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Nonparametric heteroscedastic transformation regression models

for skewed data with an application to health care costs

Xiao-Hua Zhou ∗, † , Huazhen Lin ∗ ‡, and Eric Johnson ∗

Summary

In this paper we develop a new non-parametric heteroscedastic transformation regression

model for predicting the expected value of the outcome of a patient with given patient’s covari-

ates when the distribution of the outcome is highly skewed with a heteroscedastic variance. In

our model, we allow both the transformation function and the error distribution function to be

unknown. We show the estimators for regression parameters, the expected value of the original

outcome, and the transformation function converge to their true values at the rate n−1/2, and

the convergent rate that one could expect for a parametric model. In a simulation study, we

demonstrate that our proposed nonparametric method is robust with little loss of efficiency.

Finally, we apply our model to a study on health care costs.

Key words: Nonparametric; heteroscedastic; transformation regression models; skewed;

health care costs.

1 Introduction

In health services research, risk adjustment has been widely used for assessing provider effi-

ciency, setting capitation rates, and examining resource allocation (Ash, et al.,2000). A key

component of the risk adjustment scheme is to predict the health care cost of an individual,

given certain demographic characteristics and a measure of the prior health status of that

individual; that is, the mean function µ(x) = E[Y |X = x]. The main challenge for such
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prediction is that the distribution of health care costs is highly skewed with non-constant vari-

ance and estimates of µ(x) may be quite sensitive to how estimators treat the skewness and

heteroscedasticity (Manning, 1998; Mullahy, 1998; Blough et al., 1999; Manning et al., 2005).

In statistical literature, there are two well established ways of modeling skewed data. The

first one is the traditional generalized linear model (GLM) and its semi-parametric and non-

parametric extensions (Basu and Rathouz, 2005; Blough et al., 1999; Chiou and Muller, 1998),

and the second is to assume that we can transform Y into a special type of the distribution

that makes the analysis easier to perform (Carroll and Ruppert, 1988, page 116; Manning,

1998; Mullahy, 1998; Manning et al., 2005). Usually, GLM and transformation models lead to

different non-linear regression relationships between µ(X) and X. The adequacy of the assumed

model depends on a particular application. One major potential advantage of a transformation

method over the GLM is that when the expected value of Y has a complex relationship with

a vector of covariates, often a transformation of Y simplifies this relationship by inducing a

particular type of distribution, e.g. normal, homoscedastic or symmetric distribution so that

more efficient estimators and more appropriate plotting can be obtained (Ruppert, 2001).

Most of the existing transformation models in health services research require a specification

of the transformation function. The parametric assumption on the transformation function may

not always be desirable, as the outcome variable may depend on covariates in a complicated

manner. Since the estimates of µ(x) may be quite sensitive to the specification of the transfor-

mation function, in this paper, we propose the following nonparametric transformation model

to analyze skewed and heteroscedastic variance data:

H(Y ) = X ′β + σ(X ′γ)ε. (1.1)

Here H(·) is an unknown increasing transformation function, σ(·) is the known variance func-

tion, X is a q × 1 vector of observed explanatory variables with the first element being 1, β

and γ are vectors of unknown parameters, and ε is an error term with mean 0 and variance 1.

The error term ε is assumed to be independent of X. Let F denote the unknown cumulative

distribution function of ε. In the model (1.1), we allow the effect of X on the mean and variance

in the transformation scale to be different. With a known transformation function, Welsh and
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Zhou (2006) proposed a heteroscedastic regression model for a skewed population.

In this paper, we focus on estimation of µ(x) under the model (1.1). We propose a new

method for estimating the unknown transformation and regression parameters. We then use the

resulting estimates to derive an estimator of the expected value of an outcome on the original

scale of an individual given their covariates, µ(x). We show that all the proposed estimators

are asymptotically normal and converge to their true values at the rate n−1/2, which is the

convergent rate that one can expect for a fully parametric model. This result implies that the

robustness gained by allowing nonparametric transformation and error distribution functions,

comes at little cost of efficiency for estimating the regression parameters and the mean of the

original response. The conclusion also is confirmed by our simulation studies in Section 5.

The paper is organized as follows. In Section 2, we present the notations used in forming

our model. In Section 3, we give the estimators of H, β and µ(x). We derive the asymptotic

distribution properties for the proposed estimators in Section 4, and present the simulation

results on the robustness and efficiency of the estimators in Section 5. Finally, we illustrate our

methods using a real example in Section 6.

2 Estimation

2·1 Estimation of regression parameters and transformation function

To make the model (1.1) identifiable, we assume that H(y0) = 0 for some finite y0. We

first derive the estimator of H. Let {Yi, X i, i = 1, · · · , n} be a random sample of (Y, X) that

satisfies the model (1.1). Denote Z1 = X ′β, Z2 = X ′γ, Z1i = X ′
iβ, and Z2i = X ′

iγ. Let

G(·|z1, z2) be the cumulative distribution function (CDF) of Y conditional on Z1 = z1 and

Z2 = z2, and p(·, ·) be the probability density function of (Z1, Z2). Assume that H, F , and G

are all differentiable. Define h(y) = dH(y)/dy, f(y) = dF (y)/dy, p(y|z1, z2) = dG(y|z1, z2)/dy,

and gj(y|z1, z2) = dG(y|z1, z2)/dzj, j = 1, 2. Notice that under the model (1.1), Y depends

on X only through the index Z1 and Z2, and the model (1.1) implies the expression for G:

G(y|z1, z2) = F (H(y)−z1

σ(z2)
). By differentiating G(y | z1, z2) with respect to y and z1, we obtain
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the following expressions:

p(y|z1, z2) = f(
H(y)− z1

σ(z2)
)
h(y)

σ(z2)
and g1(y|z1, z2) = −f(

H(y)− z1

σ(z2)
)

1

σ(z2)
,

which give us the relationship between p(y|z1, z2) and g1(y|z1, z2): h(y)g1(y | z1, z2) = −p(y |
z1, z2). If we denote g1(y, z1, z2) = g1(y|z1, z2)p(z1, z2) and p(y, z1, z2) = p(y|z1, z2)p(z1, z2), we

obtain the following expression:

g1(y, z1, z2)h(y) = −p(y, z1, z2). (2.1)

Replacing z1 and z2 with Z1i and Z2i in (2.1) and making a summation over all subjects, we

obtain the following expression:

n∑
i=1

g1(y, Z1i, Z2i)h(y) = −
n∑

i=1

p(y, Z1i, Z2i),

and solving for h(.), we obtain the following expression:

h(y) = −
∑n

i=1 p(y, Z1i, Z2i)∑n
i=1 g1(y, Z1i, Z2i)

. (2.2)

Integrating the both sides of (2.2) gives us the following expression of H(.):

H(y) = −
∫ y

y0

∑n
i=1 p(u, Z1i, Z2i)∑n
i=1 g1(u, Z1i, Z2i)

du. (2.3)

The expression (2.3) forms the basis for the estimator of H proposed here.

From (2.3), we see that to derive an estimator of H(.), we need to estimate p(z1, z2),

G(y|z1, z2), and derivatives of G(y|z1, z2) when the values of β and γ are given. We estimate

G(y|z1, z2) by the following kernel estimator:

Gn(y|z1, z2) =
1

nh1h2pn(z1, z2)

n∑
i=1

I(Yi ≤ y)K1

(
Z1i − z1

h1

)
K2

(
Z2i − z2

h2

)
, (2.4)

where K1 and K2 are bounded and symmetric kernel functions with the support [−1, 1], and

h1 and h2 are their corresponding bandwidths. Here pn(z1, z2) is the kernel density estimate of

p(z1, z2), which is given by the following expression:

pn(z1, z2) =
1

nh1h2

n∑
i=1

K1

(
Z1i − z1

h1

)
K2

(
Z2i − z2

h2

)
. (2.5)
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Since g1(y|z1, z2) = dG(y|z1, z2)/dz1, we obtain an estimator of g1(y|z1, z2) by differentiating

Gn(y|z1, z2) with respect to z1:

g1n(y|z1, z2) = ∂Gn(y|z1, z2)/∂z1. (2.6)

Although p(y|z1, z2) is the probability density function of Y conditional on Z1 = z1, Z2 = z2, it

can not be directly estimated by ∂Gn(y|z1, z2)/∂y because Gn(y|z1, z2) is a step function of y.

Instead, we use the following kernel density estimator for p(y|z1, z2):

pn(y|z1, z2) =
1

nh1h2h0pn(z1, z2)

n∑
i=1

K0(
Yi − y

h0

)K1

(
Z1i − z1

h1

)
K2

(
Z2i − z2

h2

)
, (2.7)

where K0 be a bounded and symmetric kernel function with the support [−1, 1], and h0 is its

bandwidth. Finally, by substituting (2.5), (2.6) and (2.7) into (2.3), we obtain the following

estimator Hn of H:

Hn(y) = −
∫ y

y0

∑n
i=1 pn(u|Z1i, Z2i)pn(Z1i, Z2i)∑n
i=1 g1n(u|Z1i, Z2i)pn(Z1i, Z2i)

du. (2.8)

Since E((H(Y )− Z1)
2 | X) = σ2(X ′γ), without imposing a parametric structure on F , when

given H, we can use the following estimating equations to simultaneously estimate β and γ:

n∑
i=1

(H(Yi)−X ′
iβ)X i

σ2(X ′
iγ)

= 0, (2.9)

and
n∑

i=1

{
(H(Yi)−X ′

iβ)2 − σ2(X ′
iγ)

}
X i = 0. (2.10)

From the equation (2.9), we obtain a closed-form estimator of β:

βn =

(
n∑

i=1

X iX
′
i

σ2(X ′
iγ)

)−1 n∑
i=1

X iH(Yi)

σ2(X ′
iγ)

. (2.11)

2·2 Implementation

We now outline an algorithm for computing β, γ and H(·).
1. Selection of initial values.

5
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(a) Initial values for β and H. We can still obtain consistent estimates for β and H

even if we misspecify the variance function; hence, we can obtain reasonable starting

values for β and H with estimates obtained under the homoscedasticity model,

H(Y ) = X ′β + σε. (2.12)

Under this homoscedastic model with the unknown transformation function H(.), we

can estimate β by the maximum rank correlation (MRC) method proposed by Han

(1987); that is, we estimate β with β̃ = argmaxβWn(β), where Wn(β) =
∑

i6=j{Yi >

Yj}{X ′
iβ > X ′

jβ}. Then we can estimate H using the proposed method with h2 so

that K2(
Z2i−z2

h2
) = 1 for any z2 and i = 1, · · · , n.

(b) Initial values for γ. Given β and H, we estimate γ by the equation (2.10).

2. Estimation of H(.). Given β and γ, we estimate H by (2.8).

3. Estimation of β and γ. Given H, we estimate β and γ by solving the estimating equations

(2.11) and (2.10).

4. Iteration. Repeat Steps 2 and 3 until two successive values of β, γ, and H(.) don’t differ

significantly.

In practice, the function H may not be estimated well in the area of extreme observations

because of sparsity. It may be necessary to specify a parametric form of H for the area of

extreme observations. In general, the parametric form for the area of extreme observations can

be inducted according to the estimated function in the interiors of the observations. In the

simulations and the example, we assume that the linear form for H at the tail of observations.

2·3 Prediction of the expected value of Y given covariates X

For given covariates x of a patient, we are interested in predicting µ(x). Under the model

(1.1), we can write µ(x) as follows:

µ(x) =

∫
H−1(xT β + σ(xT γ)u)dF (u). (2.13)
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We propose to estimate F by the empirical distribution F̂ of the standardized residuals, êi =
bH(Yi)−XT

i
bβ

σ(XT
i bγ)

, where Ĥ, β̂ and γ̂ are the estimators of H, β and γ, given in Sections 2.1 and 2.2.

Therefore, replacing H, β, γ, and F by Ĥ, β̂, γ̂, and F̂ in (2.13), we obtain the following

estimator of µ(x):

µ̂(x) =
1

n

n∑
i=1

Ĥ−1

(
x′β̂ + σ(x′γ̂)

Ĥ(Yi)−X ′
iβ̂

σ(X ′
iγ̂)

)
. (2.14)

This estimator can be considered as an extension of Duan’s smearing estimator (Duan, 1983)

to the heteroscedastic transformation model with the unknown transformation and error dis-

tribution functions.

3 Large sample properties

In this section, we present the large sample properties of all estimators. In the rest of the

paper, we denote the (k1 + k2 + · · · )-th order partial derivative of a function f(x1, x2, · · · ) by

f (k1,k2,··· )(x1, x2, · · · ); that is, f (k1,k2,··· )(x1, x2, · · · ) = d(k1+k2+··· )f(x1,x2,··· )
dx

k1
1 dx

k2
2 ··· .

To present Theorems 1 to 3 below, we need the following notations. Define

%(y) = Eg1(y, Z1, Z2), π1(y) = −
∫ y

y0

h(u)
E

[
g1(u, Z1, Z2)q

(10)(Z1, Z2)
]

%(u)
du,

A1 = E
X (X + π1(Y ))′

σ2(X ′γ)
, A2 = E

[
Xπ2(Y )′

σ2(X ′γ)

]
, A3 = E [Xσ(Z2)επ

′
1(Y )] ,

A4 = E
[(

σ2
)(1)

(Z2)XX ′
]

+ 2E [Xσ(Z2)επ
′
2(Y )]− 2A3A

−1
1 A2,

π2(y) = −
∫ y

y0

h(u)
E

[
(H(u)− Z1)g1(u, Z1, Z2)q

(10)(Z1, Z2)σ
(1)(Z2)/σ(Z2)

]

%(u)
du,

π(y) =
(
A−1

1 A2

)′
π1(y)− π2(y), η(y, z1, z2) =

2h(y)p(10)(z1, z2)

%(y)
,

and q(z1, z2) = E[X|Z1 = z1, Z2 = z2]. Then, we have the following results.

7

Hosted by The Berkeley Electronic Press



Lemma A. Under the conditions given in Appendix A, we have the following linear expan-

sion of Ĥ(y)−H(y):

Ĥ(y)−H(y) =
1

n

n∑
i=1

δi(y)− (β̂ − β)′π1(y)− (γ̂ − γ)′π2(y)

+op(n
−1/2) + op(γ̂ − γ) + op(β̂ − β), (3.1)

where δi(y) =
∫ y

y0
η(u, Z1i, Z2i) [I(Yi ≤ u)−G(u|Z1i, Z2i)] du

−
[
I(y0 ≤ Yi ≤ y)

%(Yi)
−

∫ y

y0

p(u|Z1i, Z2i)

%(u)
du

]
p(Z1i, Z2i).

We give a proof of Lemma A in Appendix B. Lemma A is a key to establish the asymptotic

properties of all the estimators given in Theorems 1 to 4 below. We present a proof of Theorems

1 to 3 in Appendix C and a proof of Theorem 4 in Appendix D.

Theorem 1. Under the conditions given in Appendix A, we have the following asymptotic

expansion of β̂ − β:

β̂ − β =
1

n

n∑
i=1

ϕβ
i + op(n

−1/2), (3.2)

where ϕβ
i =

(
A−1

1 + 2A−1
1 A2A

−1
4 A3A

−1
1

)
$i−A−1

1 A2A
−1
4 ζi−2A−1

1 A2A
−1
4 ς i, $i = E δi(Y )X

σ2(Z2)
+

εiXi

σ(Z2i)
, ζi = σ2(Z2i)(ε

2
i − 1)X i, and ς i = E {δi(Y )σ(Z2)εX}.

Theorem 2. Under the conditions given in Theorem 1, we have the following asymptotic

expansion of γ̂ − γ:

γ̂ − γ =
1

n

n∑
i=1

ϕγ
i + op(n

−1/2), (3.3)

where ϕγ
i = −2A−1

4 A3A
−1
1 $i + A−1

4 ζi + 2A−1
4 ς i.

So,
√

n
(
β̂ − β

)
and

√
n (γ̂ − γ) have an asymptotically normal distribution with mean

vector 0 and covariance matrix E[ϕβ
i (ϕβ

i )
′
] and E[ϕγ

i (ϕ
γ
i )
′], respectively, which can be estimated

by replacing all theoretical quantities in 1
n

∑n
i=1 ϕβ

i (ϕβ
i )′ and 1

n

∑n
i=1 ϕγ

i (ϕ
γ
i )
′ by their sample

counterparts.

Substituting the results of Theorems 1 and 2 into (3.1) of Lemma A, we obtain the following

theorem.
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Theorem 3. Under the conditions given in Theorem 1, we have the following asymptotic

expansion of Ĥ:

Ĥ(y)−H(y) =
1

n

n∑
i=1

ϕH
i (y) + op(n

−1/2), (3.4)

where ϕH
i (y) = δi(y)− {

π′
1(y) + 2π′(y)A−1

4 A3

}
A−1

1 $i + π′(y)A−1
4 ζi + 2π′(y)A−1

4 ς i.

So, by the central limit theorem, it is easy to show that
√

n
(
Ĥ(y)−H(y)

)
has an asymp-

totically normal distribution with mean 0 and variance E[ϕH
i (y)]2, which can be estimated by

replacing all theoretical quantities in 1
n

∑n
i=1

[
ϕH

i (y)
]2

with their sample counterparts.

Hence, Ĥ(y) converges to H(y) at rate of n−1/2; this result shows that we can estimate

the nonparametric function H(.) with a parametric convergent rate. The result also assures

that we can estimate µ(x) at the rate of n−1/2, which is presented in Theorem 4 below. Denote

κ(x) = H−1 (x′β + σ(x′γ)ε), κi(x) = H−1 (x′β + σ(x′γ)εi), for x in the interior of the support

of X,

B1(x) = E

[
1

h (κ(x))

{
x− σ(x′γ)

σ(Z2)
X − σ(x′γ)

σ(Z2)
π1(Y ) + π1(Y )

}]
,

B2(x) = E

[
1

h (κ(x))

{(
σ(1)(x′γ)x− σ(x′γ)σ(1)(Z2)

σ(Z2)
X

)
ε−

(
σ(x′γ)

σ(Z2)
− 1

)
π2(Y )

}]
,

and

B′
3(x) = B2(x)′A−1

4 −B1(x)′A−1
1 A2A

−1
4 .

Theorem 4. Under the conditions given in Theorem 1, we have the following asymptotic

expansion of µ̂(x)− µ(x):

µ̂(x)− µ(x) =
1

n

n∑
i=1

ϕµ
i (x) + op(n

−1/2), (3.5)

where ϕµ
i (x) = κi(x)+

[
B1(x)′A−1

1 − 2B3(x)′A3A
−1
1

]
$i +B′

3(x)ζi +2B′
3(x)ς i +τi(x), τi(x) =

E
[

1
h(κ(x))

{
σ(x′γ)
σ(Z2)

δi(Y )− δi (κ(x))
}]

, ε = H(Y )−X′β
σ(X′γ)

, and εi =
H(Yi)−X′

iβ

σ(X′
iγ)

. Throughout the paper

we let E denote the expectation with respect to (X, Y, ε).

Hence
√

n (µ̂(x)− µ(x)) has an asymptotically normal distribution with mean 0 and vari-

ance E[ϕµ
i (x)]2, which can be estimated by replacing all theoretical quantities in 1

n

∑n
i=1 [ϕµ

i (x)]2

with their sample counterparts.

9
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Since the leading terms in Theorems 1 to 4 do not depend on the bandwidths h0, h1 and

h2, we can conclude that the bandwidths h0, h1 and h2 are not crucial for the asymptotic

performance of the estimates; this conclusion has also has been confirmed in our simulation

studies. A practical implication of this result is that our estimates are not sensitive to the

bandwidths h0, h1 and h2, which makes practical implementation of our method much easier.

A rough selecting method for h0, h1 and h2 is enough. Next, we give a practical method for

selecting h0, h1 and h2. Since h(y) = − p(y,z1,z2)
g1(y,z1,z2)

is independent of z1 and z2 for any given y,

p(y,Z1i,Z2i)
g1(y,Z1i,Z2i)

is a constant for any i = 1, · · · , n, which means that V ar[ p(y,Z1i,Z2i)
g1(y,Z1i,Z2i)

] = 0 for any

given y. The data-based bandwidths for h0, h1 and h2 are then chosen to minimize the following

sample variance of p(y,Z1i,Z2i)
g1(y,Z1i,Z2i)

:

1

(n− 1)R

R∑
r=1

n∑
i=1

(
p̂(yr, Z1i, Z2i)

ĝ1(yr, Z1i, Z2i)
− h(yr)

)2

,

where h(y) = 1
n

∑n
i=1

bp(y,Z1i,Z2i)
bg1(y,Z1i,Z2i)

, and y1, · · · , yR are chosen to evaluate the variance of p(y,Z1i,Z2i)
g1(y,Z1i,Z2i)

.

Although we have derived estimators of the variances of β̂, γ̂, Ĥ(y) and µ̂(x), their com-

putation involves the unknown function q(z1, z2), its derivative q(10)(z1, z2), and the derivative

p(10)(z1, z2). Hence, the performance of the resulting variance estimates in finite-sample sizes

may be unstable because it may be difficult to get a good estimate for a derivative. Alterna-

tively, we could use a resampling scheme, for example, a bootstrap method, to approximate the

variances or covariance matrices.

4 Simulation studies

We conducted simulations studies to assess the finite-sample performance of the proposed

method. Since the validity of our method does not rely on parametric specifications for the

transformation functions, we expect our estimators of the untransformed scale expectation and

regression parameters to be more robust than the ones derived under the assumed paramet-

ric transformation methods. In addition, since our method requires specifying the variance

function, we also want to know how the misspecified variance function can affect our new esti-

mators. To investigate these issues, we compared the performance of the proposed method with
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the following models: (1) the CTCV model, where the transformation and variance functions

were correctly specified, the case that served as the gold standard; (2) the CTMV model, where

the transformation function was correctly specified and the variance function was misspecified;

(3) the MTCV model, where the transformation function was misspecified and the variance

function was correctly specified. The MTCV models were used to investigate the robustness of

the proposed method. In addition, as suggested by referees, we also compared our approach to

Chiou and Muller’s non-parametric GLM approach and Basu and Rathouz’s semi-parametric

GLM approach that used data to determine appropriate link and variance functions. We are

interested in assessing whether the proposed method has any advantage over these competing

models both in terms of bias and efficiency.

From Theorems 1 to 4, described in Section 3, we saw that bandwidth selection was not

a vital issue for estimating the parameters and non-parametric functions. That is, we could

just select any bandwidths that satisfied the technical assumption of undersmoothing but were

not too ridiculously small to get consistent estimates of the parameters and non-parametric

functions. We would confirm this conclusion in our simulation studies.

We generated data from a non-logarithm transformation model with one binary covariate

and one continuous covariate. For n = 2000 subjects, we generated covariates X1 and X2 from

the binomial distribution with p = 0.5 and the uniform distribution on [0, 2], respectively, while

generating the random error ε from the standard normal distribution. Let us denote X =

(X1, X2). We generated our outcome by the following transformation model with heteroscedas-

tic variance: H(Y ) = β0 + X1β1 + X2β2 +
√

0.4 + γX1ε, where H(y) = Φ−1{exp(y − 10)},
β0 = −1.8, β1 = 1.4, β2 = 1.4, and γ = −0.35. The coefficients of skewness and kurtosis of Y

were −2.2 and 8.5, respectively. We assessed the performance of the various estimators of the

untransformed scale expectation in terms of standard deviation (SD), bias and square root of

mean squared error (RMSE).

To assess the effect of the chosen bandwidths on the estimators, we first chose the values

for h1, h2 and h0, based on the data-based method, described in Section 3 for a single randomly

selected data set. The chosen values were 0.37, 0.7, and 0.1, respectively. We then chose
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five additional values for each of h1, h2, and h0 by independently drawing from the normal

distributions with mean 0.37, 0.7, and 0.1, respectively, with the common variance 0.2. The

results showed that although the estimation of β was affected by the selection of h1, h2, and

h0, the bandwidth selection had little effect on estimation of the average cost on the original

scale, which was our focus. The reason was that the extra amount of smoothing inherent in

the summation in (2.14) should mean that µ̂(x), our estimate of E(Y | X = x), would be even

less sensitive to the bandwidth, the so-called double-smoothing phenomenon (Maity, Ma and

Carroll, 2007).

Based on our sensitivity result of bandwidth selection on β, we chose the following method

for selecting the bandwidth for each generated data set. For a randomly generated data set

with a given sample size, we would use the data-based method, described in Section 3, to

select the values for the bandwidths, h0, h1, and h2, denoted by ĥ0, ĥ1, and ĥ2, respectively.

Unfortunately, the estimation algorithm failed to converge using the selected bandwidths for

some of the 200 simulated data sets. If that happen, we just used the absolute value of a

randomly generated number from the normal distribution with mean ĥ0 and variance 0.01 until

the algorithm converged. For the 200 simulated data sets, the chosen h0 values varied from

0.01 to 0.36. Similarly, we applied the same way for h1 and h2 to assure the convergency.

In Table 1, we reported bias and standard deviation (SD) of the various estimators for the

untransformed scale expectation at the combination of X1 = 0, 1 and X2 = 0, 1, 2. In the

MTCV model, the transformation function was misspecified as a function H(y) = exp(y− 10).

By comparing results among the parametric CTCV, CTMV, and MTCV estimates, we can

conclude that misspecification of the transformation function can lead to large bias and large

RMSE while misspecification of variance function has minimal effect on bias and RMSE. Among

the two existing GLM-based estimators, we found that Basu and Rathouz’s procedure failed to

converge for all of 200 simulated samples, suggesting that the Basu and Rathouz’s estimator

is not stable. Chiou and Muller’s estimator has much larger bias and SD than our newly

proposed estimator. Our newly proposed estimator is essentially unbiased. Comparing our

new estimator with the gold standard estimator, the CTCV estimator, derived under correctly
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specified transformation and variance function, the empirical efficiency of our new estimator is

around 60% on average.

For each simulated data set, we also obtained estimates of the transformation H using the

proposed approach. Figure 1(a) displays the averaged estimated transformation function and

their 95% empirical pointwise confidence limits, based on the 200 simulated data sets. Figure

1(a) shows that our proposed estimate of the transformation function is very close to the true

transformation function.

Table 1 Simulation results for the average cost over the 200 replications

x µ(x) Method Bias SD x µ(x) Bias SD

(0,0) 6.502 Prop. 0.1362 0.217 (0,1) 8.795 -0.0062 0.042

CTCV 0.0015 0.088 -0.0030 0.028

CTMV 0.0022 0.087 -0.0015 0.025

MTCV 2.8103 0.018 0.7702 0.023

CHIOU 0.8027 0.226 -0.3023 0.063

BASU Failed to converge

(0,2) 9.753 Prop. -0.0254 0.029 (1,0) 8.917 0.0384 0.033

CTCV -0.0023 0.015 0.0015 0.036

CTMV -0.0013 0.015 0.0019 0.035

MTCV -0.0136 0.026 0.6480 0.005

CHIOU -0.4317 0.173 0.1796 0.189

(1,1) 9.818 Prop. -0.0057 0.009 (1,2) 9.990 0.0043 0.004

CTCV -0.0001 0.002 -0.0001 0.001

CTMV -0.0001 0.002 -0.0001 0.001

MTCV -0.0724 0.005 -0.1297 0.009

CHIOU -0.0637 0.023 0.2003 0.051

5 An Example

The sample used here was from a study on the effectiveness of the Improving Mood-Promoting

Access to Collaborative Treatment (IMPACT) collaborative care management program for
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Figure 1: (a) The averaged estimates of transformation curve (Solid — true functions; dashed—
estimated; dotted-linear—confidence limit). (b) The estimated transformation and its 95%
confidence limits for IMPACT data. (c) Prediction against actual for logarithm of cost with
bandwidth h1 = 4, h2 = 10, hy = 90, the solid line is diagonal.

late-life depression (Unutzer et al., 2002). A total of 1801 patients aged 60 years or older with

major depression (17%), dysthymic disorder (30%), or both (53%) were randomly assigned to

the IMPACT intervention (n = 906) or usual care (n = 895). Intervention patients had up

to 12 months access to a depression care manager who offered education, care management,

and support of antidepressant management by the patient’s primary care physician. Primary

outcomes were collected at baseline, 6, 12, 18 and 24 months. In the paper, we focus on the cost

in the first year (Y ), the mean and standard deviations of Y were $6258.442 and $5065.507,

respectively, and the coefficients of skewness and kurtosis of Y are 3.36 and 26.94, respectively.

We fit the data using the model (1.1) with the outcome variable being outpatient costs in the

first year, and the two independent variable, X1 and X2. Here X1 was the binary treatment

indicator, and X2 was the mean score of the 20 depression items from the Symptom Checklist.

To reduce the computational time, we applied a log transformation to the outcome variable
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before performing our analysis.

We set the variance function to be a polynomial function σ2(x; p) =
∑p

k=0 αkx
k, p = 1, 2, · · · ,

where p was chosen to minimize the following GF (p):

GF (p) = min
γ

n∑
i=1

{(
H̃(Yi)−X ′

iβ̃
)2

− σ2(X ′
iγ; p)

}2

,

where H̃ and β̃ were the initial values of H and β, respectively, obtained using the method

in Section 3.2. The results showed that GF (p) did not substantially change with p. Hence to

assure σ2(x) ≥ 0, here we selected σ2(x; p) = x2. We then applied our newly proposed method

to the data set. For a comparison purpose, we also applied Chiou and Muller’ method and

Basu and Rathouz’s methods to the data set. In Table 2, we reported the three estimates of

the average cost of a patient with the given covariate values, X1 and X2, where X1 = 0, 1 and

X2 = 0.04, 1.5, 3.2, and their corresponding standard errors. Here we used a bootstrap method

to estimate the standard errors of the proposed estimator and Chiou and Muller’s estimator.

Table 2 suggested that the three methods could give different estimates of the average cost of

a patient with the given X1 and X2. However, all three methods reached the same conclusion

that patients in the treatment group might incur higher costs than those in the control group.

Figure 1(b) displayed the estimated transformation function and their 95% bootstrap pointwise

confidence limits.

Finally, we proposed a procedure to check validity of the assumed heteroscedastic nonpara-

metric transformation model (1.1). First, we randomly divided the data into two subsets with

equal sizes, called the training set and validation set. Then, we fit a model using the training

set. For each subject in the validation set, we predicted the subject’s cost using the fitted model

from the training set. We investigated the performance of the model by examining how well

observed mean costs agreed with averages of predicted costs in each of the ten groups formed

by decile of predicted costs. To better visualize this result, we plotted the mean of logarithms

of predicted costs by decile of logarithms of predicted costs against the logarithms of actual

mean spending for the individuals in that decile. We reported this plot in Figure 1(c). This

provides a graphical depiction of the degree to which these models can estimate actual costs

across the span of the data (Buntin and Zaslavsky, 2004). A perfect fit corresponds to the solid
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diagonal line. Points above or below this diagonal line indicate over-predict or under-predict

of the model. Figure 1(c) suggested that the goodness-of-fit of the proposed model (1.1) was

reasonable.

Table 2 The average cost estimates of a patient in the IMPACT study

Proposed CHIOU BASU

Rand SCL Average cost(se) Average cost(se) Average cost(se)

1 0.04 5008.6(444.4) 5239.9(74.7) 5334.8(213.0)

0 0.04 4424.0(500.6) 4639.4(10.5) 4991.9(390.1)

1 1.50 6916.1(392.9) 6779.1(26.7) 6717.8 (57.6)

0 1.50 6172.1(216.4) 6177.7(40.7) 6167.4(2.2)

1 3.20 9177.3(1156.9) 8574.4(31.9) 9802.8(3921.1)

0 3.20 8349.5(816.3) 7971.8(97.5) 8622.3(1668.5)

6 Discussion

In this paper, we have extended the traditional parametric transformation model with a known

transformation function to a nonparametric heteroscedastic transformation model with un-

known transformation function and error distribution. The theoretical studies show that our

estimators are asymptotically normal with convergent rate n1/2, which is the rate for a fully

parametric regression model. In our simulation comparisons with two existing generalized linear

model (GLM) based methods, Basu and Rathouz’s semi-parametric GLM method and Chiou

and Muller’s non-parametric GLM method, we have found that Basu and Rathouz’s procedure

is unstable, failing to converge in most of our simulated data sets. Between our newly proposed

method and Chiou and Muller’s procedure, our simulation results show that our new method

greatly outperforms Chiou and Muller’s procedure for estimating the expected value of a skewed

outcome, although Chiou-Muller’s procedure is not originally designed for such situations.

Modeling heteroscedasticity is a complicated matter. If we fit a non-parametric function to

the variance (e.g. allowing an unknown function σ), it may be difficult to get an good estimate

of the variance. In this paper, we fit the heteroscedasticity through a known function σ, which
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depends on unknown parameters γ. Another possibility to model the heteroscedasticity is

setting γ = β, which assumes that the variance depends only on the mean, as in the GLM

literature, and leave the variance function unknown.

There are some potential limitations to the proposed method. First, our method can not

be easily extended to the case γ = β. Second, the validity of the proposed model requires the

assumption that ε is independent of X and E(ε) = 0. In contrast, the GLM and Basu’s method

only requires mean independence of ε with covariates X , E(ε | X = x) = 0. It is obvious

that the effect of our independence assumption is stronger from a mathematical point of view,

however, it is unclear how much practical difference it makes. For example, in the content

of causal inferences with instrument variables, Imbens and Rubin (1997) argued against the

mean independence assumption and favored the full independence assumption. Finally, the

heteroscedastic term in our model (1.1) only attempts to model differences in the second order

moments of H(Y ), and does not address variations of even higher order moments of H(Y ) with

respect to X.

Appendix A. Conditions

1. Functions K0, K1, and K2 are one-dimensional bounded and symmetric density functions

around zero with compact supports, and without loss of generality, we assume that their

supports are [−1, 1]. We assume that K0, K1 and K2 have orders of r0, r1 and r2, re-

spectively; that is,
∫ 1

−1
µjKp(µ)dµ is 1 when j = 0, is 0 when 1 ≤ j ≤ rp − 1, and is

not zero when j = rp, for p = 0, 1, 2. We also assume that K0 has bounded variation

and that K1 and K2 are everywhere twice differentiable. The derivatives are bounded

and have bounded variation. We further assume that the second derivative of Kj satisfies

|K(2)
j (x1)−K

(2)
j (x2)| ≤ M |x1 − x2| for some M < ∞ and j = 1, 2.

2. The interval [y0, y1] is the domain of H. In practice, this would be the range of the observed

Y ’s. The function H is strictly increasing, and the derivatives H(k)(y)(k = 1, · · · , r0 + 1)

exist and are uniformly bounded over y ∈ [y0, y1].

3. There exists a sequence β̂ = β̂n and γ̂ = γ̂n such that ‖β̂−β‖ = op(1) and ‖γ̂−γ‖ = op(1).
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4. The derivatives p(k1,k2)(z1, z2) and p(k0,k1,k2)(y, z1, z2), for k0 = 1, · · · , r0+1, k1 = 1, · · · , r1+

1, k2 = 1, · · · , r2 + 1, exist and are uniformly bounded over y ∈ [y0, y1] and (z1, z2) in the

support of (Z1, Z2).

5. As n → ∞, we have
√

nhk
1h

4−k
2 → ∞ when 2 ≤ k ≤ 4, log n√

nhk
1h7−k

2 h0

→ 0 when k = 4, 6,

and nh2r1
1 → 0, nh2r2

2 → 0, nh2r0
0 → 0.

6. X is bounded.

The assumption on h0, h1, and h2 can be satisfied, for example, if K0 is a second-order kernel,

K1 and K2 are sixth-order kernel functions with h0 ∝ n−1/3 and h1 = h2 ∝ n−1/11. The second-

order and sixth-order kernel functions can be taken from Muller (1984). Since g1n(y|z1, z2) is a

function of derivatives of K1, and derivative functional converge relatively slowly, the higher-

order kernel for K1 is needed to insure sufficiently rapid convergence. Note that our model

is a special case of the single-index model, and the existence of the consistency estimators for

the index parameters has been proved by Yin and Cook (2005); hence the condition 3 can be

satisfied.

Our proof on the asymptotic expansion for all the estimators relies on three steps. The first

step consists of an expansion of Ĥ at an argument y, which is included in the proof of Lemma

A. The second step consists of the expansions of β̂ and γ̂, which is included in the proof of

Theorem 1 and 2. Finally, based on the expansions of β̂, γ̂ and Ĥ, we obtain the asymptotic

expression of µ̂(x). Because the argument used to prove Lemma 3 is essentially the same as

that in Lemma 2, Lemma 3 is stated without a proof.

Appendix B. Proof of Lemma A.

To prove Lemma A, we first need to prove the following four lemmas.

Lemma 1: Under the conditions on h0, h1 and h2 given in Appendix A, we have

(−1)k

h0h
k+1
1 h2

ES(Y, Z1, Z2)K0(
Y − y

h0

)K
(k)
1 (

Z1 − z1

h1

)K2(
Z2 − z2

h2

)

= {S(y, z1, z2)p(y, z1, z2)}(0k0) + Op(h
r0
0 + hr1

1 + hr2
2 ),

18

http://biostats.bepress.com/uwbiostat/paper327



where k = 0, 1, the derivatives S(r0+1,r1+1,r2+1)(y, z1, z2) exist and are uniformly bounded over

the support of Y, Z1 and Z2.

Proof of Lemma 1. See Horowitz (1996).

Lemma 2: Define

p̂(y, z1, z2) =
1

nh1h2h0

n∑
i=1

K0(
Yi − y

h0

)K1

(
X ′

iβ̂ − z1

h1

)
K2

(
X ′

iγ̂ − z2

h2

)
,

pn(y, z1, z2) =
1

nh1h2h0

n∑
i=1

K0(
Yi − y

h0

)K1

(
X ′

iβ − z1

h1

)
K2

(
X ′

iγ − z2

h2

)
,

and Γ(y, z1, z2, x) = −p(y, z1, z2) [q(z1, z2)− x] ,

where q(z1, z2) = E[X|Z1 = z1, Z2 = z2] and p(y, z1, z2) is the joint density function of

(Y, Z1, Z2). As n →∞, we have

p̂(y, x′β̂, x′γ̂) = pn(y, x′β, x′γ) + (β̂ − β)′Γ(0100)(y, x′β, x′γ, x)

+(γ̂ − γ)′Γ(0010)(y, x′β, x′γ, x) + op(γ̂ − γ) + op(β̂ − β).

Proof of Lemma 2. By the Taylor series expansion and the conditions on β̂ and γ̂, we

obtain that

p̂(y, x′β̂,x′γ̂)

=
1

nh1h2h0

n∑

i=1

K0(
Yi − y

h0
)K1

(
X ′

iβ − x′β
h1

)
K2

(
X ′

iγ − x′γ
h2

)

+
1

nh2
1h2h0

n∑

i=1

K0(
Yi − y

h0
)K(1)

1

(
(Xi − x)′β

h1

)
K2

(
(Xi − x)′γ

h2

)
(Xi − x)′(β̂ − β)

+
1

nh1h2
2h0

n∑

i=1

K0(
Yi − y

h0
)K1

(
(Xi − x)′β

h1

)
K

(1)
2

(
(Xi − x)′γ

h2

)
(Xi − x)′(γ̂ − γ)

+op(γ̂ − γ) + op(β̂ − β)

= pn(y, x′β,x′β) + pn1(y, x)′(β̂ − β) + pn2(y, x)′(γ̂ − γ) + op(γ̂ − γ) + op(β̂ − β), (6.1)

By Theorem 2.37 of Pollard (1984), we obtain supy,x|pn1(y, x)−Epn1(y, x)| = o[(log n)/(nh3
1h2h0)

1/2] →
0; by Lemma 1, we obtain that Epn1(y, x)−Γ(0100)(y, x′β, x′γ, x) = O(hr0

0 + hr1
1 + hr2

2 ). Hence,

it follows from the conditions on h0, h1 and h2 that

pn1(y, x)− Γ(0100)(y, x′β, x′γ, x) = op(1). (6.2)
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Similarly, we can obtain that

pn2(y, x)− Γ(0010)(y, x′β, x′γ, x) = op(1). (6.3)

The lemma 2 follows from (6.1), (6.2) and (6.3).

Lemma 3. Let ∆(z1, z2, x) = −p(z1, z2)[q(z1, z2)−x], Λ(y, z1, z2, x) = −G(y|z1, z2)∆(z1, z2, x),

p̂(z1, z2) =
1

nh1h2

n∑
i=1

K1

(
X ′

iβ̂ − z1

h1

)
K2

(
X ′

iγ̂ − z2

h2

)
,

pn(z1, z2) =
1

nh1h2

n∑
i=1

K1

(
X ′

iβ − z1

h1

)
K2

(
X ′

iγ − z2

h2

)
,

Ĝ(y, z1, z2) =
1

nh1h2

n∑
i=1

I(Yi ≤ y)K1

(
X ′

iβ̂ − z1

h1

)
K2

(
X ′

iγ̂ − z2

h2

)
,

Gn(y, z1, z2) =
1

nh1h2

n∑
i=1

I(Yi ≤ y)K1

(
X ′

iβ − z1

h1

)
K2

(
X ′

iγ − z2

h2

)
.

As n →∞, we have the following asymptotic expansions:

p̂(k0)(x′β̂, x′γ̂) = p(k0)
n (x′β, x′γ) + (β̂ − β)′∆(k+1,00)(x′β, x′γ, x)

+(γ̂ − γ)′∆(k10)(x′β, x′γ, x) + op(γ̂ − γ) + op(β̂ − β),

Ĝ(0k0)(y, x′β̂, x′γ̂) = G(0k0)
n (y, x′β, x′γ)− (β̂ − β)′Λ(0,k+1,00)(y, x′β, x′γ, x)

and −(γ̂ − γ)′Λ(0k10)(y, x′β, x′γ, x) + op(γ̂ − γ) + op(β̂ − β),

where k = 0, 1.

Lemma 4: Let %(y) = Eg1(y, Z1, Z2), G(y, z1, z2) = G(y|z1, z2)p(z1, z2),

ĝ1(y, z1, z2) =
∂Ĝ(y|z1, z2)

∂z1

p̂(z1, z2), Σ1(y) = −h(y)
E

[
g1(y, Z1, Z2)q

(10)(Z1, Z2)
]

%(y)
,

Σ2(y) = −h(y)
E

[
(H(y)− Z1)g1(y, Z1, Z2)q

(10)(Z1, Z2)σ
(1)(Z2)/σ(Z2)

]

%(y)
,

Ψn1(y) =
1

n2h1h2%(y)

n∑
j=1

n∑
i=1

{
h−1

0 K0(
Yi − y

h0

)

−h(y)p(10)(Z1j, Z2j)

p(Z1j, Z2j)
(I(Yi ≤ y)−G(y|Z1j, Z2j))

}
K1

(
Z1i − Z1j

h1

)
K2

(
Z2i − Z2j

h2

)
,
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and Ψn2(y) = − h(y)

n2h2
1h2%(y)

n∑
j=1

n∑
i=1

(I(Yi ≤ y)−G(y|Z1j, Z2j)) K
(1)
1

(
Z1i − Z1j

h1

)
K2

(
Z2i − Z2j

h2

)
.

Then we have the following asymptotic expansion:

∑n
j=1 p̂(y, Ẑ1j, Ẑ2j)∑n
j=1 ĝ1(y, Ẑ1j, Ẑ2j)

−
∑n

j=1 p(y, Z1j, Z2j)∑n
j=1 g1(y, Z1j, Z2j)

= Ψn1(y) + Ψn2(y) + Σ1(y)′(β̂ − β)

+Σ2(y)′(γ̂ − γ) + op(γ̂ − γ) + op(β̂ − β),

where Ẑ1j = X ′
jβ̂, Ẑ2j = X ′

j γ̂.

Proof of Lemma 4. Since ĝ1(y, z1, z2) = Ĝ(010)(y, z1, z2)− bG(y,z1,z2)bp(10)(z1,z2)
bp(z1,z2)

, g1(y, z1, z2) =

G(010)(y, z1, z2)− G(y,z1,z2)p(10)(z1,z2)
p(z1,z2)

, and p(y, z1, z2) = −h(y)g1(y, z1, z2), we obtain the following

asymptotic expansion:

∑n
j=1 p̂(y, Ẑ1j, Ẑ2j)∑n
j=1 ĝ1(y, Ẑ1j, Ẑ2j)

−
∑n

j=1 p(y, Z1j, Z2j)∑n
j=1 g1(y, Z1j, Z2j)

≈ 1

n%(y)

n∑
j=1

{
p̂(y, Ẑ1j, Ẑ2j)− p(y, Z1j, Z2j)

}

+
h(y)

n%(y)

n∑
j=1

{
Ĝ(010)(y, Ẑ1j, Ẑ2j)−G(010)(y, Z1j, Z2j)

+
G(y, Z1j, Z2j)p

(10)(Z1j, Z2j)

(p(Z1j, Z2j))
2

(
p̂(Ẑ1j, Ẑ2j)− p(Z1j, Z2j)

)

−G(y, Z1j, Z2j)

p(Z1j, Z2j)
(p̂(10)(Ẑ1j, Ẑ2j)− p(10)(Z1j, Z2j))− p(10)(Z1j, Z2j)

p(Z1j, Z2j)
(Ĝ(y, Ẑ1j, Ẑ2j)−G(y, Z1j, Z2j))

}

By combining Lemmas 2 and 3 with the conditions on h0, h1, h2 and after some tedious com-

putations, we obtain Lemma 4.

Proof of Lemma A. Note that h(u) = −p(u, z1, z2)/g1(u, z1, z2). Hence by the result in

Lemma 4 and (2.8) in the paper, we have

Ĥ(y)−H(y) = −
∫ y

y0

Ψn1(u)du−
∫ y

y0

Ψn2(u)du− (β̂ − β)′
∫ y

y0

Σ1(u)dy

−(γ̂ − γ)′
∫ y

y0

Σ2(u)du + op(γ̂ − γ) + op(β̂ − β). (6.4)

Interchanging the summations, following the same line for (A.15) in Carroll et al., 1997) and
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using Lemma 1 , we obtain the following asymptotic expansion:

Ψn1(y) + Ψn2(y) ≈ 1

n%(y)

n∑
i=1

p(Z1i, Z2i)h
−1
0 K0(

Yi − y

h0

) +
h(y)

n%(y)

n∑
i=1

g1(y, Z1i, Z2i)

−2h(y)

n%(y)

n∑
i=1

p(10)(Z1i, Z2i) (I(Yi ≤ y)−G(y|Z1i, Z2i)) (6.5)

uniformly over y ∈ [y0, y1]. Define Υn(y) = 1
n

∑n
i=1

∫ y

y0

1
h0%(u)

K0(
Yi−u
h0

)p(Z1i, Z2i)du and ϑn(y) =

1
n

∑n
i=1 I(y0 ≤ Yi ≤ y)p(Z1i, Z2i)/%(Yi). It can be shown that

EY |Z1,Z2 [Υn(y)− ϑn(y)] = O(hs
0). (6.6)

Since EYi|Z1i,Z2i

[∫ y

y0

1
h0%(u)

K0(
Yi−u
h0

)p(Z1i, Z2i)du− I(y0 ≤ Yi ≤ y)p(Z1i, Z2i)/%(Yi)
]2

= O(h0), by

Theorem 2.37 of Pollard (1984), we have

sup
y∈[y0,y1]

‖Υn(y)− ϑn(y)− E[Υn(y)− ϑn(y)]‖ = o(h
1/2
0 (log n)/n1/2) (6.7)

almost surely. Combining (6.6) and (6.7) with the condition on h0, we obtain that Υn(y) −
ϑn(y) = op(n

−1/2) uniformly over y ∈ [y0, y1]. Therefore, Υn(y) can be replaced by ϑn(y). Then,

by (6.4) and (6.5), Lemma A follows.

Appendix C. Proof of Theorems 1 and 2

First, we consider the asymptotic expression form of β̂−β. Using the expression of β̂, given

by (2.11) and the assumed model, given by (1.1), we can obtain the following expression:

1

n

n∑
i=1

X iX
′
i

σ2(X ′
iγ̂)

β̂ − 1

n

n∑
i=1

X iX
′
i

σ2(X ′
iγ)

β

=

(
1

n

n∑
i=1

X iĤ(Yi)

σ2(X ′
iγ̂)

− 1

n

n∑
i=1

X iH(Yi)

σ2(X ′
iγ)

)
+

1

n

n∑
i=1

X iεi

σ(X ′
iγ)

. (6.8)

Using Taylor’s expansion, and the results, 1
n

∑n
i=1

XiX
′
i(σ

2)(1)(X′
iγ)εi

σ3(X′
iγ)

= Op(n
−1/2) and γ̂ − γ =

op(1), we get the following asymptotic expansion:

1

n

n∑
i=1

X iX
′
i

σ2(X ′
iγ)

(
β̂ − β

)
=

1

n

n∑
i=1

X i

σ2(X ′
iγ)

(
Ĥ(Yi)−H(Yi)

)
+

1

n

n∑
i=1

X iεi

σ(X ′
iγ)

+op(n
−1/2) + op(γ̂ − γ) + op(β̂ − β). (6.9)
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Substituting (3.1) into (6.9) and interchanging the summations, we get:

β̂ − β = A−1
1

1

n

n∑
i=1

$i −A−1
1 A2(γ̂ − γ) + o(n−1/2) + op(γ̂ − γ) + op(β̂ − β), (6.10)

where A1 = E X(X+π1(Y ))′

σ2(Z2)
, A2 = E

[
Xπ2(Y )′
σ2(Z2)

]
, and $i is defined in Section 2.

Now we consider the asymptotic expression form of γ̂. Since the estimate of γ, γ̂, solves the

following equation:

0 =
1

n

n∑
i=1

{
(Ĥ(Yi)−X ′

iβ̂)2 − σ2(X ′
iγ̂)

}
X i,

using the Taylor’s expansion, we can re-write the above expression as follows:

0 =
1

n

n∑
i=1

{
(H(Yi)−X ′

iβ)2 − σ2(X ′
iγ)

}
X i +

2

n

n∑
i=1

(H(Yi)−X ′
iβ)(Ĥ(Yi)−H(Yi))X i

− 2

n

n∑
i=1

(H(Yi)−X ′
iβ)X iX

′
i

(
β̂ − β

)
− 1

n

n∑
i=1

(
σ2

)(1)
(X ′

iγ)X iX
′
i (γ̂ − γ) + o(n−1/2)

≡ Dn1 + Dn2 + Dn3 + Dn4 + o(n−1/2). (6.11)

By the fact β̂−β = op(1) and 1
n

∑n
i=1(H(Yi)−X ′

iβ)X iX
′
i = Op(n

−1/2), we have the following

result: Dn3 = o(n−1/2). Substituting (3.1) into Dn2, interchanging the summations and using

the large number theorem, we have the result:

Dn2 =
2

n

n∑
i=1

ς i − 2A3(β̂ − β)− 2E [σ(Z2)εXπ′
2(Y )] (γ̂ − γ) + o(n−1/2),

where ς i, A3 and π2(y) are defined in Section 2. Substituting the results on Dn2 and Dn3 into

(6.11), we obtain the following asymptotic expansion:

E
[(

σ2
)(1)

(Z2)XX ′ + 2Xσ(Z2)επ
′
2(Y )

]
(γ̂ − γ)

=
1

n

n∑
i=1

ζi +
2

n

n∑
i=1

ς i − 2A3(β̂ − β) + op(n
−1/2), (6.12)

where ζi is defined in Section 2. Substituting (6.10) into (6.12), Theorem 3 follows. Theorem

2 follows by substituting (6.12) into (6.10).

Appendix D. Proof of Theorem 4
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Let υ(x) = (H−1)(1) (x′β + σ(x′γ)ε), υi(x) = (H−1)(1) (x′β + σ(x′γ)εi), ξi(x) = x′β +

σ(x′γ)εi and µn(x) = 1
n

∑n
i=1 υi(x). We have the expression of µ̂(x)− µn(x):

µ̂(x)− µn(x) =
1

n

n∑
i=1

υi(x)x′
(
β̂ − β

)
+

1

n

n∑
i=1

υi(x)

{
σ(x′γ̂)

Ĥ(Yi)−X ′
iβ̂

σ(X ′
iγ̂)

−σ(x′γ)εi}+
1

n

n∑
i=1

{
Ĥ−1 (ξi(x))−H−1 (ξi(x))

}
+ op(n

−1/2)

≡ EE1 + EE2 + EE3 + op(n
−1/2). (6.13)

By the large number theorem, it is easy to know EE1 = E [(υi(x)] x′
(
β̂ − β

)
. Now we consider

EE2. Using the expansion,

σ(x′γ̂)
Ĥ(Yi)−X ′

iβ̂

σ(X ′
iγ̂)

− σ(x′γ)εi =

[
− σ(x′γ)

σ(X ′
iγ)

σ(1)(X ′
iγ)X ′

i + σ(1)(x′γ)x′
]

(γ̂ − γ) εi

+
σ(x′γ)

σ(X ′
iγ)

(
Ĥ(Yi)−H(Yi)

)
− σ(x′γ)

σ(X ′
iγ)

X ′
i

(
β̂ − β

)
+ op(n

−1/2), (6.14)

we get the following the result for EE2:

EE2 = E

[
υi(x)

(
σ(1)(x′γ)x− σ(x′γ)σ(1)(X ′

iγ)

σ(X ′
iγ)

X i

)′
εi

]
(γ̂ − γ)

−E

[
υi(x)σ(x′γ)

σ(X ′
iγ)

X ′
i

](
β̂ − β

)
+

1

n

n∑
i=1

υi(x)σ(x′γ)

σ(X ′
iγ)

(
Ĥ(Yi)−H(Yi)

)
+ op(n

−1/2).

Using the Taylor expansion and (3.4), we have the following expansion:

Ĥ−1(y)−H−1(y) = (h
(
H−1(y)

)
)−1

(
H

(
Ĥ−1(y)

)
−H

(
H−1(y)

))
+ op(n

−1/2)

= (h
(
H−1(y)

)
)−1

(
H

(
Ĥ−1(y)

)
− Ĥ

(
Ĥ−1(y)

))
+ op(n

−1/2)

= −(h
(
H−1(y)

)
)−1 1

n

n∑
i=1

ϕH
i (H−1(y)) + op(n

−1/2),

where ϕH
i (·) is defined in Theorem 3. Hence we obtain the following expression of EE3:

EE3 = − 1

n

n∑
i=1

E
[
(h (κ(x)))−1δi (κ(x))

]
+ E

[
(h (κ(x)))−1π′

1(Y )
] (

β̂ − β
)

+E
[
(h (κ(x)))−1π′

2(Y )
]
(γ̂ − γ) + op(n

−1/2).
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By the results on EE1, EE2, EE3 and (3.1), we re-write µ̂(x)− µn(x) as follows:

µ̂(x)− µn(x) = B1(x)′
(
β̂ − β

)
+ B2(x)′ (γ̂ − γ)

+
1

n

n∑
i=1

E

[
υ(x)

σ(x′γ)

σ(Z2)
δi(Y )− (h (κ(x)))−1δi (κ(x))

]
,

where B1(x) and B2(x) are defined in Section 2. Then by the definition of µn(x), (3.2) and

(3.3), Theorem 4 follows.
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