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Abstract

Geostatistics involves the fitting of spatially continuous models to spatially discrete data
(Chiles and Delfiner, 1999). Preferential sampling arises when the process that determines
the data-locations and the process being modelled are stochastically dependent. Conventional
geostatistical methods assume, if only implicitly, that sampling is non-preferential. However,
these methods are often used in situations where sampling is likely to be preferential. For
example, in mineral exploration samples may be concentrated in areas thought likely to yield
high-grade ore. We give a general expression for the likelihood function of preferentially sam-
pled geostatistical data and describe how this can be evaluated approximately using Monte
Carlo methods. We present a model for preferential sampling, and demonstrate through simu-
lated examples that ignoring preferential sampling can lead to seriously misleading inferences.
We describe an application of the model to a set of bio-monitoring data from Galicia, northern
Spain, in which making allowance for preferential sampling materially changes the inferences.

Key words: environmental monitoring; geostatistics; marked point processes; Monte Carlo
inference; preferential sampling; spatial statistics.
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1 Introduction

The term geostatistics describes the branch of spatial statistics in which data are obtained
by sampling a spatially continuous phenomenon S(z) : x € IR? at a discrete set of locations
x; :4=1,...,nin a spatial region of interest A C IR?. In many cases, S(z) cannot be measured
without error. Measurement errors in geostatistical data are typically assumed to be additive,
possibly on a transformed scale. Hence, if Y; denotes the measured value at the location z;, a
simple model for the data takes the form

Yi=p+S()+2Zi:i=1,..,n (1)

where the Z; are mutually independent, zero-mean random variables. We adopt the convention
that E[S(z)] = 0 for all x, hence in (1) E[Y;] = p for all <. The model (1) extends easily to
the regression setting, in which E[Y;] = u; = d.3, with d; a vector of explanatory variables
associated with Y;. The objectives of a geostatistical analysis typically focus on prediction of
properties of the realisation of S(x) throughout the region of interest A. Targets for prediction
might include, according to context: the value of S(x) at an unsampled location; the spatial
average of S(x) over A or sub-sets thereof; the minimum or maximum value of S(z); or
sub-regions in which S(z) exceeds a particular threshold. Chiles and Delfiner (1999) give a
comprehensive account of classical geostatistical models and methods.

Diggle, Moyeed and Tawn (1998) introduced the term model-based geostatistics to mean the
application of general principles of statistical modelling and inference to geostatistical prob-
lems. In particular, they added Gaussian distributional assumptions to the classical model
(1) and re-expressed it as a two-level hierarchical linear model, in which S(x) is the value at
location x of a latent Gaussian stochastic process and, conditional on S(z;) : ¢ = 1,...,n, the
measured values Y; : ¢ = 1,...,n are mutually independent, Normally distributed with means
p + S(z;) and common variance 72. Diggle, Moyeed and Tawn (1998) then extended this
model, retaining the Gaussian assumption for S(z) but allowing a generalized linear model
(McCullagh and Nelder, 1989) for the mutually independent conditional distributions of the
Y; given S(x;).

As a convenient shorthand notation to describe the hierarchical structure of a geostatistical
model, we use [] to mean “the distribution of,” and write S = {S(z) : # € R*} and YV =
(Y1,...,Y,). Then, the Diggle, Moyeed and Tawn (1998) model has the simple structure
1S, Y] = [9][Y|S] = [S][Y1]S(x1)][Ya]| S (x2)]...[Yn|S(2y)]. Furthermore, in (1) the [Y;|S(x;)] are
univariate Gaussian distributions with means S(x;) and common variance 72

As presented above, and in almost all of the geostatistical literature, models for the data treat
the sampling locations z; either as fixed by design or otherwise stochastically independent
of the process S(x), and hence of Y. Admitting the possibility that the sampling design
may be stochastic, and writing X = (x1,...,z,), the structure of the model then becomes
(X, S, Y] = [X][S][Y|S], from which it is clear that conditioning on X does not affect inferences
about S or Y. We refer to this as non-preferential sampling of geostatistical data. Conversely,
preferential sampling refers to any situation in which [X, S, Y] # [X][S,Y].

We contrast the term non-preferential with the term uniform, the latter meaning that, be-
forehand, all locations in A are equally likely to be sampled. Examples of designs which are
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both uniform and non-preferential include completely random designs and regular lattice de-
signs (strictly, in the latter case, if the lattice origin is chosen at random). An example of a
non-uniform, non-preferential design would be one in which sample locations are an indepen-
dent random sample from a prescribed non-uniform distribution on A. Preferential designs
can arise either because sampling locations are deliberately concentrated in sub-regions of A
where the underlying values of S(z) are thought likely to be larger (or smaller) than average,
or more generally when X and Y are the joint outcome of a marked point process in which
there is dependence between the points, X, and the marks, Y.

We emphasise at this point that our definition of preferential sampling is as a stochastic
phenomenon. A sampling design that deliberately focuses on sub-regions where the mean of
S(z), as opposed to its realised value, is atypically high, is not preferential. However, in most
geostatistical applications it is difficult to maintain a sharp distinction between deterministic
or stochastic variation in S(x) because of the absence of independent replication of the process
under investigation.

Curriero, Hohn, Liebhold and Lele (2002) evaluated a class of non-ergodic estimators for the
covariance structure of geostatistical data, which had been proposed by Isaaks and Srivastava
(1988) and Srivastava and Parker (1989) as a way of dealing with preferential sampling, but
concluded that the non-ergodic estimators “possess no clear advantage” over the traditional
estimators that we describe in Section 3.1 below. Schlather, Ribeiro and Diggle (2004) devel-
oped two tests for preferential sampling, which treat a set of geostatistical data as a realisation
of a marked point process. Their null hypothesis is that the data are a realisation of a random
field model. This model assumes that the sample locations X are a realisation of a point
process P on A, that the mark of a point at location x is the value at x of the realisation
of a random field S on A, and that P and S are independent processes. This is therefore
equivalent to our notion of non-preferential samplng. Their test statistics are based on the
idea that, under the null hypothesis that sampling is non-preferential, the low-order moment
properties of pairs of measured values Y; and Y} should not depend on the distance between
the corresponding sampling locations z; and z;, and each test is implemented by compar-
ing the observed value of the chosen test statistics with values calculated from simulations
of a conventional geostatistical model fitted to the data on the assumption that sampling is
non-preferential. Guan and Afsharatous (2007) avoid the need for simulation and parame-
teric model-fitting by dividing the observation into non-overlapping sub-regions that can be
assumed to provide approximately independent replicates of the test statistics. In practice,
this requires a large data-set; their application has a sample size n = 4358.

In this paper, we propose a class of stochastic models and associated methods of likelihood-
based inference for preferentially sampled geostatistical data. In Section 2 we define our
model for preferential sampling. In Section 3 we use the model to illustrate the potential for
misleading inferences when conventional geostatistical methods are applied to preferentially
sampled data. Section 4 discusses likelihood-based inference using Monte Carlo methods.
Section 5 applies our model and methods to a set of biomonitoring data from Galicia, northern
Spain in which the data derive from two surveys, one preferentially sampled the other not, of
the same region. Section 6 is a concluding discussion.
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2 A shared latent process model for preferential sam-
pling

Recall that S denotes an unobserved, spatially continuous process on a spatial region A, X
denotes a point process on A and Y denotes a set of measured values, one at each point of X.
The focus of scientific interest is on properties of S, as revealed by the data (X,Y’), rather
than on the joint properties of S and X, but we wish to protect against spurious inferences
that might arise because of stochastic dependence between S and X.

To clarify the distinction between preferential and non-preferential sampling, and the inferen-
tial consequences of the former, we first examine a related situation considered by Rathbun
(1996), in which S and X are stochastically dependent but measurements Y are taken only at
a different, pre-specified set of locations, i.e. independently of X. Then, the joint distribution
of S, X and Y takes the form

[5, X, Y] = [S]IX|S][Y]S]. (2)

It follows immediately on integrating (2) with respect to X that the joint distribution of S
and Y has the standard form, [S,Y] = [S][Y|S]. Hence, for inference about S it is valid, if
potentially inefficient, to ignore X, i.e. to use conventional geostatistical methods. Models
analogous to (2) have also been proposed in a longitudinal setting, where the analogues of YV
and X are a time-sequence of repeated measurements at pre-specified times and a related time-
to-event outcome, respectively. See, for example, Wulfsohn and Tsiatis (1997) or Henderson,
Diggle and Dobson (2000).

In contrast, if Y is observed at the points of X, the appropriate factorisation is
15, X, Y] = [S][X]S][Y]X, 5. (3)

Even when the algebraic form of [Y| X, S] reduces to [Y|S], an important distinction between
(3) and (2) is that in (3) there is a functional dependence between S and X which cannot be
ignored; typically, [Y'|S, X] = [Y|So], where Sy = S(X) denotes the values of S(z) at all points
x € X. The implicit specification of [S, Y] resulting from (3) is therefore non-standard, and
conventional geostatistical inferences which ignore the stochastic nature of X are potentially
misleading. The longitudinal analogue of (2) arises when subjects in a longitudinal study
provide measurements at time-points which are not pre-specified as part of the study design;
see, for example, Lipsitz, Fitzmaurice, Ibrahim, Gelber and Lipshultz (2002), Lin, Scharfstein
and Rosenheck (2004) or Ryu, Sinha, Mallick, Lipsitz and Lipshultz (2007).

We now define a specific class of models through the following additional assumptions;

Al. S is a stationary Gaussian process with mean pu, variance o2 and correlation function
p(u; ¢) = Corr{S(x), S(2')} for any x and 2’ a distance u apart;

A2. conditional on S, X is an inhomogeneous Poisson process with intensity

A(z) = expf{a+ 35(x)}; (4)
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A3. conditional on S and X, Y is a set of mutually independent Gaussian variates with
Y; ~ N(S(x;),7%).

It follows from Al and A2 that, unconditionally, X is a log-Gaussian Cox process (Mgller,
Syversveen and Waagepetersen, 1998). If # = 0 in (4), then it follows from A1 and A3 that the
unconditional distribution of Y is multivariate Gaussian with mean p1 and variance matrix
721 + 0*R, where [ is the identity matrix and R has elements r;; = p(||z; — z;]|; ¢).

3 Impact of preferential sampling on geostatistical
inference

We have conducted a simulation experiment in which we simulated data on A the unit square
from an underlying stationary Gaussian process which we then sampled, with additive Gaus-
sian measurement error, either non-preferentially or preferentially according to each of the
following sampling designs. For the completely random sampling design, sample locations x;
were an independent random sample from the uniform distribution on A. For the preferen-
tial design, the x; were generated from the model defined by equation (4), with parameter
0 = 2. For the clustered design, we used the same model, but with one realisation of S to
generate the data Y and a second, independent realisation of .S to generate X, thereby giving
a non-preferential design with the same marginal properties as the preferential design.

The model for the spatial process S was stationary Gaussian, with mean g = 4, variance
0% = 1.5, and Matérn correlation with scale parameter ¢ = 0.15 and shape parameter x = 1.
In each case, the data y; consisted of the realised value of S(z;) plus an independent Gaussian
measurement error with mean zero and variance 72 = 0.25.

The three panels of Figure 1 show a realisation of each of the three sampling designs super-
imposed on a single realisation of the process S. The preferential nature of the sampling in
the central panel of Figure 1 is clear.

3.1 Variogram estimation

The theoretical variogram of a stationary spatial process Y (x) is the function V' (u) = Var{Y (z)—
Y (2')} where u denotes the distance between z and 2’. Non-parametric estimates of V' (u)
are widely used in geostatistical work, both for exploratory data analysis and for diagnostic
checking.

Consider a set of data (x;,y;) : @ = 1, ...,n, where x; denotes a location and y; a corresponding
measured value. The empirical variogram ordinates are the quantities v;; = (y; — y;)?/2.
Under non-preferential sampling, each v;; is an unbiased estimator for V(u;;), where w;; is
the distance between x; and z;. A scatterplot of v;; against w;; or, more usefully, a smoothed
version of this scatterplot, can be used to suggest appropriate parametric models for the
spatial covariance structure of the data. For more information on variogram estimation, see
for example Cressie (1985; 1991, Chapter 2), Chiles and Delfiner (1999) or Diggle and Ribeiro
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Figure 1: Sample locations and underlying realisations of the signal process for the model used
in the simulation study. The left-hand panel shows the completely random sample, the centre-
panel the preferential sample and the right-hand panel the clustered sample. In each case, the
grey-scale image represents the realisation of the signal process, S(z), used to generate the
associated measurement data. The model parameter values are y = 4, 02 = 1.5, ¢ = 0.15,
k=1,72=0.25 3=2

(2007, Chapter 5).

The two panels of Figure 2 show simulation-based estimates of the point-wise bias and stan-
dard deviation of smoothed empirical variograms, derived from 500 replicate simulations of
each of our three sampling designs. With regard to bias, the results under both uniform
and clustered non-preferential sampling designs are consistent with the unbiasedness of the
empirical variogram ordinates; although smoothing the empirical variogram ordinates does
induce some bias, this effect is negligible in the current setting. In contrast, under preferen-
tial sampling the results show severe bias. With regard to efficiency, the right-hand panel of
Figure 2 illustrates that clustered sampling designs, whether preferential or not, are also less
efficient than uniform sampling. The bias induced by preferential sampling is qualitatively
unsurprising. The implicit estimand of the empirical variogram is the variance of Y (z) —Y (/)
conditional on both z and 2’ belonging to X, which in general will differ from the unconditional
variance; see, for example, Wélder and Stoyan (1996) or Schlather (2001).

3.2 Spatial prediction

Suppose that our target for prediction is S(xg), the value of the process S at a generic location
xg, given sample data (z;,v;),7 = 1,2,...,n. The widely used ordinary kriging predictor
estimates the unconditional expectation of S(x¢) by generalised least squares, but using plug-
in estimates of the parameters that define the covariance structure of Y. Traditionally, these
plug-in estimates would be obtained by matching theoretical and empirical variograms in some
way; we used maximum likelihood estimates under the assumed Gaussian model for Y.

Table 2 shows 95% coverage intervals for the resulting biases and mean square prediction
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Figure 2: Bias and standard deviation of the sample variogram under random, preferential
and clustered sampling. See text for detailed description of the simulation model.

Table 1: Impact of sampling design on the bias and mean square error of the ordinary kriging
predictor (), when zo = (0.5,0.5) and each sample consists of 100 locations on the unit
square. Each entry in the table is a 95% coverage interval calculated empirically from 500
independent simulations. See text for detailed description of the simulation model.

Sampling design
Completely random  Preferential (5 = 2) Clustered
bias (—0.081,0.059) (1.290,1.578)  (—0.082,0.186)
mean square error (0.268,0.354) (2.967,3.729) (0.948,1.300)

errors of the ordinary kriging predictor S(z), where 2o = (0.5,0.5), in each case evaluated
empirically over 500 replicate simulations.

The bias is large and positive under preferential sampling. This prediction bias is a direct
consequence of the bias in the estimation of the model parameters, which in turn arises because
the preferential sampling model leads to the over-sampling of locations corresponding to high
values of the underlying process S. The correct predictive distribution for S is [S|Y, X] which,
with known parameter values, takes a standard multivariate Gaussian form whether or not
sampling is preferential. The two non-preferential sampling designs both lead to approximately
unbiased prediction, as predicted by theory. The substantially larger mean square error for
clustered sampling by comparison with completely random sampling reflects the inefficiency
of the latter, as already illustrated in the context of variogram estimation.
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4 Monte Carlo maximum likelihood estimation

For the shared latent process model (3), the likelihood function for data X and Y can be
expressed as
L(0) = [X,Y] = Es [[X]S][Y]X, S]], ()

where the expectation is with respect to the unconditional distribution of S. Evaluation of
the conditional distribution [X|S] strictly requires the realisation of S to be available at all
x € A. In practice, we approximate the spatially continuous realisation of S by the set of
values of S on a fine lattice to cover A, and replace the exact locations X by their closest
lattice points. We then partition S into S = {Sy, S1}, where Sy denotes the values of S at
each of n data-locations x; € X, and S; denotes the values of S at the remaining N — n
lattice-points.

To evaluate L(6) approximately, a naive strategy would be to replace the intractable expecta-
tion on the right hand side of (5) by a sample average over simulations S;. This strategy fails
when the measurement error variance 72 is zero, because unconditional simulations of S will
then be incompatible with the observed Y. It also fails in practice when the measurement
error is small relative to the variance of S, which is the case of most practical interest.

We therefore re-write the exact likelihood (5) as the integral

_ [STY]
£(6) = [ XISIYIX, Sl g [81dS: (6)
Now, write [S] = [9][51]5)] and replace the term [S|Y] in the denominator of (6) by

[So|Y][S1]50, Y] = [So]Y][S1]S0]. Note also that [Y|X,S] = [Y|So]. Then, (6) becomes

L) = [1xIsitisiisivlas
~ Eav Xt il )
and a Monte Carlo approximation is
Luc(0) = 3 |IXIS) g Eos) ®)

where now the §; are simulations of S conditional on Y. Note that when Y is measured
without error, [Y']Sy;]/[S0;]Y] = 1. To reduce the Monte Carlo variance, we also use anti-
thetic pairs of realisations, i.e. for each j = 1,...,m/2 set Sy; = 2. — S;_1, where p, denotes
the conditional mean of S given Y.

To simulate a realisation from [S|Y], we use the following construction. Recall that the data-
locations X = {xy,...,x,} constitute a sub-set of the N > n prediction locations, X* =
{z7, ..., } say. Define A to be the n by N matrix whose ith row consists of N — 1 zeros and
a single 1 to identify the position of z; within X*. Note that, unconditionally, S ~ MVN(0, X)
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and Y ~ MVN(u, o) with g = AX A’ + 721. Then, if Z denotes an independent random
sample of size n from N(0, 72) and y denotes the observed value of Y, it follows that

S, =S+ XAy —pu+ Z — AS) (9)

has the required multivariate Gaussian distribution of S given Y = y (Rue and Held, 2005,
Chapter 2; Eidsvik, Martino and Rue, 2006). Hence, for conditional simulation when N is
large, we need a fast algorithm for unconditional simulation of .S, for which we use the circulant
embedding algorithm of Wood and Chan (1994) applied to a rectangular region containing
the region of interest, A. The subsequent calculations for S. then involve only the relatively
straightforward inversion of the n x n matrix ¥y and simulation of the n independent Gaussian
random variables that make up the vector Z in (9).

5 Heavy-metal bio-monitoring in (zalicia

Our application concerns bio-monitoring of lead pollution in Galicia, northern Spain. The data
consist of two spatial surveys of lead concentrations in moss samples, taken in 1997 and 2000.
In the first survey, the sampling design was highly non-uniform and potentially preferential,
whereas the second survey used a regular lattice design which is therefore non-preferential.
For further details, see Fernandez, Rey and Carballeira (2000) and Aboal, Real, Fernandez
and Carballeira (2005). One objective of analysing these data is to estimate, and compare,
maps of lead concentrations in 1997 and 2000. Figure 3 shows the sampling locations for the
two surveys.

Table 2: Summary statistics for lead pollution levels measured in 1997 and 2000.

untransformed log-transformed

1997 2000 1997 2000
Number of locations 63 132 63 132
Mean 4.72 2.15 1.44 0.66
Standard deviation 2.21 1.18 048 0.43
Minimum 1.67 0.80 0.52 -0.22
Maximum 9.51 8.70 2.25 2.16

The measured lead concentrations included two gross outliers in 2000, each of which we
replaced by the average of the remaining values from that year’s survey. Table 2 gives summary
statistics for the resulting 1997 and 2000 data. Note that the mean response is higher for
the 1997 data than for the 2000 data, which would be consistent either with the former
being preferentially sampled near potential pollutant sources, or with an overall reduction in
pollution levels over the three years between the two surveys. Also, the log-transformation
eliminates an apparent variance-mean relationship in the data and leads to more symmetric
distributions of measured values (Figure 4).
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Figure 3: Sampling locations for 1997 (solid dots) and 2000 (open circles). The unit of distance
is 100km.

5.1 Standard geostatistical analysis

For an initial analysis, we assume a standard linear Gaussian model for the underlying signal
S(z), with mean p, variance o, Matérn correlation function p(u; ¢, k) and measurement error
variance 72, and fit this model separately to the 1997 and 2000 data. The Matérn (1986) class
of correlation functions takes the form

pu; d, k) = {2°7T(k)} " (w/0) " Ke(u/d) s u > 0,

where K (-) denotes the modified Bessel function of the second kind, of order x > 0. This
class is widely used because of its flexibility. Although x is difficult to estimate without
extensive data, the integral part of x determines the degree of mean square differentiability
of the corresponding process S(:), giving both a nice interpretation and, in at least some
contexts, a rationale for choosing a particular value for k. The special case kK = 0.5 gives an
exponential correlation function, p(u; ¢) = exp(—u/¢).

Figure 5 shows, for each of 1997 and 2000, smoothed empirical variograms and theoretical
variograms with parameters fitted by maximum likelihood. Based on the general shape of
the two empirical variograms, we used a fixed value x = 0.5 for the shape parameter of the
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Figure 4: Empirical distributions of log-transformed lead concentrations in the 1997 (solid
line) and 2000 (dashed line) samples.

Matérn correlation function. The similarity between the two fitted variograms supports the
idea that a joint model for the two data-sets might allow some parameters in common between
the two years. The generalised likelihood ratio test statistic (GLRTS) to test the hypothesis
of common o, ¢ and 7, under the dubious assumption that neither sample is preferential, was
7.66 on 3 degrees of freedom (p = 0.054). We re-visit this question in the next sub-section.

5.2 Analysis under preferential sampling

We now investigate whether the 1997 sampling is indeed preferential. We used the Nelder-
Mead simplex algorithm (Nelder and Mead, 1965) to estimate the model parameters, increas-
ing the number of Monte Carlo samples, m, progressively to avoid finding a false maximum.
With m = 100,000, the Monte Carlo standard error in the evaluation of the log-likelihood
was reduced to approximately 0.3 (the actual value varies over the parameter space) and the
GLRTS to test f = 0 was 27.68 on 1 degree of freedom (p < 0.001).

We then fitted a joint model to the two data-sets, treating the 1997 and 2000 data as preferen-
tially and non-preferentially sampled, respectively. To test the hypothesis of shared values for
o, ¢ and 7, we fitted the model with and without these constraints, obtaining a GLRTS of 6.18
on 3 degrees of freedom (p = 0.103). The advantage of using shared parameter values when
justified is that that the parameters in the joint model are then estimated more efficiently and
the model is consequently better identified (Altham, 1984). This is particularly important in
the geostatistical setting, where the inherent correlation structure of the data reduces their
information content by comparison with independent data having the same sample size.

11
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Figure 5: Smoothed empirical (open circles) and fitted theoretical (lines) variograms for 1997
(left-hand panel) and 2000 (right-hand panel) log-transformed lead concentration data.

Table 5.2 shows the Monte Carlo maximum likelihood estimates together with estimated
standard errors and correlations for the model with shared o, ¢ and 7. Standard errors and
correlations were evaluated by fitting a quadratic surface to Monte Carlo log-likelihoods by
ordinary least squares. Parameter combinations were initially set as a 3° factorial design
centred on the Monte Carlo maximum likelihood estimates, with parameter values chosen
subjectively after examining the trajectories through the parameter space taken by the various
runs of the Nelder-Mead optimisation algorithm. The quadratic surface was then re-fitted after
augmenting this design with a 25 factorial on a more closely spaced set of parameter values,
to check the stability of the results. Each evaluation of the log-likelihood used m = 10,000
conditional simulations. The non-negative parameters o, ¢ and 7 are estimated on a log-
transformed scale, to improve the quadratic approximation to the log-likelihood surface.

Note that the expectation of S(-) shows a substantial fall between 1997 and 2000, and that
the preferential sampling parameter estimate is negative, ﬁ = —1.007. The latter finding is
critically dependent on our allowing the two mean parameters to differ. Otherwise, because
the observed average pollution level is substantially higher in 1997 than in 2000, we would
have been forced to conclude that the 1997 sampling was preferential with a positive value of
(. One piece of evidence against this alternative interpretation is that, within the 1997 data,
the observed pollution levels are lower in the over-sampled northern half of the region than in
the under-sampled southern half, consistent with a negative value of 3.

What impact does the acknowledgement of preferential sampling make on the predicted 1997

12
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Table 3: Monte Carlo maximum likelihood estimates of parameters in the joint model for the
1997 and 2000 Galicia biomonitoring data. Approximate standard errors and correlations are
computed from a quadratic fit to the Monte Carlo log-likelihood surface (see text for details)

Parameter Estimate Standard error Correlation matrix

fo7 1.685 0.193 1.000 0.248 0.301 0.563 0.134 -0.017
100 0.735 0.095 0.248 1.000 0.097 0.255 0.107 -0.124
log(o) -0.936 0.044 0.301 0.097 1.000 0.181 -0.547 0.088
log(¢) -1.402 0.065 0.563 0.255 0.181 1.000 0.470 -0.188
log(7) -1.478 0.040 0.134 0.107 -0.547 0.470 1.000 -0.230
v -1.007 0.212 -0.017 -0.124 0.088 -0.188 -0.230 1.000

pollution surface? Figure 6 shows the predicted surfaces T'(x) = E[T'(x)|X, Y], where T(z) =
exp{S(z)} denotes lead concentration on the untransformed scale, together with the pointwise
differences between the two. Each surface is a Monte Carlo estimate based on m = 10,000
simulations, resulting in Monte Carlo standard errors of 0.026 or less. The predictions based
on the preferential sampling model have substantially wider range than those that assume non-
preferential sampling (0.836 to 8.358 and 1.273 to 5.989, respectively). The difference surface
also covers a relatively large range (—0.756 to 4.221) and shows strong spatial structure.
Acknowledgement of the preferential sampling therefore has made a material difference to the
prediction of the 1997 pollution surface.

6 Discussion

In this paper, we have shown that conventional geostatistical models and associated statistical
methods can lead to very misleading inferences if the underlying data have been preferentially
sampled. We have proposed a simple model to take account of preferential sampling and
developed associated Monte Carlo methods to enable maximum likelihood estimation and
likelihood ratio testing within the proposed class of models. The resulting methods are com-
putationally intensive, but comfortably within the capacity of a modern lap-top PC; all of the
computations reported in the paper were run in this mode, using the R software environment
and associated CRAN packages. The data and R code are available from the first author on
request.

The computation of the Monte Carlo likelihood uses direct simulation, as in Diggle and Grat-
ton (1984), rather than Markov chain Monte Carlo. Hence, issues of convergence do not arise,
and the variablity between replicate simulations gives a direct estimate of the size of the Monte
Carlo error.

We have described an application to a set of environmental bio-monitoring data from Gali-
cia, northern Spain. An important feature of these data is that they are derived from two
spatial surveys of the region of interest, only one of which involved preferential sampling.
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Figure 6: Predicted surface of lead concentrations in 1997 under preferential (left-hand panel)
and non-preferential (centre panel) assumptions, together with the pointwise difference be-
tween the two (right-hand panel). All three surfaces are plotted on a common scale, from
—0.756 (red) to 8.358 (white)

This, coupled with our finding that several of the model parameters can be assumed to take a
common value for the two samples, led to a better identifed joint model for the two surveys.
To illustrate this point, we also fitted the preferential sampling model to the 1997 data alone.
Although, as reported earlier, the value of the maximised log-likelihood was obtained rela-
tively easily, the subsequent quadratic fitting method to estimate the standard errors of the
maximum likelihood estimates proved problematic. Using a 3° 4 2° factorial design analogous
to the earlier 3¢ + 2¢ design for the model fitted to the 1997 and 2000 data jointly, and with
10,000 simulations for each log-likelihood evaluation as before, the quadratic fit explained
only 72% of the variation in the Monte Carlo log-likelihoods, compared with 93% for the joint
model, the implied estimate of 9*L/93? was not significantly different from zero, and the ratio
of largest to smallest eigenvalues of the Hessian matrix was 34.5, compared with 22.3 for the
joint model.

Alternative strategies for dealing with poorly identified model parameters could include treat-
ing the preferential sampling parameter ( as a sensitivity parameter, since its value is typically
not of direct scientific interest, or using Bayesian methods with informative priors.

A natural response to a strongly non-uniform sampling design is to ask whether its spatial
pattern could be explained by the pattern of spatial variation in a relevant covariate. Suppose,
for the sake of illustration, that .S is observed without error, that dependence between X and S
arises through their shared dependence on a latent variable, U, and that the joint distribution
of X and S is of the form

X, 5] = [IX|U]IS|U]v]dv, (10)

so that X and S are conditionally independent given U. If the values of U were to be observed,
we could then legitimately work with the conditional likelihood, [X, S|U] = [X|U][S|U] and
eliminate X by integration, exactly as is done implicitly when conventional geostatistical
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methods are used. In practice, “observing” U means finding explanatory variables which are
associated both with X and with S, adjusting for their effects and checking that after this
adjustment there is little or no residual dependence between X and S. If so, the analysis could
then proceed on the assumption that sampling is no longer preferential. Note, in this context,
that any of the proposed tests for preferential sampling can be applied, albeit approximately,
to residuals after fitting a regression model for the mean response.
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