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Abstract

Risk ratios are often the target of inference in epidemiologic studies. The log-binomial

model is a natural choice that readily returns risk ratios, but suffers from well known conver-

gence issues. Alternate methods have been proposed to estimate risk ratios for a common binary

outcome; however, there has been little work in estimating risk ratios for clustered binary data.

The modified Poisson regression approach can be used to take clustering into account through

the use of generalized estimating equations, but leads to a potentially inefficient estimator due

to the incorrect distributional assumption. In this article, we derive an estimate of the risk ra-

tio that accounts for clustering in the outcome, does not rely on an estimate of the baseline

risk for consistency, and delivers asymptotically efficient estimates of the risk ratio parameter.

An alternative efficient estimator is provided that bounds the predicted probability by 1, thus

guaranteeing stable performance of the estimator. A simulation study is provided verifying that

the proposed estimator outperforms the modified Poisson approach as well as estimators that

assume no clustering. We apply our method to the Young Citizens study, a cluster randomized

trial involving a behavioral intervention deigned to train children aged 10-14 years to educate

their communities about HIV.

1 Introduction

Risk ratios are often the target of inference in epidemiologic studies. They allow a researcher

to easily evaluate the multiplicative association between risk factors and binary outcomes. The log

binomial model (Wacholder, 1986) is a natural choice that readily returns risk ratios, but suffers from

well known convergence issues (Zou, 2004). The traditional approach to avoid convergence issues

is to report odds ratios by using logistic regression as the odds ratio provides a good approximation

of the risk ratio when the outcome is rare. However, it is often the case that the outcome is not

rare within all levels of risk factors, and using logistic regression will lead to overestimation of the
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risk ratio. Further, the odds ratio effect measure may be misinterpreted by non-experts (Knol et al.,

2011).

Several methods have been proposed to estimate risk ratios for a common binary outcome (Wa-

cholder, 1986; Lee, 1994; Skove et al., 1998; Greenland, 2004; Zou, 2004; Spiegelman and Hertz-

mark, 2005; Chu and Cole, 2010; Tchetgen Tchetgen, 2012). Each of these methods, except for

Lee (1994) and Tchetgen Tchetgen (2012), share the requirement that the log-baseline risk must be

estimated in order to obtain a consistent estimate of the risk ratios. This requirement is not easily

satisfied, and may lead to a violation of the model restriction that all predicted probabilities are less

than 1. Worse, failure to satisfy the model conditions often results in a lack of convergence of the

estimation procedures.

Recently, methods have been proposed to address these issues. Chu and Cole (2010) devel-

oped a Bayesian approach that incorporates the model restriction in the estimation procedure, while

Tchetgen Tchetgen (2012) presents a frequentist approach that allows for consistent and efficient

estimation of the risk ratios that does not rely on obtaining an estimate for the baseline risk. It was

shown that a simple plug-in estimate of the baseline risk may be used without altering the large

sample efficiency of the estimated risk ratios. Another, the modified Poisson regression approach,

has been widely cited and adopted as a simple method of risk ratio estimation for both observational

and intervention studies (Zou, 2004). This method uses a Poisson distribution for the data in place

of the Bernoulli distribution.

However, there has been little work in estimating risk ratios for clustered binary data. Such data

could arise from a cluster randomized trial or from a study with repeated measures on an individual

(e.g. longitudinal data). Yelland et al. (2011) provide evidence that the modified Poisson regression

approach can be used to take clustering into account through the use of generalized estimating

equations (GEE) (Liang and Zeger, 1986). They showed that for both observational and intervention
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studies, the modified Poisson regression approach using GEEs to account for clustering results

in small relative bias and near nominal confidence interval coverage. A major drawback of this

approach is that the covariance structure is guaranteed to be misspecified because of the incorrect

distributional assumption, leading to a potentially inefficient estimator. Note that the misspecified

covariance structure is by choice and is chosen to improve numerical convergence.

In this article, we generalize the work of Tchetgen Tchetgen (2012) to allow for clustered out-

comes in the estimation of risk ratios. We show that our method does not rely on an estimate of

the baseline risk for consistency and delivers asymptotically efficient estimates of the risk ratios.

A slight modification to the approach is described that guarantees the estimated probabilities are

bounded by 1. Therefore, the method guarantees stable performance of the estimated risk ratios.

We provide a simulation study under both correct and incorrect specification of the working corre-

lation structure that verifies the proposed estimator outperforms the modified Poisson approach as

well as estimators that assume no clustering.

We apply our method to the Young Citizens study (Kamo et al., 2008), a cluster randomized

trial involving a behavioral intervention deigned to train children aged 10-14 years to educate their

communities about HIV.

2 Methods

2.1 Independent outcomes

To begin, we give a brief review of the work of Tchetgen Tchetgen (2012). Consider independent

binary outcomes Yi and a set of q covariates Xi with:

log(P (Yi = 1|Xi)) = log(E[Yi|Xi]) = α0 +Xiβ0
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where the parameter of interest is the q-dimensional vector of log relative risks, β0.

Tchetgen Tchetgen (2012) provided a simple estimator of β0 that is asymptotically efficient, in

the sense that it has the minimal variance of any regular and asymptotically linear (Bickel et al.,

1998) estimator of β0. Specifically, a large class of estimators was derived that contains many

common estimators of the risk ratio as well as the semiparametric efficient estimator. First, an initial

consistent estimate of β0 is provided that is free of the intercept and can be constructed by solving

the equation 0 =
∑

i:Yi=1(Zi− exp{β̂Wi})Wi, where Wi = −(Xi− X̄) and Zi = 0 for all i. This

corresponds to an artificial case only model in which the pseudo-outcome Zi is assumed to follow

a Poisson distribution with mean given by the intercept-free multiplicative model exp(βWi), which

facilitates its use with standard regression software. Then, the class of one-step update estimators is

given by:

β̂(w) = β̂ +

[∑
i

YiT̂i(w)XT
i

]−1 [∑
i

YiT̂i(w)

]

where β̂ is an initial consistent estimate of β0 and

T̂i(w) =

{
wi −

∑
iwi exp(β̂TXi)∑
i exp(β̂TXi)

}

It was shown that wi = Xi is asymptotically equivalent to the Breslow-Lee estimator, wi =

exp(−β̂TXi)(Xi −X) returns β̂ exactly, and β̂(wopt) is asymptotically efficient, with

wopt,i = (1− p̂i)−1
[
Xi −

∑
iXi(1− p̂i)−1p̂i∑
i(1− p̂i)−1p̂i

]

and
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p̂i = exp(β̂TXi)
∑
j

Yj exp(−β̂TXj)/n

In general, the difficulty in estimating β0 lies in the fact that an estimate of the predicted risk

p̂i must be provided and must be such that predicted probability is bounded by 1 on the support of

X . The estimator β̂(wopt) (and hence p̂i) uses a simple plug-in estimate for the log-baseline risk,

but any consistent estimate of α0 could be used without affecting the large sample efficiency of

β̂(wopt). However, this does not guarantee the predicted probability is bounded by 1 on the support

of X . Tchetgen Tchetgen (2012) provides a solution that bounds the predicted probability without

requiring an estimate of the baseline risk and will be discussed in detail in Section 3.1

2.2 Correlated outcomes

We generalize the approach of Tchetgen Tchetgen (2012) to allow for correlation among the out-

comes. Let Yi be a k-dimensional response vector and Xi be a (kxq) matrix of covariates for

i = 1, . . . , n. Consider the semiparametric model with the only restriction

E [Y|X] = µ(X|α0, β0) = exp (α01k + Xβ0)

where β0 is a q-dimensional parameter of interest. Note that all observations share a common

intercept, but this assumption can easily be relaxed as discussed in Section 3.2 below. The key

in the derivation of our estimator is that our model is semiparametric in the sense that we allow

the intercept and the dependence between outcomes to remain unrestricted by treating them as

nuisance parameters. As a result, our inferences are robust to misspecification of the baseline risk

and working covariance structure.

We briefly review the principles of semiparametric theory. Consider a modelM with param-
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eters (φ, η), where φ is a finite dimensional parameter of interest and η is a potentially infinite

dimensional nuisance parameter. Define the nuisance tangent space Λ for the semiparametric model

M as the mean-square closure of scores for the nuisance parameter η along all regular parametric

submodels. The efficient score seffφ for the parameter φ in the modelM is the orthogonal projec-

tion of the score sφ for φ onto the ortho-complement Λ⊥ to the nuisance tangent space Λ in the

Hilbert space L2 ≡ L2(F0) of mean zero functions with inner product EF0(T T1 T2), where F0 is the

distribution function that generated the data (Bickel et al., 1998).

Define the restricted mean model as MRM = {F0 : E[Y |X] = exp(α01k + Xβ0)}, θ0 =

(α0, β0) and let Dβ(X) = ∂µ(X;θ0)
∂βT

. Bickel et al. (1998) gives the set of all influence functions

for β0 in the restricted mean modelMRM is given by:

Λ⊥RM =
{
ϕ(X) = E [A(X)Dβ(X)]−1A(X)ε : A(X) arbitrary

}

As stated before, we treat the baseline risk as a nuisance parameter in our semiparametric model.

Therefore, the nuisance tangent space ΛRM needs to additionally span the space of scores for α0. In

other words, Λ = ΛRM + Λα, where Λα is the closed linear space spanned by scores for α0 along

all regular parameteric submodels, or Λ⊥ = Λ⊥RM ∩ Λ⊥α , where Λ is the nuisance tangent space of

the semiparametric model in which the baseline risk is a nuisance parameter. Using this result, one

can characterize the set of influence functions for any regular and asymptotically linear estimator of

β0 in the semiparametric model that treats α0 as a nuisance parameter. Proofs of all the following

results are provided in the Appendix.

Result 1: The set of all influence functions of β0 can be characterized by the set:
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Λ⊥ =

{
ϕ(X) = E [A(X)Dβ(X)]−1A(X)ε : A(X) = h(X)− E [h(X)µ(X; θ0)]

E [µT (X; θ0)µ(X; θ0)]
µT (X; θ0), h(X) arbitrary

}

This implies that for any choice of h(X), U(h;X) = A(X)ε can be used as an estimating equation

and the resulting estimator has influence function belonging to Λ⊥.

Given that we have characterized the set of all influence functions, a result due to Bickel et al.

(1998) states that, under certain regularity conditions, any regular and asymptotically linear estima-

tor of β0 that can be obtained by solving an estimating equation has an influence function belonging

to Λ⊥ and asymptotic distribution given by:

√
n(β̂ − β0) =

1√
n

n∑
i=1

ϕ(X) + op(1)

Standard application of the central limit theorem implies:

√
n(β̂ − β0)

L→ N (0,E[ϕ⊗2]) (1)

As we now show, the benefit of treating the log-baseline risk as a nuisance parameter in a semi-

parametric model is that solving an estimating equation for β0 whose influence function belongs to

Λ⊥ is robust to misspecification of the baseline risk exp(α0).

Result 2: Consider any U(h;X, α0, β0) as defined in Result 1, and replace the log-baseline risk

α0 with any arbitrary value α. Then,

E [U(h;X, α, β0)] = 0
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Result 2 implies that we have a set of unbiased estimating equations for β0 that are robust to mis-

specification of α0; therefore, a working estimate of the baseline risk can be used in place of the true

baseline risk, and the resulting estimators are regular and asymptotically linear with influence func-

tions belonging to Λ⊥. The estimator provided for independent outcomes in Section 2.1 has influ-

ence function belonging to Λ⊥ by taking h(X) = DT
β (X)V −1ind (X)− E[DTβ (X)V −1

ind(X)µ(X|θ0)]
E[µT (X|θ0)V −1

ind(X)µ(X|θ0)]
µT (X|θ0)V −1ind (X),

where Vind(X) = diag{µ(X|θ0)(1 − µ(X|θ0))} and remains robust to misspecification of the

baseline risk for clustered outcomes. However, the estimator provided for independent outcomes is

inefficient in the setting of clustered outcomes because it fails to consider the covariance structure

between the clustered outcomes.

Result 3: The efficient score for β0 inM is given by U(heff ;X) with

heff = DT
β (X)V −1(X)−

E
[
DT
β (X)V −1(X)µ(X|θ0)

]
E [µT (X|θ0)V −1(X)µ(X|θ0)]

µT (X|θ0)V −1(X)

where V (X) = E[εεT |X].

The efficient score U(heff ;X) given in Result 3 can be used as an estimating equation. The

resulting estimator β̂eff is efficient in large samples and has asymptotic distribution given by Equa-

tion 1. In practice, estimation of the nuisance parameters (α0 and V −1(X)) is needed. We have

already shown in Result 2 that any estimating equation for β0 whose influence function belongs

to Λ⊥ is robust to misspecification of the log-baseline risk; as a direct result, the efficient score

U(heff ;X) is robust to misspecification of the log-baseline risk. Further, estimating equations for

β0 given by Λ⊥ do not depend on the covariance structure V (X) for unbiasedness. Therefore, any

estimate of V (X) can be used in U(heff ;X) and the resulting estimator still has influence function

belonging to Λ⊥.
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To construct the efficient estimate of the log risk ratio β0, we will use the efficient score in an

estimating equation. Specifically, let β̂eff be the solution to:

n∑
i=1

U(heff ;Xi, Yi) = 0 (2)

A theorem due to Bickel et al. (1998) states that for any initial n1/2-consistent estimator of β0, an

efficient estimator can be constructed by a one-step update in the direction of the estimated efficient

score using:

β̂eff = β̂ −

[∑
i

̂̇seffβ

]−1∑
i

ŝeffβ

where ŝeffβ is an empirical version of seffβ (and
∑

i
̂̇seffβ is an empirical estimator of the expected

derivative of the efficient score) obtained by replacing all expectations by their empirical counter-

part, with β0 estimated by β̂ and exp(α0) estimated by the plug-in estimator
∑

i 1
T
kYi exp(−Xiβ̂).

Bickel et al. (1998) also states under standard regularity conditions, n1/2(β̂eff − β0) is asymptoti-

cally normal with mean zero and variance given as before.

In practice, each expectation is replaced with its empirical counterpart, so that β̂eff is simple

to calculate. One can use the estimate provided for independent outcomes as an initial β̂; however,

based on our simulations in Section 3.3, a better choice is to use the modified Poisson estimator.

Note that the efficient estimator β̂eff is only feasible if V (X) is known. Since this covariance

function is unknown, it must be modeled.

A major contribution of this method is that it allows a researcher to capture the correlation

among the clustered outcomes by modeling of V −1(X), which in turn may be used to increase
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the efficiency if correctly specified. Modeling the covariance structure for binary outcomes can be

a challenging task. Consider the parameterization in terms of correlations proposed by Bahadur

(1961). If we let Rj =
Yj−µj

{µj(1−µj)}1/2
, ρjk = corr(YjYk) = E(RjRk), ρjkl = E(RjRkRl) and so

on. Then,

Pr(Y = y) =

k∏
j=1

µ
yj
j (1− µj)(1−yj)

1 +
∑
j<k

ρikrjrk +
∑
j<k<l

ρiklrjrkrl + ...+ ρ1...kr1r2 · · · rk



We proceed under the common assumption that all 3rd order or higher correlations are zero, so

that all that must be specified to estimate V −1(X) is a working correlation structure, R(ρ). Since

the model does not put any restriction on V −1(X), we additionally allow for a dispersion parameter

φ, and V̂ (Xi) = φA
1/2
i R(ρ)A

1/2
i , where Ai = diag[µ̂i(1− µ̂i)]. Common choices of correlation

structures include exchangeable, autoregressive, and unstructured and details of the choices and

estimation of correlation parameters can be found in Liang and Zeger (1986). As a note, in theory

φ = 1, but we have found that allowing it be estimated from the data improves finite sample variance

estimation.

3 Additional results and simulation

3.1 An alternate efficient estimator

Estimation of β̂eff depends on Â
1/2
ij = [µ̂ij(1 − µ̂ij)]1/2 through the covariance function, which

is only defined for 0 ≤ µ̂ij ≤ 1. As such, the efficient estimator may run into convergence issues

if the estimated risks are not bounded by 1. To get around such a problem, we adopt the method

proposed by Tchetgen Tchetgen (2012). Specifically, let
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logit(µij) = logit(exp
(
α+ Xi(j)β0

)
)

Then, ignoring knowledge about the functional form of the predicted risk, fit the model:

logit(µij) = ξ(Xi(j)β0)

where ξ(·) is an unrestricted function, and Xi(j)β0 is replaced with the initial estimate Xi(j)β̂.

Any nonparametric technique can be used to approximate ξ(·) including polynomial series, kernel

smoothing, wavelet regression, or spline regression (Wasserman, 2005; Friedman et al., 2008). Let

ξ̂ij = ξ̂(Xi(j)β̂) denote such an estimator, and the resulting µ̃ij = expit
{
ξ̂ij

}
is used in the place

of µij in the updating of β̂eff .

Here, we briefly illustrate that polynomial series regression does not change the efficiency of

the resulting estimator. Let φk(Mi) = Mk
i for k = 1, ...,K. Then, for fixed K, let p̃i denote the

predicted probabilities obtained by standard logistic regression of Yi on {φk(Mi) : k ≤ K} using

the data {(Mi, Yi) : i = 1, ..., n}. A result due to Hirano et al. (2003) implies that since ξ(·) has at

least four bounded derivatives, settingK = Cn1/6 for some constantC is sufficient for the resulting

estimator µ̃i to converge to µi at rates no slower than n1/4, and the resulting estimator β̃eff of β0 is

semiparametric efficient.

3.2 A more general model

All previous results were derived for the model that assumes a common baseline risk for observa-

tions within a cluster, but easily extend to a model that allows for different baseline risks. Such

models are useful in the context of repeated measures over time (i.e. longitudinal data), and allow

for the model to capture the risk changing over time.
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As before, let Yi be a k-dimensional response vector and Xi be a (kxq) matrix of covariates for

i = 1, . . . , n. Consider the semiparametric model where the only restriction is

E [Y|X] = µ(X|α0, β0) = exp (α0 + Xβ0)

where β0 is a q-dimensional parameter of interest and α0 is a k-dimensional vector of log-baseline

risks. Following the same development as before, it can be shown that the set of influence functions

for β0 treating the vector of baseline risks α0 as a nuisance parameter are of the form:

Λ⊥ =

{
ϕ(X) = E [A(X)Dβ(X)]−1A(X)ε : A(X) = h(X)− E [h(X)M(X; θ0)] E

[
MT (X; θ0)M(X; θ0)

]−1

MT (X; θ0)

, h(X) arbitrary}

where Dβ(X) = ∂µ(X;θ0)
∂βT

and M(X; θ0) = diag(µ(X; θ0)).

This set contains influence functions of all regular and asymptotically linear estimators of β0

when the baseline risk is arbitrarily flexible. As such, this set is contained in the set of influence

functions derived in Result 1 because assuming a common baseline risk is a more restrictive model.

Similarly (but not exclusively), this set could also be used to construct regular and asymptotically

linear estimators of β0 in the context of longitudinal data where the baseline risk is indexed by time,

α(t).

3.3 Simulations

In this section, we empirically verify the efficiency of the proposed estimator, and its robustness

to misspecification of the covariance structure. We compare three estimators: (1) the estimator of

Tchetgen Tchetgen (2012) which ignores possible correlation of the clustered outcomes; (2) the

modified Poisson approach assuming an exchangeable correlation structure; and (3) our proposed
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estimator β̂eff assuming an exchangeable correlation structure.

The data is generated in a manner to reflect a cluster randomized trial for a binary treatment,

and is generated as follows: (1) for each independent cluster i, generate Xi as q− 1 normal random

vectors and a vector of treatment indicator variables; and (2) generate the k−dimensional response

Yi such that log(E[Yi|X]) = α0 + Xiβ0 with correlation structure given by R. The baseline

risk was chosen to be 0.37. Various relative risks and two correlation structures were considered.

First, the exchangeable correlation structure assumes all pairwise correlations between observations

within a cluster are equal to ρ. This structure is widely used in practice and is useful in capturing

the overall correlation within a cluster. The second correlation structure we consider mimics what

might be expected if the clusters are households where the first two observations in each cluster are

the parents and the remaining observations are the children. This household correlation structure is

given by:



1 0.05 0.1 0.1 0.1

0.05 1 0.1 0.1 0.1

0.1 0.1 1 0.3 0.3

0.1 0.1 0.3 1 0.3

0.1 0.1 0.3 0.3 1


(3)

Table 1 provides the absolute bias and mean squared error of each estimator for estimating the

relative risk of the binary treatment when there are 1000 clusters of size 5 and the true correla-

tion structure is either exchangeable with ρ = 0.3 or the household structure given in Equation

3. Recall that the working correlation structure for the modified Poisson and the efficient estima-

tor is assumed to be exchangeable. The estimator that assumes independent observations has the
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highest mean squared error under each value of the relative risk, and the efficient estimator has the

smallest mean squared error. These results are as anticipated; accounting for the correlation in the

outcome improves the efficiency of both the modified Poisson and the efficient estimator. Although

the modified Poisson approach accounts for correlation, it is inefficient due to misspecification of

the covariance structure (due to the misspecification of the distribution). The efficient estimator

correctly models this covariance structure, and as a result has the smallest mean squared error.

Consider the results when the relative risk of the binary treatment is 1.05 in Table 1 under

the exchangeable correlation structure; we note that the three estimators have approximately the

same absolute bias (2.98x10−3, 2.67x10−3, and 2.89x10−3), but that the efficient estimator has

the smallest mean squared error of 1.93x10−3 compared to 2.61x10−3 and 2.00x10−3. Moving to

the case where the relative risk of the binary treatment is 2, accounting for the correlation in the

outcome dramatically reduces the bias, with the bias of the estimator that assumes independence

equal to 6.18x10−3 and that of the efficient estimator equal to 0.12x10−3.

Consider the situations in Table 1 where the true correlation structure is the household structure

given in Equation 3. Here, the modified Poisson and efficient estimator incorrectly assume that

the working correlation structure is exchangeable, but still show a reduction in mean squared error

when compared to the estimator that assumes independence. The same patterns are observed under

the misspecification of the covariance structure as were observed under the correct specification,

with the estimator that assumes independent observations having the highest mean squared error

under each value of the relative risk. In each case, the efficient estimator has smaller mean squared

error than the estimator that assumes independent observations. Further, the bias of the efficient

estimator remains small under the misspecification of the correlation structure. Under the case when

the relative risk of the binary treatment is 2, the efficient estimator has a bias and mean squared error

of 1.35x10−3 and 3.58x10−3, respectively, while the estimator assuming independence has a larger
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bias and mean squared error at 10.48x10−3 and 3.89x10−3, respectively.

Table 2 is a reproduction of Table 1 but for a continuous covariate in place of the binary treat-

ment. The results follow a similar pattern.

The results of these simulations verify that the proposed efficient estimator reduces mean squared

error of the estimated risk ratios across a variety of simulated scenarios. All estimators considered in

this simulation study are consistent and provide asymptotically valid inference. However, it appears

that accounting for clustering in the outcomes reduces finite sample bias.

4 Application: Young Citizens Data

We applied our proposed estimator for the risk ratio to data from the Young Citizens study (Kamo

et al., 2008). The trial involved a behavioral intervention designed to train children aged 10-14 years

to educate their communities about HIV. The study involved 30 communities that were paired based

on a clustering algorithm incorporating demographics, and one community in each pair randomly

assigned treatment group with the other assigned to the control group. Residents within each com-

munity were surveyed post-intervention to determine their beliefs about the ability to children to

teach the community about HIV. The primary outcome of this study was a composite scored reflect-

ing the strength of this belief. However, to illustrate our estimator, we chose to consider a secondary

outcome of the study, specifically the residents’ beliefs regarding whether or not the AIDS prob-

lem was getting worse in their community (Stephens et al., 2012). This outcome was derived by

collapsing a 4-point scale with values ”strongly agree”, ”agree”, ”disagree”, or ”strongly disagree”

into two values, ”agree” or ”disagree”.

We estimated the risk ratio of the intervention using the efficient estimator given in Section

2.2 assuming an exchangeable correlation structure, the modified Poisson approach assuming an

exchangeable correlation structure, and the estimator that assumes independence given in Section
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2.1. Additionally, we estimate the odds ratio of the intervention using a GEE with a logit link

and assuming an exchangeable correlation structure. In all of the estimators, we control for the

baseline covariates residential or urban community, religion, ethnic group, and indicators of wealth

by including the covariates into the linear predictor of the mean.

Table 3 provides the estimated risk ratio of the intervention, the standard error, and the 95%

confidence interval for each of the estimators considered. We would like to note that standard GEE

for the log-binomial model with correlated data failed to converge, and as such, a different approach

must be taken to estimate the risk ratios. The outcome is not rare (∼82% responded ”agree”);

therefore, using odds ratios to estimate the risk ratio is not valid.

The efficient estimator and that of the modified Poisson approach provide similar estimates of

the log-risk ratio, −0.0188 and −0.0206, respectively, with the efficient estimator slightly smaller

in magnitude. The standard error of the efficient estimator is 0.0375, compared to 0.0406 for the

modified Poisson approach. This corresponds to an empirical asymptotic relative efficiency of 0.85

for the modified Poisson compared to the efficient estimator, and is reflected in by a narrowing

of the confidence intervals. Neither approach leads to significant effects at the α = 0.05, but the

results do illustrate the efficient estimator has tighter confidence intervals than that of the modified

Poisson approach. Also provided in Table 3 is the log-odds ratio estimated using a GEE with a logit

link and assuming an exchangeable correlation structure. The estimated log-odds ratio is −0.1222,

illustrating that the odds ratio is not a good approximation of the risk ratio in the trial and likely

overestimates the relative risk of the intervention.

5 Discussion

In this paper, we have proposed an efficient estimator of the risk ratio that accounts for clustering

among binary outcomes. We prove that this estimator is robust to misspecification of the baseline
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risk, in the sense that the estimator does not directly rely on an estimate of the baseline risk for con-

sistency, and showed that it has the smallest asymptotic variance of any regular and asymptotically

linear estimator. Further, a modification of the estimator is provided that guarantees the predicted

probability is bounded by 1 (a model restriction), and as a result, guarantees stable performance of

the estimator.

Simulations confirm that the proposed estimator has smaller variance than estimators that as-

sume independence and the modified Poisson approach both under correct and incorrect specifica-

tion of the correlation structure. Additionally, the simulations suggest that the proposed estimator

may have smaller finite sample bias in the estimation of the risk ratios when compared to estimators

that assume independence. Therefore, it is important to account for correlation among clustered

outcomes both to improve efficiency and to remove finite sample bias.

The gains in efficiency of the proposed estimator when compared to the modified Poisson ap-

proach are due to allowing for correct specification of the underlying data distribution. A priori,

the modified Poisson approach incorrectly models the data as a Poisson distribution, leading to a

misspecification of the covariance structure and ruling out the possibility of an efficient estimator.

The estimator proposed in this paper allows for correct distributional assumptions, and avoids the

common drawbacks of this assumption by being robust to misspecification of the baseline risk.
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7 Appendix

Proof of Result 1: Recall that the nuisance tangent space is characterized by Λ = ΛRM +Λα, where

ΛRM is the nuisance tangent space from the restricted mean model and Λα is the closed linear space

spanned by scores for α0 along all regular parametric submodels. For any A(X)ε ∈ Λ⊥RM , then

Π
[
A(X)ε|(ΛRM + Λα)⊥

]
= A(X)ε−Π [A(X)ε|ΛRM + Λα]

= A(X)ε−Π [A(X)ε| {Λα −Π [Λα|ΛRM ]}]

= A(X)ε−Π [A(X)ε|Λ∗α]

= A(X)ε−
E
[
A(X)εεTV −1(X)M(X)1k

]
E [µT (X)V −1(X)µ(X)]

µT (X)V −1(X)ε

= A(X)ε− E [A(X)µ(X)]

E [µT (X)V −1(X)µ(X)]
µT (X)V −1(X)ε

where Λ∗α is the closed linear space spanned by the efficient score for α0 in MRM . Therefore,

we have characterized the set of all influence functions for β0 in the model MRM that treats the

baseline risk as a nuisance parameter as:

Λ⊥1 =

{
ϕ(X) = E [A(X)Dβ(X)]−1A(X)ε : A(X) = h(X)− E [h(X)µ(X; θ0)]

E [µT (X; θ0)V −1(X)µ(X; θ0)]
µT (X; θ0)V −1(X), h(X) arbitrary

}

All that is left is to show Λ⊥ = Λ⊥1 . For any h(X) ∈ Λ⊥1 , let S(X) =

[
h(X)− E[h(X)µT (X)µ(X)]

E[µT (X)µ(X)]

]
µT (X).

Then,

19



E [S(X)µ(X)] = 0

so that Λ⊥1 ⊂ Λ⊥. Alternately, for any S(X) ∈ Λ⊥, let h(X) = S(X)− E[S(X)µ(X)]

E[µT (X)V −1(X)µ(X)]
µT (X)V −1(X).

Then,

E [h(X)µ(X)] = 0

implying that Λ⊥ ⊂ Λ⊥1 , and we are done.

Proof of Result 2: Let U(h;X, α0, β0) be as defined in Result 1. Replace the log-baseline risk

α0 with an arbitrary value α. Then, for all h,

E[U(h;X, α, β0)] = E
[
h(X)ε(X;α, β0)− E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
µT (X;α, β0)ε(X;α, β0)

]
= E [h(X)(Y − µ(X;α, β0))]− E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
E
[
µT (X;α, β0)(Y − µ(X;α, β0))

]
= E [h(X)E[Y |X]]− E [h(X)µ(X;α, β0))]−

E
[
h(X)eXβ0eα

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)E[Y |X]

]
+

E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
E
[
µT (X;α, β0)µ(X;α, β0)

]
= E [h(X)µ(X;α0, β0)]−

E
[
h(X)eXβ0eα

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)µ(X;α0, β0)

]
= E [h(X)µ(X;α0, β0)]−

E
[
h(X)eXβ0eα0

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)eXβ0eα

]
= 0

Proof of Result 3: Recall the efficient score is defined by seffβ = Π[sβ|Λ⊥], where sβ is

the score for β0. Under the restricted moment model, the efficient score (Bickel et al., 1998) for
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θ0 = (α0, β0)
T is given by:

seff,RMθ = (sRMα , sRMβ )T = Π
[
sθ|Λ⊥RM

]
= DT (X)V −1(X)ε = (1k,X)TM(X|θ0)V −1(X)ε

where D(X) = ∂µ(X|θ)
∂θT

, M(X|θ) = diag {µ(X|θ)} is the (kxk) diagonal matrix made up of the

elements of µ, and V −1(X) = E
[
εεT
]−1. Then, by definition of the efficient score and using

arguments similar to Result 1:

seffβ = sRMβ −Π
[
sRMβ |Λ∗α

]

where Λ∗α is the closed linear space spanned by the efficient score for α0 inMRM . Thus,

seffβ = s∗β −Π
[
s∗β | Λ∗α

]
= s∗β − E

[
s∗βs
∗T
α

]
E
[
s∗αs
∗T
α

]−1
s∗α

= XTM(X|α0, β0)V
−1(X)ε− E

[
XTM(X|α0, β0)V

−1(X)εεTV −1(X)MT (X|α0, β0)1k
]

E
[
1TkM(X|α0, β0)V

−1(X)εεTV −1(X)MT (X|α0, β0)1k
]−1

1TkM(X|α0, β0)V
−1(X)ε

= XTM(X|α0, β0)V
−1(X)ε− E

[
XTM(X|α0, β0)V

−1(X)MT (X|α0, β0)1k
]

E
[
1TkM(X|α0, β0)V

−1(X)MT (X|α0, β0)1k
]−1

1TkM(X|α0, β0)V
−1(X)ε

= XTM(X|α0, β0)V
−1(X)ε− E

[
XTM(X|α0, β0)V

−1(X)µ(X|α0, β0)
]

E
[
µT (X|α0, β0)V

−1(X)µ(X|α0, β0)
]−1

µT (X|α0, β0)V
−1(X)ε
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Independent Modified Poisson Efficient

True CS Relative Risk MSE Bias MSE Bias MSE Bias Coverage

E
xc

ha
ng

ea
bl

e
1 2.81 1.52 2.14 2.08 2.09 1.82 94.5

1.05 2.61 2.98 2.00 2.67 1.93 2.89 95.1
1.5 3.60 2.58 2.88 0.43 2.83 0.37 94.7

2 4.57 6.18 3.74 0.41 3.67 0.12 96.2

H
ou

se
ho

ld 1 2.05 0.75 1.99 1.18 1.91 0.93 94.5
1.05 2.16 3.68 2.09 2.56 1.96 2.57 95.6
1.5 2.77 5.46 2.68 0.07 2.53 1.27 95.8

2 3.89 10.48 3.53 3.29 3.58 1.35 95.0

Table 1: Bias (10−3) and mean square error (10−3) of the modified Poisson approach and the effi-
cient approach for estimating the relative risk of a binary covariate when there are 1000 clusters of
size 5 under an exchangeable working correlation structure. The true correlation structure is either
exchangeable with ρ = 0.3 or the household structure given in Equation 3.
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Independent Modified Poisson Efficient

True CS Relative Risk MSE Bias MSE Bias MSE Bias Coverage

E
xc

ha
ng

ea
bl

e

1 0.31 0.06 0.25 0.08 0.23 0.23 94.7
1.05 0.33 1.49 0.26 0.20 0.24 0.02 94.5

1.5 0.74 6.45 0.55 0.68 0.50 1.27 94.5
2 1.66 12.47 1.23 0.069 1.05 1.68 95.4

H
ou

se
ho

ld 1 0.286 0.01 0.284 0.09 0.275 0.15 93.9
1.05 0.27 1.76 0.28 0.87 0.24 1.13 94.8

1.5 0.66 13.56 0.44 0.095 0.43 0.50 94.1
2 2.01 25.66 0.818 1.69 0.816 0.57 93.0

Table 2: Bias (10−3) and mean square error (10−3) of the modified Poisson approach and the effi-
cient approach for estimating the relative risk of a continuous covariate when there are 1000 clusters
of size 5 under an exchangeable working correlation structure. The true correlation structure is ei-
ther exchangeable with ρ = 0.3 or the household structure given in Equation 3.

Estimator log(Risk ratio) Std. Error 95% Confidence Interval
β̂eff -0.0188 0.0375 (-0.0922 , 0.0547)
β̂MP -0.0206 0.0406 (-0.1002, 0.0590)
β̂OR -0.1222 0.2529 (-0.6179 , 0.3736)

Table 3: Estimated log-risk ratio (or log-odds ratio) of the intervention, the standard error, and
corresponding 95% confidence interval. β̂eff is the efficient estimator provided in Section 2.2
assuming an exchangeable correlation structure, β̂MP is the modified Poisson estimator assuming
an exchangeable correlation structure, and β̂OR is the log-odds ratio estimated using the GEE with
a logit link and assuming an exchangeable correlation structure.
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