ns) for location s, where E(Ys) = µs,

V ar(Ys) = φµs, and Us is the value of a smooth function of space at location s.

We allow for over-dispersion relative to the Poisson variance, where φ is the over-

dispersion parameter.

Suppose we ignore Us and fit Model I: log(µs) = β0 + βXs + γZs to obtain β̂

and γ̂. Denote the β̂ from Model I as Estimator A . Similar to time series log-linear

model we described above, for each data pair (Xi, Yi) and (Xj, Yj), we can estimate β

using β̂i,j = [(log(Yi/Ni)− γ̂Zi)− (log(Yj/Nj)− γ̂Zj)]/(Xi−Xj), where γ̂ is obtained

from Model I mentioned above. Model I assumes Us is constant across location s,

which implies that β̂i,j will be roughly constant for pairs at different distance d. Since

there are so many β̂i,js available, we need to construct new measures of β(d) in order

to perform model checking.

First, we fit Model I separately for each geographical region, then obtain β̂i,j and

di,j for each data pair (Xi, Yi) and (Xj, Yj) within that region. We divide data pairs

into 5 different categories based on their geographical distance di,j: d ≤ 10 miles,

22

https://biostats.bepress.com/jhubiostat/paper159



10 < d ≤ 100, 100 < d ≤ 250, 250 < d ≤ 500, and d > 500 miles. We assume that U

is roughly constant within each distance category. We then regress β̂i,j on the dummy

variables for each distance category, weighted by the reciprocal of the variance of β̂i,j.

We will obtain an estimator β̃(d) for each distance category. β̃(d) can be considered

as the weighted average of β̂i,j within each distance category. If the assumption is

valid, β̃(d) will be roughly constant across distance category.

Due to the dependence of pairwise coefficients, we use block re-sampling bootstrap

to calculate the standard errors of matching coefficient β̃(d). First we fit model I to the

data and obtain pairwise coefficients. We divide each geographical region into blocks

based on the latitude and longitude of the sampling sites. We then re-sample the

blocks with replacement and use the previously obtained pairwise coefficients within

the blocks to calculate new β̃(d)s for each bootstrap replicate. The standard deviation

of the 1000 bootstrap β̃(d)s is used as the standard error of matching coefficient β̃(d).

Figures 5, 6 and 7 are the plots of β̃(d) versus lag category with their 95% con-

fidence intervals for three age groups and three geographical regions. Even though

the 95% confidence intervals overlap each other, we can see that there exist trend of

β̃(d), especially for people 85 years and older, and for central US. Changing bootstrap

block sizes generates similar results.

We define Estimators B and C to be the weighted average of β̂i,j for all the

pairs and pairs with distance ≤ 500 miles, respectively. The weight again is the

reciprocal of the variance of β̂i,j. The Estimator D is obtained by regressing β̂i,j on

log(di,j) using i and j pairs with distance ≤ 500 miles, weighted by the reciprocal of

the variance of β̂i,j.

The estimators obtained by extrapolation is robust in the simulation study for
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time series model, however, it generates negative estimates for people in central US

and for people 85 years and older even after we fit two-dimensional smoothing function

of longitude and latitude with 3 degrees of freedom (results not shown). It suggests

that the most commonly used spatial log-linear model doesn’t adequately accounted

for the unmeasured space-varying confounders. Due to the complexity of spatial

data, a new measure of distance other than geographical distance d may need to be

constructed to take into account the effect of unmeasured confounders which do not

vary smoothly in space.

3 DISCUSSIONS

Confounding bias is an important issue in environmental epidemiology. The true

association between health outcome and air pollution can be confounded by measured

or unmeasured time-varying confounders. Matching and modeling have been used to

control for these effects.

Time series analyses of air pollution data controlled for confounding bias by in-

cluding smooth functions of time in the time series semi-parametric regression model

(McCullagh and Nelder, 1989; Hastie and Tibshirani, 1990; Marx and Eilers, 1998;

Dominici et al., 2004). The number of degrees of freedom in the smooth functions

of time reflects the degree of adjustment for confounding factors and it can have a

large impact on the magnitude and statistical uncertainty of the estimation of the

true association.

In this paper, we introduced matching estimators β̃(u), which can be considered

as matching day t with days t + u and t − u. The matching estimator β̃(u) is a
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weighted average of pairwise regression estimators β̂t,t+u. The pairwise regression

estimators has been called “elemental regressions” for simple linear regression. The

idea of elemental regressions have existed for centuries. Suppose we have k parameters

in the model, only p = k + 1 observations are required to estimate the estimators

β0, β1, . . . , βk (Mayo and Gray, 1997). Back in 1981, Jacobi showed that the least

squares estimator can be written as a weighted average of the elemental regressions in

the linear model space(Sheynin, 1973). There are major differences between elemental

regressions and our pairwise regressions. Assume the true model is E(Yt) = β0+βXt+

γZt. Elemental regressions would need 3 observations to estimate the estimators β0, β

and γ. For our pairwise regressions, we first use all the data to estimate β̂0 and γ̂,

then use Y ∗
t = Yt− γ̂Zt as a new response variable to explore the association between

Y ∗
t and Xt. No matter how many covariates are included in the model, we can always

use the data pair as the smallest element to perform pairwise regressions. For semi-

parametric models such as E(Yt) = β0 + βXt + γZt + St, it may not be feasible to

perform the traditional elemental regression.

Our pairwise regression estimator β̂i,j = [(Yi−γ̂Zi−Ŝi)−(Yj−γ̂Zj−Ŝj)]/(Xi−Xj)

would be approximately free of confounding effect if the Ŝ is a close approximation to

S. If St changes smoothly with time, we can combine our pairwise regressions with

the same lag u to construct a matching estimator β̃(u).

The LEP (Lagged-Estimator-Plot) is the graph of β̃(u) versus lag u. When the

model for St adequately captures the influence of unmeasured confounders, the LEP

will be a roughly horizontal line. The LEP plot shows the effect on the regression

coefficient of interest, β, if not adequately describing St. Moreover, the LEP plots

give us a direct view of the magnitude of the estimators for each lag u.
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The least squares estimator β̂S can be written as the weighted average of β̃S(u).

Note that β̂S can be written as a linear combination of β̃(u), where the weight depends

on variogram for lag u as well as the how we smooth Y to obtain S.

Based on β̃S(u), we can construct new estimators using weighted average of β̃S(u),

or by extrapolation to lag 0. Simulation results suggest that estimators generated

using extrapolation tend to have less bias, but the variance is bigger. The bias of

β̃S(u) is small for small enough u. When we calculated weighted average of β̃S(u)

for the first 20 u comparing with using all of the 244 us, the bias is much improved

when the model uses less than enough degrees of freedom in smoothing, and the bias

is bigger. When the model uses enough degrees freedom in smoothing, using the first

20 or all 244 β̃S(u) would generate similar result. The result is somewhat surprising

because we would expect the weighted average of the first 20 β̃S(u) to have bigger

variance since it throws away lots of data pairs.

Sentürk and Müller proposed covariate-adjusted regression (CAR) for situations

where both predictors and outcome are contaminated by a multiplicative factor which

is determined by a unknown function of a measured variable M (Sentürk and Müller,

2005). There is a varying coefficient model associated with CAR: Y = β0(M) +

β(M)X +ψ(M)ε, where ψ(M) is the unknown multiplicative factor for the outcome.

For time series data, time t is the measured variable. The β(M) obtained in CAR

is similar to our matching estimator when ignoring St, because both use the idea

of matching. CAR divide data into disjoint strata by their M values, while our

matching estimator uses running blocks. CAR uses weighted average of β(M) to

obtain an estimator for the true β. For our proposed estimators, we combine the idea

of matching and modeling by including a smooth function of time in the model.
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The results can be extended to time-series log-linear models. Simulations con-

firmed that β̂Ŝ can be approximated using the weighted average of β̃Ŝ(u)s for log-

linear models. This approximation allows us to compute the estimator and variance

without iterations. The matching estimators can be used to perform model-checking,

compute bias and variance, and construct robust estimators for log-linear models.

The mortality counts in our simulation study are relatively large (around 60), hence

we can use log(Yt/Nt) to construct matching coefficients. It would be interesting to

extend our results to log-linear model with small counts for which log(Yt/Nt) is not

possible and to binary responses as well as other models in the generalized linear

model families.

We applied our model-checking method to spatial data, which revealed that the

most commonly used spatial log-linear model doesn’t adequately accounted for the

unmeasured space-varying confounders. We usually include smoothing function of lo-

cation in the model, however, for spatial data, the confounders may not vary smoothly

in space. For example, big cities and their surrounding suburbs can have big culture

difference even though they are very close in distance, while big cities may be more

similar in culture even though they are further apart. We want to extend our re-

sults to cases when βij depends on more than geographical distance d. Due to the

complexity of spatial data, a new measure of distance other than d may need to be

constructed to take into account the effect of unmeasured confounders which do not

vary smoothly in space.
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5 APPENDIX

5.1 Appendix I

Let

D =




1 −1 0 . . . 0

0 1 −1 0 . . . 0

. . .

0 . . . 0 1 −1

−− −− −− −− −− −− −− −−
1 0 −1 0 . . . 0

. . .

0 . . . 0 1 0 −1

−− −− −− −− −− −− −− −−
. . .

−− −− −− −− −− −− −− −−
1 0 . . . 0 −1






T

2



×T

=




D1

−−−
D2

−−−
. . .

−−−
DT−1






T

2



×T

.
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We have

β̃(u) =

∑T−u
t=1 (Yt − Yt+u)(Xt −Xt+u)∑T−u

t=1 (Xt −Xt+u)2

=
(DuX)tDuY

(DuX)tDuX
=

XtDu
tDuY

XtDu
tDuX

= HuY, (5.1)

where Hu = XtDu
tDu/XtDu

tDuX.

We have

β̃ =




β̃(1)

β̃(2)

. . .

β̃(T − 1)




=




H1

−−−
H2

−−−
. . .

−−−
HT−1




Y

= HY. (5.2)

The covariance for β̃ is Σ = σ2HHt.
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5.2 Appendix II

We can estimate St with Ŝt and rewrite the model as Yt = β̂0 + β̂Xt + Ŝt + εt.

Then we can get

β̂0,Ŝ =
1

T

T∑
t=1

Yt − 1

T

T∑
t=1

Ŝt

= Ȳ − S̄,

and

β̂Ŝ =

∑T
t=1(Xt − X̄)(Yt − Ŝt − Ȳ )∑T

t=1(Xt − X̄)2
.

We can write the model as

Yt = Ȳ − S̄ +

∑T
t=1(Xt − X̄)(Yt − Ŝt − Ȳ )∑T

t=1(Xt − X̄)2
+ Ŝt + εt,

Let’s suppose Ŝt =
∑T−t

u=−t+1 λuYt+u with
∑T−t

u=−t+1 λu = 1 where λu is symmetric

i.e. λu = λ−u.
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Then we can get

β̂Ŝ =

∑T
t=1(Xt − X̄)(Yt − Ŝt − Ȳ )∑T

t=1(Xt − X̄)2

=
1∑T

t=1(Xt − X̄)2

T∑
t=1

(Xt − X̄)(Yt − Ŝt − Ȳ )

=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)(Yt − Ŝt)−
T∑

t=1

(Xt − X̄)Ȳ

]

=
1∑T

t=1(Xt − X̄)2

T∑
t=1

(Xt − X̄)(Yt − Ŝt)

=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

t=1

(Xt − X̄)Ŝt

]

=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

t=1

{
(Xt − X̄)

T−t∑
u=−t+1

λuYt+u

}]

=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

t=1

T−t∑
u=−t+1

(Xt − X̄)λuYt+u

]

(let l = t + u) =
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

t=1

T∑

l=1

(Xt − X̄)λl−tYl

]
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=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

l=1

{
T∑

t=1

(Xt − X̄)λl−t

}
Yl

]

=
1∑T

t=1(Xt − X̄)2

[
T∑

t=1

(Xt − X̄)Yt −
T∑

t=1

[
T∑

l=1

(Xl − X̄)λ−l+t

]
Yt

]

(by λ−l+t = λl−t) =
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
(Xt − X̄)−

T∑

l=1

(Xl − X̄)λl−t

]}

(by l = t + u) =
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
(Xt − X̄)−

T−t∑
u=−t+1

(Xt+u − X̄)λu

]}

=
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
Xt −

T−t∑
u=−t+1

λuXt+u

]}

=
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt

[
Xt − X̃t

]}
.

where X̃t =
∑T−t

u=−t+1 λuXt+u is the symmetric weighted running mean smoother of

Xt using the same smoothing method as estimating Ŝt = Ỹt. This result holds even

when there exists edge effect, as far as we use the same smoothing method for both

X̃t and Ỹt.

We extend the data beyond [1, T] by Xt+u = Xt+u−T for t + u > T and Xt−u =

Xt−u+T for t − u < 1 to avoid edge effect. The data were analyzed using circular

pattern, hence λu = λ−u = λT−u = λu−T . The matching estimator β̃(u) can be
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written as

β̃(u) =

∑T
t=1(Yt − Yt+u)(Xt −Xt+u)∑T

t=1(Xt −Xt+u)2

=

∑T
t=1 Yt [2Xt − (Xt−u + Xt+u)]∑T
t=1 Xt [2Xt − (Xt−u + Xt+u)]

=

∑T
t=1 Yt [Xt − (Xt−u + Xt + Xt+u)/3]∑T
t=1 Xt [Xt − (Xt−u + Xt + Xt+u)/3]

=
1

∑T
t=1 Xt

[
Xt − X̃t(u)

]
T∑

t=1

Yt

[
Xt − X̃t(u)

]
, (5.3)

where X̃t(u) = (Xt−u+Xt+Xt+u)/3. It can be shown that [
∑T

t=1 Xt(Xt−X̃t(u))]/[
∑T

t=1 Xt(Xt−
X̄t)]β̃(u) is exact the same as β̂Ŝ using Ŝt = Ỹt(u) = (Yt−u + Yt + Yt+u)/3, here Ŝt is

the running mean of Yt−u, Yt, and Yt+u. When the edge effect exists, the result still

holds, but Ŝt = (2Yt + Yt+u)/3 for t < u + 1 and Ŝt = (2Yt + Yt−u)/3 for t > T − u.

For the least square estimator β̂, we have

β̂ =
1∑T

t=1(Xt − X̄)2

{
T∑

t=1

Yt(Xt − X̄)

}
,

hence β̂ corresponds to using Ŝt = Ȳ .

Using linear combinations of β̃(u) for different u, we will be able to construct the

estimator corresponding to different type of Ŝt.

Denote V (u) =
∑T

t=1(Xt−Xt+u)
2 and VT =

∑T−1
u=1

∑T
t=1(Xt−Xt+u)

2 = 2T
∑T

t=1(Xt−
X̄)2. For

∑T−t
u=−t+1 λu = 1, we have λ0 +

∑T−1
u=−T+1 λu = 2

∑T−t
u=−t+1 λu = 2. Let’s con-
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sider the following estimator

β̂V =
T−1∑
u=1

V (u)

VT /T
λuβ̃(u)

=
1

VT /T

T−1∑
u=1

T∑
t=1

λuYt (2Xt −Xt+u −Xt−u)

=
1

VT /T

T∑
t=1

{
Yt

T−1∑
u=1

λu (2Xt −Xt+u −Xt−u)

}

=
1

VT /T

T∑
t=1

{
Yt

[
Xt

T−1∑
u=1

(2λu + 2λ0)−
T−1∑

u=−T+1

λuXt+u −Xtλ0

]}

=
1

VT /T

T∑
t=1

{
Yt

[
Xt(λ0 +

T−1∑
u=−T+1

λu)−
T−1∑

u=−T+1

λuXt+u −Xtλ0

]}

=
1

VT /T

T∑
t=1

{
Yt

[
2Xt

T−t∑
u=−t+1

λu − 2
T−t∑

u=−t+1

λuXt+u

]}

=
1

VT /2T

T∑
t=1

{
Yt

[
Xt −

T−t∑
u=−t+1

λuXt+u

]}

=
1∑T

t=1(Xt − X̄)2

T∑
t=1

{
Yt

[
Xt −

T−t∑
u=−t+1

λuXt+u

]}
,

which is exactly the same as the estimator β̂Ŝ using smoothing function Ŝt =
∑T−t

u=−t+1 λuYt+u.

38

https://biostats.bepress.com/jhubiostat/paper159



Table 1: Mean and standard deviation (in parenthesis) of the estimates from the
simulation study (1000 simulations) for linear model. Method A is the estimator
obtained from the model. Method B(a) is the weighted average using the first 20
β̃(u)s, where weight w(u) =

∑T−u
t=1 (Xt −Xt+u)

2/
∑T−1

u=1

∑T−u
t=1 (Xt −Xt+u)

2. Method

B(b) is the weighted average using all the β̃(u)s (it should be the same as Method A
for linear model). Method C(a) is the intercept by regressing β̃(u)s on natural spline
of u with 3 degrees of freedom, weighted . Method C(b) is the same as C(a) except
it uses all the β̃(u)s. The true β = 0.1367.

df in A B C
St (a) (b) (a) (b)
0 -0.129 (0.032) 0.089 (0.061) -0.129 (0.032) 0.131 (0.095) 0.089 (0.066)
1 -0.137 (0.039) 0.089 (0.062) -0.137 (0.039) 0.131 (0.095) 0.089 (0.066)
3 0.134 (0.069) 0.135 (0.069) 0.134 (0.069) 0.131 (0.095) 0.134 (0.072)
10 0.134 (0.072) 0.134 (0.072) 0.134 (0.072) 0.131 (0.095) 0.134 (0.073)

Table 2: Mean and standard deviation (in parenthesis) of the estimates from the sim-
ulation study (1000 simulations) for log-linear model. Method A is the estimator ob-
tained from the model. Method B(a) is the weighted average using the first 20 β̃(u)s,
where weight wt(u)log = (Xt − Xt+u)

2/(1/µ̂t + 1/µ̂t+u)/
∑T−u

t=1 (Xt − Xt+u)
2/(1/µ̂t +

1/µ̂t+u). Method B(b) is the weighted average using all the β̃(u)s (it should be similar
to Method A for log-linear model). Method C(a) is the intercept by regressing β̃(u)s
on natural spline of u with 3 degrees of freedom, weighted . Method C(b) is the same
as C(a) except it uses all the β̃(u)s. The true β = 1.043.

df in A B C
St (a) (b) (a) (b)
0 -2.247 (0.521) 1.611 (1.063) -2.285 (0.530) 2.453(1.649) 1.612 (1.123)
1 -2.392 (0.646) 1.601 (1.071) -2.430 (0.654) 2.453(1.650) 1.607 (1.127)
3 2.415 (1.170) 2.424 (1.205) 2.390 (1.175) 2.444 (1.647) 2.424 (1.250)
10 2.415 (1.225) 2.426 (1.246) 2.389 (1.229) 2.443 (1.644) 2.431 (1.252)
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Table 3: Mean and bootstrapping standard deviation (in parenthesis) of the es-
timate of the effect of PM2.5 on mortality while controlling for proportion with
high-school education, proportion with degree, proportion living in poverty, propor-
tion unemployed, median income, and the standardized mortality ratio for COPD
for three different age groups and three geographical regions using MCAPS data.
Estimator is obtained directly from the model. Estimators B and C are the
weighted average using all the β̃s and β̃s within 500 miles, respectively. The weight
wij = (Xi − Xj)

2/(1/µ̂i + 1/µ̂j). The Estimator D is obtained by regressing β̂i,j on
log(di,j) using i and j pairs with distance ≤ 500 miles, weighted by the reciprocal of

the variance of β̂i,j.

Age Region A B C D
65-74 West 0.79 (2.66) 2.64 (2.53) 2.52 (3.46) 8.34 (11.42)

Central 23.00 (4.60) 23.31 (4.52) 17.78 (5.69) -3.29 (22.91)
East 11.04 (2.64) 10.45 (2.33) 11.81 (3.68) 20.44 (20.67)

75-84 West 1.97 (1.81) 3.05 (2.38) 3.61 (2.89) 4.43 (9.86)
Central 15.64 (2.97) 15.99 (2.08) 11.70 (4.56) -20.75 (19.60)
East 9.76 (1.72) 9.59 (1.58) 9.27 (2.08) 3.87 (11.34)

85+ West 1.92 (1.57) 3.08 (1.71) 2.85 (2.62) -6.35 (8.20)
Central 1.73 (2.28) 3.06 (1.90) -0.23 (3.56) -29.59 (9.53)
East 4.57 (1.52) 4.79 (2.16) 0.32 (2.52) -26.57 (11.39)
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Figure 1: Standardized residual plots vs. time for four linear models using different
degrees of freedom in estimating the effect of St. The solid lines are the smooth spline
curve of the standardized residuals with 3 degrees of freedom.
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Figure 2: The LEP (Lagged-Estimator-Plot) β̃(u) vs. lag u for four linear models
using different degrees of freedom in estimating the effect of St. The horizontal line
is the true β, and the dotted lines are the bootstrap 95% tolerance intervals under
the null hypothesis.
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Figure 3: Standardized residual plots vs. time for four log-linear models using differ-
ent degrees of freedom in estimating the effect of St. The solid lines are the smooth
spline curve of the standardized residuals with 3 degrees of freedom.
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Figure 4: The LEP (Lagged-Estimator-Plot) β̃(u) vs. lag u for four log-linear models
using different degrees of freedom in estimating the effect of St. The horizontal line
is the true β, and the dotted lines are the bootstrap 95% tolerance intervals under
the null hypothesis.
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Figure 5: The LEP (Lagged-Estimator-Plot) β̃ vs. lag category with 95% confidence
intervals using people 65-74 years old in three different geographical regions freedom
while controlling for proportion with high-school education, proportion with degree,
proportion living in poverty, proportion unemployed, median income, and the stan-
dardized mortality ratio for COPD.
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Figure 6: The LEP (Lagged-Estimator-Plot) β̃ vs. lag category with 95% confidence
intervals using people 75-84 years old in three different geographical regions freedom
while controlling for proportion with high-school education, proportion with degree,
proportion living in poverty, proportion unemployed, median income, and the stan-
dardized mortality ratio for COPD.
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Figure 7: The LEP (Lagged-Estimator-Plot) β̃ vs. lag category with 95% confidence
intervals using people 85 years and older in three different geographical regions while
controlling for proportion with high-school education, proportion with degree, propor-
tion living in poverty, proportion unemployed, median income, and the standardized
mortality ratio for COPD.
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