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A Causal Inference Approach for Constructing
Transcriptional Regulatory Networks

Biao Xing and Mark J. van der Laan

Abstract

Transcriptional regulatory networks specify the interactions among regulatory genes
and between regulatory genes and their target genes. Discovering transcriptional
regulatory networks helps us to understand the underlying mechanism of complex
cellular processes and responses. In this paper, we describe a causal inference ap-
proach for constructing transcriptional regulatory networks using gene expression
data, promoter sequences and information on transcription factor binding sites.
The method rst identies active transcription factors under each individual exper-
iment using a feature selection approach similar to Bussemaker et al. (2001),
Keles et al. (2002) and Conlon et al. (2003). Transcription factors are viewed
as ‘treatments’ and gene expression levels as ‘responses’. For every transcription
factor and gene pair, a marginal structural model is built to estimate the causal
eect of the transcription factor on the expression level of the gene. The model
parameters can be estimated using either the G-estimation procedure or the IPTW
estimator. The p-value associated with the causal parameter in each of these mod-
els is used to measure how strongly a transcription factor regulates a gene. These
results are further used to infer the overall regulatory network structures. We car-
ried out simulations to assess the performance of our method in the estimation of
a ctitious regulatory network. Our analysis of yeast data suggests that the method
is capable of identifying signicant transcriptional regulatory interactions and the
corresponding regulatory networks.



1 Introduction

Transcriptional regulatory networks specify the interactions among regula-
tory genes and between regulatory genes and their target genes. Discover-
ing transcriptional regulatory networks is an important scientific task since
it helps us to understand the underlying mechanism of complex cellular
processes and responses.

There is a rich literature in methods for inferring regulatory networks.
Lee et al. (2002) and Bar-Joseph et al. (2003) used the experiment-based
genome-wide location analysis to investigate how yeast transcription factors
(TF) bind to promoter sequences across genome, then constructed tran-
scription factor-promoter binding networks to infer transcriptional regula-
tory networks. Location analysis experiments provide in vivo evidence of
transcription factor binding to genes. However, physical binding does not di-
rectly imply transcriptional regulatory activities. Moreover, location analy-
sis experiments are often restricted to a certain growth condition. As a
result, transcription factor-promoter binding network structures specific to
other growth conditions may not be observed.

As microarray data on gene expression programs become available, var-
ious statistical data mining tools have been devised for discovering (often
more broadly defined) gene networks, for example, reverse engineering ap-
proaches (Somogyi et al., 1997; Liang et al., 1998; D’Haeseleer et al., 2000),
differential equations (Chen et al., 1999; D’Haeseleer et al., 1999), Bayesian
networks (Friedman et al., 2000; Yoo et al., 2002), etc. These methods often
require large number of time-course data or rely on very greedy computa-
tional strategies.

Some other computational methods attempt to integrate gene expres-
sion data, DNA sequences and functional annotations into a comprehensive
framework for discovering transcriptional regulatory networks (Pilpel et al.,
2001; Wang et al., 2002; Segal et al., 2003; Beer and Tavazoie, 2004). These
methods allow one to infer motif-to-gene or to some extent gene-to-gene
regulatory networks.

Xing and van der Laan (2005) described a statistical approach for con-
structing transcriptional regulatory networks using gene expression, pro-
moter sequence and transcription factor binding site data. This approach
first identifies transcription factors that are significantly associated with
changes in gene expression profile under each experiment condition, then
estimates the strength with which a regulatory gene regulates a potential
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target gene, and finally averages evidence across experiments to infer the
transcriptional regulatory network structures. This method employs a naive
normal mixture model to estimate the strength with which a regulatory gene
regulates a potential target gene. The normal mixture model is chosen for
computational convenience. There are some concerns with the appropri-
ateness of using a normal or other mixture models, e.g., the data may not
appear to be normally distributed and consequently the model estimation
may be poor. In addition, the mixture model is built on the transformed
gene expression data for each transcription factor separately. There is not
enough control for the possible confounding effects of other transcription
factors on the estimated transcriptional regulatory interactions between the
transcription factor under analysis and its potential target genes.

Here we describe an alternative approach based on causal inference
methodology. We can view each gene as a subject and each transcription
factor analogous to a ‘treatment’, which may have direct causal effects on
the ‘responses’ (i.e., expression levels) of its target genes whose regulatory
region is able to be bound by the transcription factor when it is active in an
experiment. For genes whose regulatory region does not contain the tran-
scription factor binding sites, there is no direct causal effect of the transcrip-
tion factor on the expressions of those genes. More specifically, a ‘treatment’
variable is created for each transcription factor and coded into 1 when the
transcription factor is active and 0 when the transcription factor is inactive
in an experiment. Then for each experiment we will have a vector of ‘treat-
ments’ associated with all the transcription factors, some of which may be
active and some may be not. For different experiments, there will be dif-
ferent combinations of ‘treatments’ as the active or inactive status of the
transcription factors can be different across experiments. The changes in
the expression level of a gene across experiments are seen as results from
different combinations of ‘treatments’ under different experiment conditions.

It should be noted that here a ‘treatment’ is not a usual treatment as we
see in a controlled clinical trial, which is known prior to study and highly
manipulable. In a typical microarray gene expression experiment, the tran-
scription factor activities may not be deliberately controlled at all or may
be under only limited manipulation. To our purpose of constructing tran-
scriptional regulatory networks, we will need to first estimate the activities
of transcription factors in a experiment and treat the transcription factor as
‘treatments’ that are causally responsible for the changes in gene expression
levels.
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Under this framework, we describe in the next section a causal inference
approach for constructing transcriptional regulatory networks using gene
expression data, promoter sequences and transcription factor binding sites.
The method estimates ‘treatment’ code associated with each transcription
factor under each experiment condition, then builds a marginal structural
model for each gene and transcription factor pair to model the causal effect
of the transcription factor on the expression level of the gene. Methods
for estimating the model and inferring regulatory network structures are
described. We conduct simulation studies to assess the performance of the
proposed method in the estimation of a fictitious regulatory network. The
results are summarized in Section 3. In Section 4, we apply the method to
the yeast data to study the yeast transcriptional regulatory network. We
conclude with a discussion of the uses and limitations of our method in
Section 5.

2 Method

2.1 A brief introduction to causal inference methods

In causal inference, one concerns with estimation of a causal effect (a para-
meter with a causal interpretation) of a variable that can be manipulated
(e.g., a treatment) on an outcome of interest, possibly adjusted for other
variables. Robins (1986, 1999a,b), Robins et al. (2000) and van der Laan
and Robins (2002) described causal inference methods for estimating the
average marginal causal effect of treatment A on outcome Y adjusted for
covariates V ⊂ W , based on longitudinal data involving time-independent
or time-dependent treatments. The marginal causal effects are defined using
the concept of counterfactual. The counterfactual Ya represents the random
variable Y one would have observed, if, possibly contrary to the fact, one
would have ‘assigned’ A = a, where a ∈ A and A denotes a set of possible
treatments.

For a point treatment study, which is a special case of longitudinal study,
the observed data structure is O = (A, YA,W ), where W is a set of baseline
covariates. The full data structure is X = ((Ya : a ∈ A),W ), where Ya is
the counterfactual. A marginal structural model (MSM) can be used to
estimate the average marginal causal effect of A on Y (i.e., the effect of a
on E(Ya|V )) adjusted for V ⊂ W as follows:

E(Ya|V ) = m(a, V |β).
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For example, we may specify a linear model like m(a, V |β) = β0+β1a+βvV ,
where β0 is the intercept, β1 is the parameter for the marginal causal effect,
βv is a vector of regression coefficients, V is a subset of baseline covariates
to be adjusted. Let εa(β) = Ya − m(a, V |β). Then E(εa(β)|V ) = 0 for
each a ∈ A. The estimation of causal parameter β1 requires the assumption
of no unobserved confounders, i.e., g(A|X) = g(A|W ), where g is a prob-
ability density (or mass) function, representing the treatment assignment
mechanism. In other words, this assumption states that treatment A is con-
ditionally independent of the counterfactual outcomes given W , i.e., A is
randomized within each stratum of W .

2.2 A causal inference method for constructing transcrip-
tional regulatory networks

2.2.1 Data

Consider a particular organism such as the budding yeast. Let S(j, l) ∈
{A,C, T,G} denote the DNA base pair at the l-th position of the promoter
sequence of the j-th gene. Let S =

(
S(j, l) : j = 1, . . . , J, l = 1, . . . , L(j)

)
denote all the promoter regions for J genes, where L(j) is the length of the
promoter sequence of the j-th gene. For simplicity, we can let L(j) = L for
all j = 1, . . . , J .

Let M = (M(1), . . . , M(K)) be a vector of DNA binding motifs, possi-
bly of variable lengths, which correspond to the binding sites of K known
transcription factors. Suppose we know the correspondence between a tran-
scription factor k and its producer gene g(k), for k = 1, . . . , K.

Consider now a particular gene expression experiment. Let Y = (Y (j) :
j = 1, . . . , J) be the observed gene expression vector. Given data of S,
M and Y , we can estimate the set of transcription factors that are ac-
tive under the experiment condition (where a transcription factor is ‘active’
refers to the situation in which the DNA binding site of the transcription
factor is significantly associated with the changes in the genome-wide gene
expression values), using linear regression with model selection or multiple
testing procedures as described in Bussemaker et al. (2001), Keles et al.
(2002), Conlon et al. (2003) and Xing and van der Laan (2005). These
procedures provide ways to transform single-experiment gene expression
data (Y ), promoter sequences (S) and transcription factor binding sites
(M) into a vector of ‘treatment’ codes indicating which transcription fac-
tor is active or not in an experiment. Denote the ‘treatment’ vector by
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A = φ(Y, S, M) = (A(k) : k = 1, . . . , K) ∈ {0, 1}K , where φ is a mapping
function corresponding to a procedure used to estimate A, A(k) = 1 means
the k-th transcription factor is active under the current experiment condi-
tion and A(k) = 0 otherwise. So, after having obtained this transformation,
we define our data as (A, Y, S, M).

Now suppose we have a collection of n gene expression experiments under
different conditions, possibly conducted for independent study purposes.
We assume that we can view these n gene expression experiments as n
i.i.d. draws from some population data generating distribution. Under this
assumption, we have n i.i.d. observations (Ai, Yi), i = 1, . . . , n and fixed
sequence data S and M .

2.2.2 A causal inference model

We view the data analogous to data from a point treatment study, where
the ‘treatment’ is whether a transcription factor is active or not. Consider a
nonparametric marginal structural model which estimates the causal effect
of transcription factor k on gene expression j for each j = 1, . . . , J and
k = 1, . . . , K.

Let (j, k) be given. We now define a counterfactual gene expression
outcome Ya(j, k), which represents the expression level of gene j one would
have observed if one had set/assigned A(k) = a, a ∈ {0, 1}. Here Y0(j, k)
can be thought of as the expression of gene j one would have observed if one
had knocked out gene g(k) (and thereby eliminating transcription factor k),
or controlled transcription factor k to be inactive in the sense of binding and
regulation, while Y1(j, k) can be thought of as the expression value of gene
j one would have observed if one had controlled transcription factor k to be
actively involved in binding and regulation under the experiment condition.
Define β1(j, k) = EP [Y1(j, k)−Y0(j, k)]. Such a parameter β1(j, k) measures
a marginal causal effect of A(k) on gene expression Y (j).

Let
G(k1, k2) = I(M(k1) ⊂ S(g(k2)),

that is, G(k1, k2) equals 1 if the binding site of transcription factor k1 is
contained in the promoter region of gene k2, and it equals 0 otherwise. Let
G = (G(k1, k2) : k1 = 1, . . . , K, k2 = 1, . . . , K) denote the corresponding
K ×K matrix. Note that matrix G represents a directed graph defined by
applying the rule “if G(k1, k2) = 1, then draw an arrow from k1 to k2” for
each (k1, k2) ∈ {1, . . . , K}2. From this graph G we can obtain a K × K
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potential transcription factor connectivity matrix, denoted by

δ =
(
δ(k1, k2) = I(There is a path from k1 to k2|G) : (k1, k2) ∈ {1, . . . , K}2

)
.

Let W (j, k) =
(
A(l) : l ∈ {1, . . . ,K}, l 6= k and δ(k, l) = 0

)
be the

sub-vector of A corresponding to all transcription factors which are not
on the potential causal pathway from A(k) to Y (j), and are therefore po-
tential confounders of A(k). We now think of the full data as X(j, k) =(
Y0(j, k), Y1(j, k), W (j, k)

)
. We link the observed data to this counterfac-

tual data by the relation:

O(j, k) =
(
Y (j) = YA(j, k), A(k),W (j, k)

)
.

We assume there are no unmeasured confounders, in other words, A(k)
is conditionally independent of the counterfactual gene expressions

(
Y0(j, k),

Y1(j, k)
)

given W (j, k):

P (A(k) = 1 | Y0(j, k), Y1(j, k),W (j, k)) = P (A(k) = 1 | W (j, k)).

If there would be variables affecting the absence/presence of transcription
factor k (i.e., A(k)), which are not included in W (j, k), then this assumption
could be violated. In addition, we assume the (j, k)-specific experimental
treatment assignment assumption holds, which states that 0 < P (A(k) =
1 | W (j, k)) < 1 a.e. This now defines a nonparametric marginal structural
model M(j, k) for the data structure O(j, k), and the parameter of interest
is given by β1(j, k).

We consider a simple (j, k)-specific nonparametric marginal structural
model as follows

E(Ya(j, k)) = β0(j, k) + I(M(k) ⊂ S(j)) · β1(j, k) · a, (1)

where a ∈ {0, 1} and β1(j, k) is the causal parameter. The indicator function
I(M(k) ⊂ S(j)) constrains the model to estimate the causal parameter
only when there is a possible direct effect of transcription factor k on gene
expression j.

We are interested in estimating the causal parameter β1(j, k) for every
gene and every transcription factor. Several strategies have been proposed
for the estimation of the marginal causal parameters: (1) the G-computation
estimation procedure (Robins, 1986, 1987), which requires the model for
EFX

(Y |A,W ) be correctly specified (where FX represents the full data dis-
tribution); (2) the inverse probability of treatment weighted (IPTW) es-
timation procedure (Robins, 1999a,b; Robins et al., 2000; van der Laan
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and Robins, 2002), which requires the treatment mechanism (g(A|W )) be
correctly specified; and (3) the double robust (DR) estimation procedure
(Robins, 2000; van der Laan and Robins, 2002), which requires either the
model for EFX

(Y |A,W ) or the model for g(A|W ) is correctly specified.
Since our analysis involves large scale genomic data, we may use the G-
computation estimator or the IPTW estimator for computational ease.

2.2.3 The G-Computation estimation procedure

Let P and Pn denote the true and empirical data distribution, respectively.
Since

EP (Ya(j, k)) = E
[
E

(
Y (j)|A(k) = a,W (j, k)

)]
,

we can estimate E(Ya(j, k)) by

EPn(Ê(Y (j)|A(k) = a,W (j, k)) =
1
n

n∑

i=1

Ê(Yi(j)|Ai(k) = a,Wi(j, k)).

Then the causal parameter β1(j, k) = EP [Y1(j, k)−Y0(j, k)] is estimated by

β̂1(j, k) = EPn

[
Ê

(
Y (j)|A(k) = 1,W (j, k)

)− Ê
(
Y (j)|A(k) = 0,W (j, k)

)]
.

The G-Computation estimation requires us to assume a suitable model
for E

(
Y (j)|A(k) = a,W (j, k)

)
. For simplicity, we may assume a linear

model of the form as follows:

E(Y (j)|A(k) = a,W (j, k)) = M(a,W (j, k)|γ) = γT Za,

where γ is the coefficients and Za = (1, a,W (j, k))T is a vector. Sim-
ilarly, we write Z1 = (1, 1,W (j, k))T , Z0 = (1, 0,W (j, k))T , and Z =
(1, A(k),W (j, k))T .

We first estimate the model based on the observed data, that is,

Ê(Y (j)|A(k),W (j, k)) = M̂(A(k),W (j, k)|γ̂) = γ̂T Z.

Then we estimate Ê(Y (j)|A(k) = 1,W (j, k)) and Ê(Y (j)|A(k) = 0,W (j, k))
using the above estimated model but using Z1 and Z0 instead of Z.

To estimate V ar(β̂1(j, k)), i.e., the variance of the estimated causal ef-
fect, we need to estimate the influence curve of the estimator β̂1(j, k). We
describe the estimation procedure below. For notation convenience, we drop
the index for j and k.

7
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Let M(a,W |γ) be the true data generating model, and M̂(a,W |γ̂) be
the empirically estimated model. Then we can write β1 = EP [M(1,W ) −
M(0, W )] and β̂1 = EPn [M̂(1, W )− M̂(0,W )].

Then

β̂1 − β1
∼= EPn−P [M(1,W )−M(0,W )]

+EP [(M̂ −M)(1,W )− (M̂ −M)(0,W )]

=
1
n

n∑

i=1

[M(1,W )−M(0,W )]− E[M(1,W )−M(0,W )]

+[
1
n

n∑

i=1

(Ziεi(γ))T ][E(ZZT )]−1E(Z1 − Z0),

where ε(γ) = Y − γ̂T Z.

β̂1 is a consistent estimator for β1. Under regularity condition, β̂1 − β1

is asymptotically linear with influence curve being

IC(O) = (M(1,W )−M(0,W ))−E(M(1, W )−M(0,W ))
+(Zε(γ))T [E(ZZT )]−1E(Z1 − Z0).

So, √
n(β̂1 − β1) → N (0, σ2 = V ar(IC)).

Note IC(Oi) can be estimated by

ÎC(Oi) = (M̂(1,Wi)− M̂(0,Wi))− 1
n

n∑

i=1

(M̂(1,Wi)− M̂(0,Wi))

+(Ziεi(γ))T

[
1
n

n∑

i=1

(ZiZ
T
i )

]−1 [
1
n

n∑

i=1

(Z1i − Z0i)

]
,

and σ2 can be estimated by

σ̂2 = V̂ ar(IC) =
1
n

n∑

i=1

(
ÎCi − 1

n

n∑

i=1

ÎCi

)2

.

The Wald test statistic for H0 : β1 = 0 is

T =
√

nβ̂1

σ̂
.
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2.2.4 The IPTW estimation procedure

The IPTW estimator is constructed by the following estimating function:

Dh(O|β, g) =
h(A, V )ε(β)

g(A|W )
, (2)

where h is a vector function of A and V , and g is a conditional distribution of
A given W (i.e., treatment mechanism). It is shown that, under the assump-
tion of no unobserved confounders (NUC) and the experimental treatment
assignment (ETA) assumption, the above estimating function is unbiased
for β, i.e., E(Dh(O|β, g)) = 0 (Neugebauer and van der Laan, 2002).

As suggested by Robins (1999b), a sensible choice of h is h(A, V ) =
g(A|V ) ∂

∂β m(A, V |β). Consequently, the estimate of β can be obtained by

regressing Y over A with weights wt = g(A|V )
g(A|W ) . For example, if we spec-

ify a marginal structural model as (1), we may simply choose h(A) =
g(A) ∂

∂β m(A|β). We then estimate β using weighted least square estima-

tion by regressing Y over A with weights wt = g(A)
g(A|W ) .

To estimate the weight, we need to model the treatment mechanism
g(A|W ). For our particular problem, A is binary with A = 1 if the tran-
scription factor under study is active and A = 0 otherwise. A convenient
choice of the model for g(A|W ) is the logistic regression model, for example,

logit
(
g(A(k) = 1|W (j, k) = w(j, k))

)
= γ0 +

∑

(m: A(m)∈W (j,k))

γmA(m). (3)

So, the estimated weight is wti = ĝ(Ai(k)=1)
ĝ(Ai(k)=1|Wi(k)=wi(k)) for i = 1, . . . , n,

where ĝ(Ai(k) = 1|Wi(k) = wi(k)) is estimated using Equation (3) and
ĝ(Ai(k) = 1) = 1

n

∑n
i I(Ai(k) = 1).

2.2.5 Inference on the regulatory network structures

After fitting the causal marginal structural model (1) for every gene and
every transcription factor, we can obtain a J by K p-value matrix, P , whose
element is defined by

Pjk =
{

p-value w.r.t the test of H0 : β1(j, k) = 0 if M(k) ⊂ S(j),
1 if M(k) 6⊂ S(j).

(4)

9

Hosted by The Berkeley Electronic Press



The J by K transcriptional regulatory interaction matrix (B) can be
estimated by

B̂jk = I(Pjk ≤ p) for j = 1, . . . , J and k = 1, . . . , K, (5)

where p is a user specified p-value threshold (e.g., p = 0.001).

Note B̂jk = 1 may be interpreted as that the marginal causal effect
of the k-th transcription factor on the j-th gene is significantly different
from zero. Therefore, we infer that there is a transcriptional regulatory
interaction between the k-th transcription factor and the j-th gene.

We then can use the methods described in Lee et al. (2002) and Xing
and van der Laan (2005) to identify network motifs and assemble the overall
regulatory network.

3 Simulation Studies

We conduct simulations to show how the proposed computational approach
performs in re-constructing the underlying regulatory network structure.
The parameter of interest is the transcriptional regulatory interaction ma-
trix B, which may be regarded as a 2-dimensional representation of the
underlying network. Note that B is constructed in simulation studies but
not known in practice.

3.1 Constructing a fictitious regulatory network

We consider a fictitious transcriptional regulatory network consisting of 10
transcription factors and 90 genes. For simplicity, suppose that five of the
transcription factors are inducers and the remaining five are repressors. Also
suppose that one-third of the genes are regulated by at least one inducer but
no repressors, another one-third regulated by at least one repressor but no
inducers, and the remaining one-third regulated by none of the 10 tran-
scription factors. We randomly construct a binary-valued transcriptional
regulatory interaction matrix B, which satisfies the above condition.

3.2 Constructing a fictitious motif abundance matrix

Next we construct a fictitious motif abundance matrix X, which indicates
the presence or absence of binding sites of the 10 fictitious transcription
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factors in the promoter sequences of each gene. Note that X is available in
practice based on sequence data M and S. A necessary condition for the
k-th transcription factor transcriptionally regulates the j-th gene is that the
j-th gene must have at least one binding site for the k-th transcription factor
in its promoter region. In other words, Bjk = 1 implies that Xjk = 1. It is
also true that Xjt = 0 implies that Bjk = 0. However, when Xjk = 1, Bjk

may be 1 or 0. We regard the situation that Bjk = 0 and Xjk = 1 (i.e. a
transcription factor does not regulate a gene even though the gene promoter
is abundant with binding sites of the transcription factor) as systematic
noise in the motif abundance matrix.

We use the following rules to construct the motif abundance matrix X:

• If Bjk = 1, then Xjk = 1;

• If Bjk = 0, then Xjk ∼ Bernoulli {0, 1} with P (Xjk = 1) = δ.

We consider three values for δ, i.e., δ = 0.10, 0.20, 0.30, representing different
levels of systematic error in the motif abundance matrix X.

3.3 Simulating gene expression data for different conditions

Next we generate data that resemble the situation that we have a collection
of n experiments. Each experiment is seen as a realization of certain part of
the true underlying regulatory network.

To do so, for each i = 1, . . . , n, we draw a random subset τ(i) ⊆
{1, . . . , K}, with a random size |τ(i)| ∼ Uniform {3, . . . , 7}.

The fictitious gene expression data are generated using a multiple linear
model as follows

Yji = β0 +
∑

k∈τ(i)

βtXjk + εji,

where j indexes genes, i indexes experiments, k indexes transcription factors,
β’s are coefficients, εj is the gene-specific random error, E(εj) = 0, and τ(i)
is the set of transcription factors that are active under the i-th experiment.

For simplicity, we assume β0 = 0, ~βt = (0.25, 0.30, 0.35, 0.40, 0.45, -0.25,
-0.30, -0.35, -0.40, -045), and εj = ε ∼ N(0, σ2). We consider three values
for σ, i.e., σ = 0.25, 0.50, 0.75, representing different levels of random errors
in microarray measurements.
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We estimate B̂ based on the generated data and compute the overall
error rate and false positive rate as defined in Section 3.4. We repeat the
procedures 100 times and get average estimates of the error rates.

3.4 Error in estimation

To assess the error in estimation, we define the overall error rate (OER),
the false positive rate (FPR) and the false negative rate (FNR) as follows
to indicate the overall accuracy, node accuracy and node completeness re-
spectively:

OER =
1

J ×K

∑

j,k

I(Bjk 6= B̂jk),

FPR =
∑

j,k

I((Bjk = 0) and (B̂jk = 1))/
∑

j,k

I(B̂jk = 1),

FNR =
∑

j,k

I((Bjk = 1) and (B̂jk = 0))/
∑

j,k

I(B̂jk = 0).

3.5 Simulation results

The simulation results (using the IPTW estimation) are shown in Table
1, where ε ∼ N(0, σ2) with σ = 0.25, 0.5, 0.75 indicates increasing level of
random error in gene expression measurements, and δ = 0.1, 0.2, 0.3 indi-
cates increasing level of systematic error in the constructed motif abundance
matrix X. Three sample sizes (n=50, 100, 200) are used.

We see that the all the OER, FPR and FNR increase as the systematic
error increases and decrease as the sample size increases. The OER and FNR
also increase as the random error increases. The FPR may also increase as
the random error increases but the trend is not consistent. When the sys-
tematic error and random error are small and the sample size is moderately
large, the overall error rate, the false positive rate and the false negative rate
are reasonably small. In real world, we do not know the magnitude of the
systematic error with respect to the relationship between motif abundance
and transcriptional regulatory interaction. If the systematic error is very
large, we would not expect some of the motif detection methods (Busse-
maker et al., 2001; Keles et al., 2002; Conlon et al., 2003) to work well.
Successful results from these studies imply that the assumption of a small
or moderate systematic error may be realistic in real data analysis.
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[Table 1 about here.]

4 Data Analysis

We apply our method to study the transcriptional regulatory network in S.
Cerevisiae (budding yeast) based on analysis of a large collection of DNA
microarray experiments.

4.1 Data

4.1.1 DNA microarray experiments

We collect 658 DNA microarray experiments on yeast gene expression pro-
grams under various conditions: 7 on diauxic shift (DeRisi et al., 1997), 10
on sporulation (Chu et al., 1998), 60 on cell cycle (Spellman et al., 1998),
4 on adaptive evolution (Ferea et al., 1999), 173 on environmental stress
(Gasch et al., 2000), 6 on Copper regulation (Gross et al., 2000), 300 on
diverse mutations and chemical treatments (Hughes et al., 2000), 8 on Pho
metabolism (Ogawa et al., 2000), 12 on SNF/SWI mutants (Sudarsanam
et al., 2000), 26 on FKH1 and FKH2 roles during cell cycle (Zhu et al.,
2000), and 52 on DNA damage (Gasch et al., 2001).

Prior to analysis, the data are normalized by subtracting the genome-
wise median for every experiment. In addition, the log2(ratios) are truncated
by ± log2(20).

4.1.2 Promoter sequences

We extract promoter sequences of 700 bps in length in the upstream non-
coding region [-700, -1] for 6136 ORFs using the SCPD database (Zhu and
Zhang, 1999).

4.1.3 Transcription factor binding sites

We collect known binding sites for 46 yeast transcription factors from SCPD
(Zhu and Zhang, 1999), TRANSFAC (Wingender et al., 1996), and YPD of
Incyte Proteome BioKnowledge Library (Hodges et al., 1999) (see Table 2).
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[Table 2 about here.]

4.2 Analysis results

4.2.1 Estimated transcriptional regulatory interactions

The estimated number of transcriptional regulatory interactions between
transcription factors and genes is a function of cut-off value used. Table 3
shows the results at different cut-off levels.

[Table 3 about here.]

In our analysis, we choose p = 0.001 as a threshold to infer the yeast
transcriptional regulatory interaction. The estimated transcriptional regu-
latory interaction matrix is then used to find network motifs and network
structures.

4.2.2 Network motifs

Network motifs are the simplest units of the network architecture, which
suggest models for regulatory mechanism that can be tested. Lee et al.
(2002) described six regulatory network motifs in terms of transcription
factor binding (see Figure 1) and algorithms to find them. We redefine
the network motifs in terms of transcriptional regulatory interaction as fol-
lows: (a) Auto-regulation motif, in which a regulator gene regulates its own
expression; (b) Feed-forward loop motif, in which a master regulator reg-
ulates the second regulator and both regulate a common target gene; (c)
Multi-component loop motif, in which regulator(1) regulates regulator(2),
..., regulator(n-1) regulates regulator(n), and regulator(n) regulates regu-
lator(1), where n ≥ 2; (d) Single input motif, in which a single regulator
uniquely regulates a set of target genes; (e) Multi-input motif, in which a
set of regulators regulate a set of target genes together; and (f) Regulator
chain motif, in which regulator(1) regulates regulator(2), ..., regulator(n-1)
regulates regulator(n), where n ≥ 2 and the chain ends if regulator(n) does
not directly regulate any other regulator that is not on the chain.

[Figure 1 about here.]
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We used the algorithms described in Lee et al. (2002) and Xing and
van der Laan (2005) to find interesting transcriptional regulatory network
motifs. We found 6 auto-regulated genes, 37 feed-forward loops, 1 multi-
component loops, 26 single-input modules, 254 multi-input modules and 96
regulator chains, based on the estimated transcriptional regulatory interac-
tions matrix for 46 transcription factors and 6136 genes, at a threshold of
p = 0.001.

To assess the significance of the findings, we compared our results with
those from Lee et al. (2002). Our analysis involves 46 transcription factors,
the analysis of Lee et al. (2002) involves 106 transcription factors. We
have 33 transcription factors in common. However, since the presence of
additional transcription factors affects the finding of almost all the network
motifs, particularly the single-input and multi-input modules and regulator
chains (a result of the network motif finding algorithm). So the comparison
focuses on only auto-regulation motif and feed-forward loop motif.

[Table 4 about here.]

Table 4 lists genes that are likely to be autoregulated. At the threshold of
p = 0.001, we found 6 regulator genes (out of 46) that may be autoregulated:
ADR1, MIG1, NDT80, RAP1, ROX1 and TBP1. Among these, RAP1 was
also identified as an autoregulated gene in Lee et al. (2002), and NDT80
and ROX1 were computationally identified as autoregulated genes in Xing
and van der Laan (2005).

NDT80p functions at pachytene of yeast gametogenesis (sporulation) to
activate transcription of a set of genes required for both meiotic division and
gamete formation. There is evidence that NDT80p activates its own tran-
scription through an upstream MSE consensus site (Chu and Herskowitz,
1998; Lindgren et al., 2000).

The ROX1 gene encodes a heme-induced repressor of hypoxic genes in
yeast. Experiments indicated that ROX1p is capable of binding to its own
upstream region and represses its own expression (Deckert et al., 1995).
ROX1 was included in Lee et al. (2002), but was not identified as auto-
regulated.

At a less restrictive threshold level, STE12 and SWI4 are also found to
be autoregulated, which were also identified as autoregulated genes in Lee
et al. (2002) and Xing and van der Laan (2005). However, we did not found
literature support for ADR1, MIG1 and TBP1. Regulation mechanisms for
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these genes are not completely clear.

We found 37 feed-forward loops involving 23 transcription factors at the
threshold level of p = 0.001. Among these, RAP1-HSF1 was also identi-
fied in Lee et al. (2002). ADR1, LEU3, MIG1 and TBP1 seem to form a
feed-forward loop with MSN4, as the same relationships were also found
computationally in Xing and van der Laan (2005).

4.2.3 Overall transcriptional regulatory network

We can construct the overall transcriptional regulatory network based on the
estimated transcriptional regulatory interaction matrix. Figure 2 shows the
estimated regulator network, which consists of 36 regulatory genes that have
estimated transcriptional regulatory interactions with either themselves (i.e.,
autoregulation) or other regulators. The remaining 10 regulatory genes that
are involved in the analysis but have no estimated transcriptional regulatory
interactions with any regulators are not shown. Each of the 46 regulatory
genes involved in the analysis has its own set of potential target genes, which
are not shown in the graph neither to make it clear.

[Figure 2 about here.]

The analysis results show that the proposed statistical approach is ca-
pable of identifying significant transcriptional regulatory interactions and
the corresponding regulatory network structures. For example, the con-
structed network directly connects most of the regulators that are known to
regulate the yeast cell cycle process, such as RME1, SWI4, SWI5, ACE2,
MCM1, FKH1 and FKH2, to form a sub-network for cell cycle regulation.
Among the estimated cell cycle related transcriptional regulatory interac-
tions, some have already been experimentally confirmed. For example,
ACE2 induces the meiosis repressor RME1 (Toone et al., 1995; McBride
et al., 1999); REB1 directly increases the mRNA abundance of SWI5 (Svet-
lov and Cooper, 1995); FKH2 upregulates cell-cycle dependent expression
of the CLB2 cluster of genes, which include SWI5 and ACE2 (Boros et al.,
2003).

The method is capable of revealing the transcriptional regulatory net-
work structure that is not obvious under a single experiment condition.
For example, our analysis suggests that SUM1 transcriptionally regulates
NDT80, and NDT80 is auto-regulated. In fact, SUM1p and NDT80p bind
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competitively to the MSE sites in the promoter region of NDT80 and result
in very different consequences: NDT80p activates the expression of NDT80,
but SUM1p represses the expression of NDT80 (Pak and Segall, 2002). The
cross link between SUM1 and NDT80 may not be observed in a location
analysis based on only one kind of growth condition.

5 Discussion

In this paper we described a causal inference model based approach for
constructing transcriptional regulatory networks using data on gene expres-
sion, promoter sequence, and transcription factor binding sites. The method
views an active transcription factor under a given experiment analogous to a
point treatment and the gene expressions as responses. The concept of coun-
terfactual gene expression is introduced and a marginal structural model is
built for every gene and transcription factor pair to infer the regulatory in-
teractions. Our simulation studies show that the overall error rate, false
positive and false negative error rates in the estimated transcriptional regu-
latory networks are expected to be small or moderate if the systematic noise
and the random error in the data is small and the sample size is moderately
large. Our analysis based on 658 microarray experiments on yeast gene ex-
pression programs and 46 transcription factors suggests that the method is
capable of identifying significant transcriptional regulatory interactions and
uncovering the corresponding network structures.

The computational approach is based on available gene expression and
sequence data, so it is time-wise and resource-wise more efficient than the
experiment-based methods (e.g., location analysis). It is especially suit-
able for mining the fast accumulating microarray data on gene expressions
under various experiment conditions. Since data from many different experi-
ment conditions are explored, our method is particularly advantageous over
location analysis and single transcription factor perturbation experiment
based approaches for its capability of finding the transcriptional regulatory
network structure that is not fully observable under a single experiment
condition, for example, the interaction between SUM1 and NDT80.

As compared with our previous method (Xing and van der Laan, 2005),
this method is time-wise more efficient since it does not use the naive normal
mixture model and the IPTW estimation of the marginal structural models
is faster than the EM algorithm based estimation of the mixture models. But
the MSM needs the no unmeasured confounders (NUC) assumption and the
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experimental treatment assignment (ETA) assumption to obtain consistent
estimate of the causal effects. We usually are not able to check whether
these assumptions all hold without further knowledge except for the data.
The analysis based on data from real experiments seems to suggest that the
two methods can be complementary to each other in maximizing significant
findings.

The method has some the limitations. First, it may fail to estimate the
regulatory interactions of a transcription factor that results in only subtle
change in the genome-wide gene expression profile. Second, the method
relies on knowledge of transcription factor binding sites. The number of
transcription factors with known consensus binding sites is small and their
functional coverage is somewhat limited. However, this may not be a prob-
lem when more and more transcription factor binding sites are characterized
and added to our knowledge. Also, we may use putative transcription fac-
tor binding sites in the analysis. Using putative transcription factor binding
sites will increase the error rates in estimation, but the constructed networks
should suggest more models for further testing.
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Figure 1: Transcriptional regulatory network motifs: (a) Auto-regulation,
(b) Feed-forward loop, (c) Multi-component loop, (d) Single-input motif, (e)
Multi-input motif, and (f) Regulator chain motif. Transcription factors are
indicated by blue circles and genes by green boxes. Solid arrows indicate
regulatory interaction between transcription factors and their target genes.
Dashed arrows link transcription factors and their producer genes. The
diagram is modified from Lee et al. (2002).
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Figure 2: Estimated yeast transcriptional regulatory network. Ovals indi-
cate regulatory genes. Arrows indicate the direction of transcriptional reg-
ulatory interactions. Regulators without significant interactions with other
regulators are not shown. The potential target genes of each regulator are
not shown.
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Table 1: Average error rates in the estimated transcriptional regulatory
interaction matrices

Sys.Error ε ∼ N(0, 0.252) ε ∼ N(0, 0.502) ε ∼ N(0, 0.752)

δ n OER FPR FNR OER FPR FNR OER FPR FNR

0.1 50 0.171 0.294 0.159 0.200 0.287 0.199 0.208 0.555 0.207
0.1 100 0.141 0.286 0.114 0.184 0.252 0.181 0.202 0.234 0.201
0.1 200 0.102 0.274 0.050 0.152 0.271 0.136 0.194 0.311 0.190

0.2 50 0.212 0.527 0.184 0.206 0.449 0.202 0.208 0.464 0.207
0.2 100 0.185 0.445 0.118 0.192 0.390 0.179 0.204 0.355 0.202
0.2 200 0.175 0.444 0.068 0.186 0.426 0.146 0.194 0.339 0.188

0.3 50 0.219 0.544 0.173 0.211 0.576 0.201 0.208 0.575 0.207
0.3 100 0.229 0.546 0.136 0.201 0.455 0.183 0.206 0.415 0.204
0.3 200 0.234 0.541 0.088 0.205 0.493 0.158 0.203 0.447 0.195
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Table 2: Some yeast transcription factors and
their specific binding sites

TF Binding Site Motif Name

ABF1 TCRNNNNNNACG ABF1
ACE2 GCTGGT ACE2
ADR1 TCTCC ADR1
ATF1 ACGTCA ATF
BAS2 TAATRA, TAANTAA BAS2
CBF1 TCACGTG CPF1
FKH2 GTMAACAA SFF
FKH1 GTMAACAA SFF
GAL4 CGGNNNNNNNNNNNCCG GAL4
GCN4 TGANTN GCN4
GCR1 CWTCC GCR1
HAP1 CGGNNNTANCGG HAP1
HSF1 GAANNTCC, GAANNNTCC, HSE

TTCNNGAA, TTCNNNGAA HSE
INO2 ATGTGAAWW UASINO
INO4 ATGTGAAWW UASINO
LEU3 CCGNNNNCGG, GGCNNNNGCC LEU3
MAC1 GAGCAAA CuRE
MATalpha2 CRTGTWWWW MATalpha2
MBP1 WCGCGW MCB
MCM1 CCNNNWWRGG MCM1
MIG1 CCCCRNNWWWWW MIG1
MSN2 AGGGG STRE
MSN4 AGGGG STRE
NDT80 CRCAAAW MSE
PDR3 TCCGYGGA PDR3
PHO4 CACGTK PHO4
PUT3 CGGNNNNNNNNNNCCG PUT3
PPR1 TTCGGNNNNNNCCGAA PPR1
RAP1 RMACCCA RAP1
REB1 YYACCCG REB1
RFA1 TAGCCGCCGA URS1
RFA2 TAGCCGCCGA URS1
RFA3 TAGCCGCCGA URS1
RME1 GAACCTCAA RME1
ROX1 YYNATTGTTY ROX1
RTG1 GGTCAC RTG
RTG3 GGTCAC RTG
STE12 TGAAACA PRE
SWI4 CNCGAAA SCB
SWI5 KGCTGR SWI5
SWI6 CNCGAAA, WCGCGW SCB/MCB
SUM1 CRCAAAW MSE
TBP1 TATAWAW TBP
TEA1 CGGNNNNNNNNNNCCG TEA1
UME6 CTTCCT, TAGCCGCCGA UARPHR/URS1
YAP1 TTANTAA AP-1

Source: Compiled based on information from SCPD,

TRANSFAC Database, and Incyte BioKnowledge Library (YPD).
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Table 3: Estimated number of regulatory interactions
(with 6136 ORFs and 46 transcription factors)

Cut-off Number of Number of Number of Number of
(p) Genes Interactions Interactions Interactions

Involved Total Per Gene Per TF
0.1 5960 27618 4.6 600.4
0.05 5778 22755 3.9 494.7
0.01 5176 15912 3.1 345.9
0.001 4347 11104 2.6 241.4
0.0001 3607 8400 2.3 182.6
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Table 4: Autoregulated genes

Lee et al (2002) Xing et al. (2005) Current Analysis
p-value

ADR1 No No Yes 5.02e-12
ARO80 Yes – – –
MIG1 No No Yes 1.82e-04
NDT80 – Yes Yes 7.69e-24
NRG1 Yes – – –
PDR3 – Yes No 1.06e-01
RAP1 Yes No Yes 8.29e-06
RCS1 Yes – – –
ROX1 No Yes Yes 5.19e-07
SMP1 Yes – – –
STE12 Yes Yes Yesa 2.92e-03
SWI4 Yes Yes Yesb 3.43e-02
SUM1 Yes No No 9.99e-01
TBP1 – No Yes 9.53e-08
YAP6 Yes – – –
ZAP6 Yes – – –

Note: Unless otherwise noted, the p-value threshold used for current analysis
is p = 0.001. a Threshold p = 0.01. b Threshold p = 0.05. “–” means “not
included in analysis”.
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