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1 Introduction

New technologies, such as gene expression microarrays and protein mass spectrometry, promise a multitude of

biomarkers for detecting disease and predicting future events. Statistical methodology is needed to critically

evaluate them. Biomarkers differ in their purposes and consequently demand different criteria for evaluation.

For example, diagnostic markers are used to classify people as diseased or nondiseased. Their performance is

typically evaluated with measures like sensitivity, specificity, and the ROC curve. Risk prediction markers,

on the other hand, are utilized to predict the risk of having or getting a disease or other event. For risk

prediction markers, measures that quantify their abilities to stratify risk are most relevant (Cook, 2007).

Pepe et al. (2007) and Huang et al. (2007) proposed a graphical tool, the predictiveness curve to characterize

the population distribution of predicted risk. Let D be a binary outcome, and Y be the markers of interest,

and let Risk(y) = P (D = 1|Y = y) be the risk predicted for subjects with marker value Y = y. We write

the predictiveness curve R(v) vs v, where R(v) is the 100× vth percentile of Risk(Y ). Equivalently we plot

p vs FR(p), where FR(p) is the cumulative distribution of risk in the population, R−1(p) = FR(p).

The distribution of Risk(Y ) can be used to compare risk prediction markers or models. It provides a

common scale for comparing models. A better model for risk stratification will have larger variability in risk

percentiles. Equivalently, it will assign more subjects into low and high risk ranges.

As pointed out by Huang et al. (2007), the predictiveness of a marker depends on the target population.

If there are covariates that define subpopulations, then a marker’s covariate-specific predictiveness should be

explored in order to identify subpopulations where it is useful for risk stratification and subpopulations where

it is not. Another motivation for considering covariate-specific curves is for individual decision making about

having a marker measured or not. A subject may decide that it is valuable to ascertain the value of a marker

for him/her only if there is a reasonably large chance that his/her risk calculated on the basis of marker and

covariates will differ substantially from that calculated only on the basis of covariates. Covariate-specific

predictiveness curves also address this question as we will illustrate.

There are two ways in which covariates can impact a marker’s predictiveness. Covariates may be predic-

tors themselves, possibly interacting with the marker’s effect on risk. In other words, covariates can affect

the shape and height of the risk as a function of Y . On the other hand, the distribution of the marker may
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vary with covariates. Both effects impact on the distribution of risk, i.e. the predictiveness curve.

Let Z be covariates of interest, let Risk(Y, Z) = P (D = 1|Y, Z), then the covariate-specific predictiveness

curve for Y given Z = z is the curve Rz(v) vs v, where Rz(v) is the 100× vth percentile of Risk(Y, Z) in the

population with Z = z. Estimation of the covariate-specific predictiveness curve with data from a cohort

design has been studied in Huang et al. (2007). Since case-control studies are more frequently conducted,

particularly in the early phases of biomarker development (Pepe et al., 2001), it is important to develop

estimators for this type of design as well. Here we consider case-control study designs. Moreover, our

methods accommodate matching where controls are frequency matched to cases in regards to a subset of

covariates.

To fix ideas consider the following example of a study to evaluate serum creatinine as a predictor of risk of

renal artery stenosis in patients with therapy resistant hypertension. A large cohort of subjects undergoing

renal arteriography constitutes the patient cohort for a case-control study of serum creatinine. Details are

provided in Section 4. Baseline risk of significant stenosis is calculated on the basis of several covariates

including age, gender, smoking, etc. For illustration, we consider risk values above 0.4 as high enough to

routinely recommend renal arteriography and risk values below 0.1 as low enough to discourage the practice.

Figure 1 shows the predictiveness curves for serum creatine in subjects with baseline risk categorized as low,

medium, and high. We see that among subjects originally deemed medium risk according to baseline factors,

24.8% are reclassified as low risk and 7.1% reclassified as high risk after including serum creatinine in the

risk model. On the other hand, only a small fraction of subjects in the high or low risk categories according

to baseline factors move to the medium risk designation after serum creatinine is included, and none move

from the high risk to low risk category or vice versa. Therefore, on average ascertainment of serum creatinine

seems to be most useful for subjects with medium baseline risk since in this group a substantial proportion

are moved across risk thresholds that affect medical decisions. Cook (2007) proposed a simplified version

of this sort of approach to evaluating the incremental value of C-reactive protein for cardiovascular risk

assessment.

While predictiveness curves specific to baseline risk categories provide a big picture of the marker’s

incremental value in terms of affecting medical decisions in subpopulations, another kind of predictiveness

curve which is specific to an individual’s baseline covariate values is more useful for individual decision
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making. In Figure 2 the covariate-specific curves are for individuals with specific values for the baseline

covariates. For example, subject 2 has baseline risk equal to 38.1%. His predictiveness curve indicates that

if serum creatinine is obtained from him, he has 0.5% chance of being classified as low risk. If his personal

threshold for risk is low and he will opt for renal arteriography unless he is deemed to have risk < 10%, there

is no point in ascertaining serum creatine for him, because almost certainly his risk calculated with serum

creatinine in addition to baseline covariates will exceed 10%.

In this paper we developed methodology to estimate and make inference about covariate-specific predic-

tiveness curves, exemplified in Figures 1 and 2.

2 Method

We consider a case-control design where cases and controls are frequency matched within S different strata.

The special case where there is no matching corresponds to S = 1. Let S be the indicator for the matching

stratum, taking values from 1 to S. We are interested in estimating the predictiveness curve for marker

Y given values of covariate Z, assuming ρs = P (D = 1|S = s), the disease prevalence within stratum s is

apriori known. Consider the scenario where matching stratum S can be written as a function of Z, S(Z).

An implication of this functional relationship between S and Z is that risk of disease conditional on marker

Y and covariate Z is independent of stratum S. That is, P (D = 1|Y, Z, S) = P (D = 1|Y, Z), which we

denote by G(θ, Y, Z), where θ is the risk model parameter. This is satisfied for example if strata are defined

by a subset of covariates. Refer to the example in Section 1. Suppose samples are matched on baseline risk

category, we have s = 1, 2, 3. Marker Y is serum creatinine. Covariate Z is baseline risk category in Figure

1 and baseline covariates in Figure 2.

Consider a logistic model where risk conditional on covariate value is monotone increasing as marker

value increases

logit{P (D = 1|Y, Z)} = logit{G(θ, Y, Z)} = θ0 + κ(θ1, Y, Z), (1)

where θ = (θ0, θ1)T . Here κ(θ1, Y, Z) is a pre-defined monotone increasing function for Y given Z = z. For

example, κ(θ1, Y, Z) might be θ11Y +θT
12Z, the linear logistic model, or more flexibly θ11Y

(θ13) +θT
12Z, where

Y (θ13) is the Box-Cox transformation (Cole and Green, 1992). Moreover, interaction between Y and Z might

also be included. Note that under the monotone increasing risk assumption, the curve Rz(v) vs v can be
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written as P (D = 1|Y, z) vs F−1
z (Y ) where Fz(y) = P (Y ≤ y|Z = z) is the CDF of Y when Z = z. This

suggests estimation of the curve can be achieved in two steps: estimation of the risk model and estimation

of the covariate-specific marker distribution. We take advantage of this in our proposed methods.

2.1 Discrete Covariate

Suppose the covariate of interest is discrete with Z categories. Let Z be the covariate group indicator,

taking values from 1 to Z. For example, in a study where cases and controls are frequency matched by age

subgroup, covariates of interest might be the combination of age subgroup and gender. A default strategy of

estimating the predictiveness curve for marker Y within a particular covariate group is to use sample from

that covariate group only. However, when risk model is not fully saturated (i.e. including main effects for all

covariate categories and their interaction with the marker), borrowing information across covariate groups

is more efficient.

Consider the risk model

logit{P (D = 1|Y, Z, S)} = logit{G(θ, Y, Z)} = θ0 + θ1Y + θT
2 ZM + θT

3 Y ZI ,

where θ = (θ0, θ1, θ2, θ3)T . Here ZM , ZI are vectors indexing subsets of covariate group. For example,

suppose covariate Z is the combination of age subgroup and gender, we can include ZM to index main effect

for age subgroup and main effect for gender, and include ZI to index interaction between marker and gender

only. The interaction terms vanishes when ZI is of length 0. Let LRz be the likelihood ratio of Y conditional

on covariate value z, which belongs to matching stratum S(z), we have

LRz(y) =
P (Y = y|D = 1, Z = z)
P (Y = y|D = 0, Z = z)

=
P (D = 1|Y = y, Z = z)
P (D = 0|Y = y, Z = z)

P (D = 0|Z = z)
P (D = 1|Z = z)

= exp
{
θ0 + η(z) + θ1y + θT

2 zM + θT
3 yzI

}
, (2)

where η(z) = log{P (D = 0|Z = z)/P (D = 1|Z = z)}.

When the matching stratum S is the same as the covariate group, P (D = 1|Z = z) is known by

assumption, and so is η(z). Consider now settings where the matching stratum is a proper subset of the

covariate group. If information about P (D = 1|Z = z) is available, it can be directly utilized. However,

if disease prevalence within a covariate group is not available, P (D = 1|Z = z) and η(z) can be estimated
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from the case-control sample because by Bayes’ theorem, for s = S(z),

η(z) = log
{

P (D = 0|Z = z, S = s)
P (D = 1|Z = z, S = s)

}

= log
{

P (D = 0|S = s)
P (D = 1|S = s)

}
+ log

{
P (Z = z|D = 0, S = s)
P (Z = z|D = 1, S = s)

}

= log
(

1 − ρs

ρs

)
+ log

{
P (Z = z|D = 0, S = s)
P (Z = z|D = 1, S = s)

}
, (3)

the first term in (3) is known, and for the second term, we can estimate P (Z = z|D = 0, S = s) and

P (Z = z|D = 1, S = s) empirically from the case-control sample. Henceforth we use η(z) to represent the

value that is known or estimated.

Suppose nD cases and nD̄ controls are sampled in the study. Let Us be the set of subjects within matching

stratum s with UDs and UD̄s being the subsets of cases and controls respectively. Let i index subject. We

maximize the empirical likelihood (Owen, 1988, 1990; Qin and Lawless, 1994) of observing the marker and

the covariates values in the matched case-control sample.

L =
S∏

s=1




∏

i∈UD̄s

P (Yi, Zi|Di)
∏

i∈UDs

P (Yi, Zi|Di)





=
S∏

s=1




∏

i∈UD̄s

P (Yi|Zi, Di)P (Zi|Di)
∏

i∈UDs

P (Yi|Zi, Di)P (Zi|Di)





∝
S∏

s=1




∏

i∈UD̄s

P (Yi|Zi, Di)
∏

i∈UDs

P (Yi|Zi, Di)



 . (4)

Define Fz, FDz, and FD̄z to be the cumulative distribution functions for marker Y in covariate group z in

the general, diseased, and non-diseased populations. With a slight abuse of notation, let Uz be the set of

subjects within covariate group z with UDz and UD̄z being the subsets of cases and controls respectively, and

let nz, nDz, and nD̄z be the corresponding sample sizes. Denote by piz the density of Y for the ith subject
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in covariate group z in the non-diseased population. Note that (4) can be rewritten as

L (θ, FD̄z) =
Z∏

z=1




∏

i∈UD̄z

dFD̄z(Yi)
∏

i∈UDz

dFDz(Yi)





=
Z∏

z=1




∏

i∈UD̄z

dFD̄z(Yi)
∏

i∈UDz

LRz(Yi)dFD̄z(Yi)





=
Z∏

z=1

{∏

i∈Uz

dFD̄z(Yi)
∏

i∈UDz

LRz(Yi)

}

=
Z∏

z=1

[∏

i∈Uz

piz

∏

i∈UDz

exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}
]

subject to the restrictions piz > 0,
∑

i∈Uz
pik = 1, and

∑
i∈Uz

pizLRz(Yi) = 1, for z = 1, . . ., Z. It is

equivalent to maximize

l =
Z∑

z=1

∑

i∈Uz

log(piz) +
Z∑

z=1

∑

i∈UDz

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}

+
Z∑

z=1

λ1z

(
1 −

∑

i∈Uz

piz

)

+
Z∑

z=1

λ2z

[∑

i∈Uz

piz −
∑

i∈Uz

piz exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}
]

, (5)

where λ1z, λ2z are Lagrange multipliers.

Setting the first derivatives with respect to piz, θ2 and θ0 to be zero, we get

∂l

∂piz
=

1
piz

− λ1z − λ2z

[
exp

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}
− 1
]

= 0

⇒ piz =
1

λ1z + λ2z

[
exp

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

}
− 1
] ,

∑

i∈Uz

∂l

∂piz
piz = nk − λ1z − λ2z + λ2z = 0

⇒ λ1z = nz,

∂l

∂θ0
= nD −

Z∑

z=1

λ2z

∑

i∈Uz

piz exp{θ0 + η(z) + θ1Yi + θT
2 ZM

i + θT
3 YiZ

I
i } = 0

⇒
Z∑

z=1

λ2z = nD. (6)

Methods for solving λ2z and θ are derived in the appendix. In the special case where ZM is the covariate

group indicator, a closed-form solution does exist and the remainder of this section focuses on that special

case. That is, suppose ZM is a length Z − 1 vector of dummy variables indicating covariate group, with the

6
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ith element being I(Z = i + 1), i = 1, . . ., Z − 1, we have

∂l

∂θ2
=

Z∑

z=1

∑

i∈UDz

Zi −
Z∑

z=1

λ2k

∑

i∈Uz

ZM
i pik exp{θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i } = 0

⇒ [λ2z]z=2,...,Z =
Z∑

z=1

∑

i∈UDz

ZM
i = [nDz]z=2,...,Z . (7)

Thus λ2z = nDz, z = 1, . . ., Z. We have

piz =
1

nD̄z + nDzLRz(Yi)
=

1

nD̄z + nDz exp
{
θ0 + η(z) + θ1Yi + θ2

T ZM
i + θ3

T YiZ
I
i

} .

Substituting piz into (5) we have

l =
Z∑

z=1

∑

i∈Uz

− log
[
nD̄z + nDz exp

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}]

+
Z∑

z=1

∑

i∈UDz

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}
.

Thus the maximum likelihood estimators θ̂0, θ̂1, θ̂2 and θ̂3 solve

∂l

∂θ0
= nD −

Z∑

z=1

nDz

∑

i∈Uz

exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}

nD̄z + nDz exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

} = 0,

∂l

∂θ1
=

Z∑

z=1

∑

i∈UDz

Yi −
Z∑

z=1

nDz

∑

i∈Uz

Yi

exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}

nD̄z + nDz exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

} = 0,

∂l

∂θ2
=

Z∑

z=1

∑

i∈UDz

ZM
i −

Z∑

z=1

nDz

∑

i∈Uz

ZM
i

exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}

nD̄z + nDz exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

} = 0,

∂l

∂θ3
=

Z∑

z=1

∑

i∈UDz

YiZ
I
i −

Z∑

z=1

nDz

∑

i∈Uz

YiZ
I
i

exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZ
I
i

}

nD̄z + nDz exp
{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

} = 0,

Observe that these are the score equations if we fit a prospective logistic model

logit{P (D = 1|Y, Z)} = θ0 + ξ(Z) + θ1Y + θT
2 ZM + θT

3 Y ZI

to the case-control sample using ξ(z) = log (nDz/nD̄z) + η(z) as an offset term.

Therefore, to calculate the predictiveness curve specific for covariate group z, we first fit a prospective

logistic model to the data and calculate p̂iz, the maximum likelihood estimate of piz, i ∈ Uz . Then we

compute

F̂D̄z(y) =
∑

i∈Uz

p̂izI(Yi ≤ y),

F̂Dz(y) =
∑

i∈Uz

p̂izI(Yi ≤ y)L̂Rz(Yi),

7
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where L̂Rz is the MLE of LRz. We estimate Fz as a weighted average of FDz and FD̄z with weight being

P (D = 1|Z = z), disease prevalence within covariate group z. Note P (D = 1|Z = z) is either known or

can be estimated as mentioned before. Let the estimate of Fz be F̂z(y) = P (D = 1|Z = z)F̂Dz(y) + P (D =

0|Z = z)F̂D̄z(y). The semiparametric maximum likelihood estimator (MLE) of the predictiveness curve and

its inverse within covariate group z are:

R̂z(v) = G
{
θ̂, F̂−1

z (v), z
}

for v ∈ (0, 1),

R̂−1
z (p) = F̂z

{
G−1

(
θ̂, p, z

)}
for p ∈ {Rz(v) : v ∈ (0, 1)} ,

where G−1(θ, p, z) = {y : G(θ, y, z) = p}.

Observe that for the special case where ZI is also the covariate group indicator, we essentially allow for

a different risk model within each covariate group, and our methods are equivalent to fitting the predictive-

ness curve using the semiparametric two-sample MLE method (Huang, 2007) within each covariate group

separately.

Based on similar arguments as in Huang (2007), asymptotic normality of R̂z(v) and R̂−1
z (p) can be

derived. Proofs of the following theorems are outlined in the appendix.

Theorem 1

As n → ∞,
√

n
{

R̂z(v) − Rz(v)
}

converges to a normal random variable with mean zero and variance

Σ1z(v) =
{

∂Rz(v)
∂v

}2

var
(√

n
[
F̂z

{
F−1

z (v)
}
− v
])

+
(

∂Rz(v)
∂θ

)T

var
{√

n(θ̂ − θ)
}(∂Rz(v)

∂θ

)

+ 2
(

∂Rz(v)
∂θ

)T

cov
(√

n(θ̂ − θ),
√

n
[
F̂z

{
F−1

z (v)
}
− v
]){∂Rz(v)

∂v

}
.

Theorem 2

As n → ∞,
√

n
{

R̂−1
z (p) − R−1

z (p)
}

converges to a normal random variable with mean zero and variance

Σ2z(p) = var
(√

n
[
F̂z

{
G−1(θ, p, z)

}
− Fz

{
G−1(θ, p, z)

}])

+
(

∂R−1
z (p)
∂θ

)T

var
{√

n(θ̂ − θ)
}(∂R−1

z (p)
∂θ

)

+ 2
(

∂R−1
z (p)
∂θ

)T

cov
(√

n
(
θ̂ − θ

)
,
√

n
[
F̂z

{
G−1(θ, p, z)

}
− Fz

{
G−1(θ, p, z)

}])
.

8
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Observe that when v = R−1
z (p),

∂R−1
z (p)
∂θ

∂Rz(v)
∂v

=
∂v

∂θ

∂Rz(v)
∂v

=
∂Rz(v)

∂θ
,

thus Σ1z(v) = {∂Rz(v)/∂v}2 Σ2z(p). That is the variance of R̂z(v) and its inverse are related by a factor equal

to square of the derivative of Rz(v), which is intuitive since a perturbation in Rz(v) can be approximated

by Rz(v) times a perturbation in R−1
z (p). In practice, bootstrap resampling is employed to assess sampling

variability, avoiding nonparametric density estimation.

2.2 Continuous Covariate

In Section 2.1, we developed an estimator of the covariate-specific predictiveness curve from a matched

case-control study when covariates of interest are discrete. In this section, we investigate estimation in more

general settings where continuous covariates can be involved.

Our strategy is to separate the estimation of the covariate-specific predictiveness curve into estimation

of the risk model and estimation of the covariate-specific marker distribution. The first estimation can be

achieved employing logistic regression model adjusted by the known disease prevalences within the matching

strata. The second estimation can be performed using a weighted version of the semiparametric location-scale

model (Heagerty and Pepe, 1999) for the marker distribution.

Consider the general risk model in (1). We apply a logistic model

logit{P (D = 1|Y, Z, S = s)} = θ0 + ξ(s) + κ(θ1, Y, Z) (8)

to the case-control sample using

ξ(s) = log
{

P (D = 1|S = s, sampled)
P (D = 0|S = s, sampled)

1 − ρs

ρs

}

as the offset term, where P (D = 1|S = s, sampled)/P (D = 0|S = s, sampled) is fixed by design and/or can

be estimated in the case-control sample with nDs/nD̄s.

Fitting this modified prospective logistic regression is essentially maximizing the “conditional (or pseudo)

maximum likelihood” that an observation in the case-control sample within a particular stratum is a case

or a control (Manski and Fadden, 1981; Hsieh et al., 1985; Breslow and Cain, 1988; Fears and Brown,

1986; Breslow and Zhao, 1988; Scott and Wild, 2001). Specifically, the contribution of subject i to the

9
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pseudolikelihood is P (Di|Yi, Zi, Si, sampled). According to Bayes’ theorem, the odds of being diseased in

the case-control sample is

P (D = 1|Y, Z, S, sampled)
P (D = 0|Y, Z, S, sampled)

=
P (Y, Z|D = 1, S, sampled)
P (Y, Z|D = 0, S, sampled)

P (D = 1|S, sampled)
P (D = 0|S, sampled)

=
P (Y, Z|D = 1, S)
P (Y, Z|D = 0, S)

P (D = 1|S, sampled)
P (D = 0|S, sampled)

=
P (D = 1|Y, Z, S)P (D = 0|S)
P (D = 0|Y, Z, S)P (D = 1|S)

P (D = 1|S, sampled)
P (D = 0|S, sampled)

=
P (D = 1|Y, Z)P (D = 0|S)
P (D = 0|Y, Z)P (D = 1|S)

P (D = 1|S, sampled)
P (D = 0|S, sampled)

= exp{θ0 + ξ(S) + κ(θ1, Y, Z)}.

Note that when the covariate of interest is the matching stratum, this pseudolikelihood approach leads to

the same estimates of the risk model as in the MLE approach in Section 2.1.

For a more complicated design, the two-phase design, this pseudolikelihood method has been shown to

be pretty similar to the maximum likelihood estimator which can be obtained by repeated fitting of ordinary

logistic regression models (Wild, 1991; Scott and Wild, 1997; Breslow and Holubkov, 1997). Both estimators

are shown to be much more efficient than the inverse probability weighted likelihood approach (Flanders and

Greenland, 1991).

To estimate Fz, we employ a semiparametric location-scale model for the distribution of Y given Z

(Heagerty and Pepe, 1999). Suppose

Fz(y) = F0

(
y − µz

σz

)
,

where F0 is the cumulative distribution function of some unknown distribution, µZ = γT U (Z) and log(σZ) =

δT W (Z), and U (Z) and W (Z) are specified functions of Z. For example, for a discrete Z, U (Z) and W (Z)

could be dummy variables indicating unique values of Z, while for a continuous Z, they could be B-spline

basis for Z. Denote Ui = U (Zi) and Wi = W (Zi). For a cohort study, Heagerty and Pepe (1999) proposed

estimating γ and δ by solving the estimating equations

n∑

i=1

Ui(Yi − γT Ui)/σ2
Zi

= 0,

n∑

i=1

Wi

{
(Yi − γT Ui)2 − σ2

Zi

}
/σ2

Zi
= 0. (9)

For the matched case-control study, we obtain γ̂ and δ̂ as solutions to the inverse probability weighted
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(Horvitz and Thompson, 1952) version of these estimating equations in (9):

n∑

i=1

1
q̂i

Ui(Yi − γT Ui)/σ2
Zi

= 0,

n∑

i=1

1
q̂i

Wi

{
(Yi − γT Ui)2 − σ2

Zi

}
/σ2

Zi
= 0, (10)

where q̂i = P̂ (sampled|Yi, Zi, Si, Di). Observe that

P (sampled|Yi, Zi, Si, Di) = P (sampled|Si, Di) =
P (Di|Si, sampled)P (Si|sampled)

P (Di|Si)P (Si)
,

where P (Di|Si, sampled) is fixed by design and can be estimated as well. So if P (Si) is known in addition

to P (Di|Si), we can estimate P (Si|sampled) from the case-control sample and plug in

q̂i =
P̂ (Di|Si, sampled)P̂ (Si|sampled)

P (Di|Si)P (Si)
.

Furthermore, we estimate F0 by

F̂0(c) =
n∑

i=1

1
q̂i

I

(
Yi − γ̂T Ui

eδ̂T Wi

≤ c

)/ n∑

i=1

1
q̂i

.

The covariate-specific marker distribution estimate is

F̂z(y) = F̂0

(
y − γ̂T u

eδ̂T w

)
,

where u = U (z) and w = W (z). The corresponding vth quantile is

F̂−1
z (v) = γ̂T u + eδ̂T wF̂−1

0 (v) for v ∈ (0, 1).

Estimators of the covariate-specific predictiveness curve for Y given Z = z which we call PMLE are

R̂z(v) = G
{
θ̂, F̂−1

z (v), z
}

for v ∈ (0, 1),

R̂−1
z (p) = F̂z

{
G−1(θ̂, p, z)

}
for p ∈ {Rz(v) : v ∈ (0, 1)} .

Note that compared to the MLE method in Section 2.1, the PMLE method requires additional auxiliary

information about the distribution of S. If the distribution of Y conditional on Z is independent of the

matching stratum S, we can modify the PMLE method such that the extra piece of information about P (S)

is not necessary. This is satisfied in current setting since S can be represented as a function of Z. The

concept is to ensure unbiasedness of these estimating equations in (10) averaged across the distribution of

Y within each stratum rather than averaged over the general population.
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This way it is sufficient to adjust for selection bias within each stratum. For any two subjects i, j in the

same stratum, we want to choose qi and qj such that

qi/qj = P (sampled|Di, Yi, Zi, Si)/P (sampled|Dj, Yj, Zj , Sj).

Given Si = Sj , we need to have

P (sampled|Di, Yi, Zi, Si)
P (sampled|Dj, Yj, Zj , Sj)

=
P (sampled|Di, Si)
P (sampled|Dj, Sj)

=
P (Di, Si|sampled)P (Dj , Sj)
P (Dj, Sj|sampled)P (Di, Si)

=
P (Di|Si, sampled)P (Dj|Sj)
P (Dj|Sj , sampled)P (Di|Si)

to guarantee the unbiasedness of (10) within each stratum. One of the choices of qi is P (Di|Si, sampled)P (1−

Di|Si). We plug q̂i = P̂ (Di|Si, sampled)P (1 − Di|Si) into (10).

The covariate-specific predictiveness curve for marker Y can be derived likewise. We call the estimator

PMLE-M. Note that PMLE and PMLE-M are equivalent when there is no matching in the case-control

design. We use bootstrap resampling for variance estimation for both PMLE and PMLE-M estimators.

3 Simulation Studies

We evaluate our methodology using two simulation settings. In the first setting, cases and controls are

frequency matched according to a binary covariate Z, which is also the covariate of interest for evaluating

the marker’s predictiveness. Marker Y conditional on D and Z is normally distributed,

YD|Z = 0 ∼ N (0.5, 1), YD̄|Z = 0 ∼ N (0, 1),

YD|Z = 1 ∼ N (1, 1), YD̄|Z = 1 ∼ N (0.5, 1).

In the population, Z takes value 1 with probability 0.5. Disease prevalence given Z = 0, 1 are 0.1 and 0.2

respectively. Within each matching stratum defined by the value of Z, equal number of cases and controls

are sampled, and sample sizes are constant across strata. We compare the three estimators of the covariate

Z-specific predictiveness curves developed in Section 2: the semiparametric MLE method assuming risk is

linear logistic in Y and Z, and the PMLE and PMLE-M methods where location and log-scale parameters

for the marker distribution are modeled as linear in Z.

In the second setting, we have a continuous covariate Z. The overall prevalence of D is 0.15. We have Y

12
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Table 1: Performance of the covariate-specific predictiveness curve estimators for the first simulation setting
in Section 3. Shown are results for R̂z(v) with z = 0.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
Rz(v) 0.05 0.072 0.091 0.116 0.161

Bias

% bias in R̂z(v)
n = 200 MLE 1.76 -0.31 -0.56 -0.59 0.06

PMLE-M 1.76 -0.5 -0.71 -0.78 0.25
PMLE 1.67 -0.42 -0.78 -0.74 0.08

n = 500 MLE 0.4 -0.37 -0.41 -0.26 0.32
PMLE-M 0.39 -0.33 -0.19 -0.18 0.39
PMLE 0.3 -0.3 -0.23 -0.16 0.36

n = 1200 MLE -0.26 -0.22 -0.18 -0.16 0.22
PMLE-M -0.09 -0.29 -0.22 -0.2 0.26
PMLE -0.07 -0.28 -0.23 -0.19 0.26

MSE Efficiency relative to MLE
n = 200 PMLE-M 0.98 0.98 0.92 0.68 0.87

PMLE 0.99 0.99 0.94 0.71 0.9
n = 500 PMLE-M 1.01 0.99 0.92 0.77 0.86

PMLE 1.01 1 0.96 0.82 0.86
n = 1200 PMLE-M 0.98 0.96 0.95 0.68 0.87

PMLE 0.98 0.98 0.96 0.74 0.87
95% Percentile Bootstrap CI
coverage (%)

n = 200 MLE 92.2 93.5 95.4 97.9 94
PMLE-M 92.3 94.7 96.5 96.9 94.1
PMLE 92.2 94.8 96.5 96 94.3

n = 500 MLE 94.6 93.9 95.2 96.2 94.6
PMLE-M 94.3 94 95.7 96.6 94.6
PMLE 94.4 93.8 95.6 96.1 94.8

n = 1000 MLE 94 94.1 94.7 95.1 94.6
PMLE-M 93.8 93.9 93.3 95 94.5
PMLE 94.1 93.9 93.9 95.1 94.2

and Z bivariate normally distributed with correlation 0.5 conditional on D,

(
Y
Z

) ∣∣∣∣D = 0 ∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
,

(
Y
Z

) ∣∣∣∣D = 1 ∼ N

((
1
0

)
,

(
1 0.5

0.5 1

))
.

During the simulation cases are randomly sampled from the case population and for each case, a control with

the same Z value is generated. We again compare the three estimators of covariate Z-specific predictiveness

curves. For the semiparametric MLE estimator, risk is modeled as linear logistic in Y and discretized Z

(where cutoff points are chosen to be quintiles of Z in the case population). For the PMLE and PMLE-M

estimators, location and log(scale) parameters for the marker distribution are modeled as linear in Z.

For sample size varying from 200 to 1200, we evaluate estimates of Rz(v) and R−1
z (p) for v = 0.1, 0.3, 0.5,0.7, 0.9

and corresponding p = Rz(v).

For the first setting, simulation results for Z = 0 are presented in Tables 1 and 2. For the second setting,

simulation results for Z equal to the median in the case population are presented in Tables 3 and 4. We

find that in both settings the three estimators have reasonably good performance. Bias was minimal for

Rz(v) and for R−1
z (p). Coverage of the 95% confidence intervals constructed from the bootstrap distribution

13

Hosted by The Berkeley Electronic Press



Table 2: Performance of the covariate-specific predictiveness curve estimators for the first simulation setting
in Section 3. Shown are results for R̂−1

z (p) with z = 0.
p = 0.05 p = 0.072 p = 0.091 p = 0.116 p = 0.161

R−1
z (p) 0.10 0.30 0.50 0.70 0.90

Bias

% bias in R̂−1
z (p)

n = 200 MLE 9.11 -4.66 -2.26 1.6 0.67
PMLE-M 9.99 -4.48 -1.84 1.93 0.65
PMLE 9.98 -4.41 -1.83 1.91 0.68

n = 500 MLE 4.23 -1.06 -0.34 0.51 0.17
PMLE-M 4.55 -1.23 -0.61 0.48 0.18
PMLE 4.68 -1.3 -0.6 0.47 0.19

n = 1200 MLE 3.12 -0.25 -0.22 0.28 0.04
PMLE-M 2.78 -0.2 -0.06 0.33 0.05
PMLE 2.76 -0.18 -0.04 0.33 0.04

MSE Efficiency relative to MLE
n = 200 PMLE-M 1 0.98 0.92 0.77 0.9

PMLE 1.01 0.98 0.92 0.79 0.91
n = 500 PMLE-M 1.01 0.98 0.89 0.82 0.89

PMLE 1.02 0.98 0.9 0.88 0.89
n = 1200 PMLE-M 0.98 0.96 0.94 0.71 0.89

PMLE 0.98 0.96 0.96 0.74 0.89
95% Percentile Bootstrap CI
coverage (%)

n = 200 MLE 92.1 93.5 95.5 97.9 93.9
PMLE-M 92.2 94.9 96.6 97 94
PMLE 92.3 94.7 96.7 96.1 94.5

n = 500 MLE 94.5 94 95.3 96.3 94.6
PMLE-M 94.2 93.9 95.7 96.6 94.6
PMLE 94.5 93.6 95.7 96.1 94.8

n = 1200 MLE 94 94.2 94.7 95.2 94.6
PMLE-M 93.8 93.9 93.3 95.1 94.5
PMLE 94.1 94 93.9 95.2 94.2

Table 3: Performance of the covariate-specific predictiveness curve estimators for the second simulation
setting in Section 3. Shown are results for R̂z(v) with z being the median of Z in the case population.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
Rz(v) 0.022 0.054 0.097 0.173 0.358

Bias

% bias in R̂z(v)
n = 200 MLE 12.21 3.85 0.01 -0.72 0.14

PMLE-M 3.53 0.63 -1.24 -0.4 -0.06
PMLE 3.87 0.91 -0.88 -0.18 0.04

n = 500 MLE 7 2.77 0.58 0.14 -0.63
PMLE-M 0.22 -0.58 -0.81 -0.22 0.52
PMLE -0.05 -0.7 -0.91 -0.34 0.61

n = 1200 MLE 7.24 3.97 1.89 0.22 -1.04
PMLE-M 0.36 -0.13 -0.36 -0.09 0.13
PMLE 0.33 -0.19 -0.3 -0.08 0.06

MSE Efficiency relative to MLE
n = 200 PMLE-M 1.77 1.61 2.03 2.86 1.81

PMLE 1.8 1.58 1.82 2.12 1.51
n = 500 PMLE-M 1.98 1.82 1.84 2.75 1.76

PMLE 1.92 1.77 1.68 2 1.41
n = 1200 PMLE-M 2.19 2.02 2.01 2.69 1.78

PMLE 2.12 1.95 1.81 2.01 1.54
95% Percentile Bootstrap CI
coverage (%)

n = 200 MLE 96.1 96.8 97.2 98.7 98.7
PMLE-M 94.3 94.2 94.2 98.2 96.9
PMLE 93 91.6 92.4 95.5 97.9

n = 500 MLE 95.1 95.5 96.2 98.8 96.9
PMLE-M 93.8 93.7 93.5 97.7 95.1
PMLE 92.3 91.9 90.9 95.7 95.9

n = 1200 MLE 94.8 94 94.7 97.5 95.8
PMLE-M 94.2 94.1 94.9 96.2 95.7
PMLE 93.3 91.8 91.1 93 96.6
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Table 4: Performance of the covariate-specific predictiveness curve estimators for the second simulation
setting in Section 3. Shown are results for R̂−1

z (p) with z being the median of Z in the case population.
p = 0.022 p = 0.054 p = 0.097 p = 0.173 p = 0.358

R−1
z (p) 0.10 0.30 0.50 0.70 0.90

Bias

% bias in R̂−1
z (p)

n = 200 MLE 0.13 -2.62 -0.84 -0.01 0.46
PMLE-M 6.63 -0.56 0.12 0.11 0.33
PMLE 6.82 -0.65 0.06 0.0004 0.28

n = 500 MLE -2.61 -2.39 -0.72 -0.09 0.24
PMLE-M 5.11 0.86 0.28 0.05 -0.05
PMLE 5.09 0.99 0.35 0.13 -0.04

n = 1200 MLE -7.26 -3.73 -1.47 -0.18 0.31
PMLE-M 1.53 0.24 0.12 0.04 0.03
PMLE 1.54 0.23 0.13 0.05 0.02

MSE Efficiency relative to MLE
n = 200 PMLE-M 1.47 1.75 2.13 3 1.83

PMLE 1.45 1.64 1.91 2.29 1.63
n = 500 PMLE-M 1.61 1.76 2.09 3.06 1.71

PMLE 1.54 1.71 1.89 2.19 1.45
n = 1200 PMLE-M 1.7 1.95 2.07 2.73 1.68

PMLE 1.67 1.87 1.86 2.03 1.45
95% Percentile Bootstrap CI
coverage (%)

n = 200 MLE 96.1 96.7 97.2 98.8 98.7
PMLE-M 94.2 94.2 94.2 98.3 96.9
PMLE 93 91.6 92.4 95.5 97.9

n = 500 MLE 95.1 95.5 96.2 98.7 96.9
PMLE-M 93.6 93.7 93.7 97.7 95
PMLE 92.7 91.7 90.9 95.7 95.9

n = 1200 MLE 94.8 94 94.7 97.4 95.8
PMLE-M 94.2 94.1 95 96.2 95.6
PMLE 93.4 91.7 91.2 93 96.6

is fairly close to the nominal level. In the first setting where there are two covariate groups, MSE for the

three estimators are similar in magnitude. The MLE estimator is slightly more efficient than the PMLE

and PMLE-M estimators for certain v. As the number of (discretized) covariate groups increases to five

(the second setting), the MLE estimator becomes much less efficient compared to the PMLE and PMLE-M

estimators.

Since the MLE method requires less model assumption, it is more robust than the PMLE (PMLE-M)

methods. In practice the MLE method is preferred when the number of covariate groups is relatively small

and the number of observations in each group is not too small, e.g. when covariate is baseline risk category

in the renal example. On the other hand, since the PMLE (PMLE-M) methods borrow information across

covariate groups during estimation of the marker distribution, it is expected to be more efficient compared to

the MLE method as the number of covariate groups increases. Specifically, when we have several continuous

covariates, like those baseline covariate values described in the renal example, the job to discretize these

covariates for MLE estimation becomes very difficult and the PMLE (PMLE-M) methods are more appealing

in this scenario.
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Figure 1: Predictiveness curves for serum creatinine specific to patients with low, high, and equivocal baseline
risk.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Covariate Specific Predictiveness Curve

v

R
(v

)

Subject 1
Subject 2
Subject 3

Figure 2: Examples of covariate-specific predictiveness curves for serum creatinine.

4 Illustration

We illustrate the methodology evaluating serum creatinine as a risk prediction marker for renal artery stenosis

in patients with therapy resistant hypertension. The original cohort consists of 426 hypertensive patients

undergoing renal angiography (Janssens et al., 2005; Krijnen et al., 1998). Baseline risk is modeled with age,

smoking status (ever) and their interaction, gender, hypertension, BMI, abdominal bruit, atherosclerosis

disease, and hypercholesterolaemia. Consider a low risk threshold of 0.1 below which no routine angiography

is recommended and a high risk threshold of 0.4 above which routine angiography is encouraged. There

are 162 subjects in the cohort with low baseline risk (10 cases), 176 subjects with medium baseline risk (33

cases), and 88 subjects with high baseline risk (55 cases). A stratified case-control sample of size 217 is
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generated including all 98 cases and controls frequency matched according to baseline risk group. Within

low and medium baseline risk strata, the number of controls selected are twice that of cases, while within

the high risk group, all controls are selected.

Figure 1 displays the predictiveness curves for serum creatinine, for patients within different baseline

risk strata. Hence the covariate is baseline risk stratification, the same as the matching stratum. The MLE

method was employed in estimation. Observe that for those patients who have low baseline risks, after

measuring serum creatinine, there is R̂−1
z (0.1) = 94.5% chance that they will remain classified as low risk

(with 95% CI (94.8%, 100%)), a small chance that their risk will be elevated to the intermediate risk range

(R̂−1
z (0.4) − R̂−1

z (0.1) = 5.2% with 95% CI (0, 24.0%)), and a negligible chance that their estimates risks

will be high enough to receive treatment recommendation (1 − R̂−1
z (0.4) = 0 with 95% CI (0,0)). For those

patients who are originally in the medium risk range, after measuring serum creatinine, they have 24.8%

chance of being reclassified as low risk (with 95% CI (2.3%,42.8%)), 7.1% chance of being reclassified as

high risk (with 95% CI (0.8%, 14.6%), and 68.1% chance of remaining in the risk grey zone (95% CI (43.4%,

95.4%)). For those patients whose baseline risk is high, if their serum creatinine levels are measured, their

estimated risks have 90.9% chance of remaining high (with 95% CI (80.7%,97.7%)), 9.1% chance of being

medium (with 95% CI (2.3, 19.3%)), and almost zero chance of being low enough such that treatment is

deemed unnecessary (with 95% CI (0,0)). Note that for individuals originally in the medium risk range,

measuring serum creatinine makes it easier for physicians to make recommendation about their subsequent

medical procedures, whereas it is the other way around for those with low or high baseline risks.

For individual patients, detailed information about one’s baseline covariate values is more informative

than the risk group one belongs to. Not only do individual baseline risks vary within a baseline risk category

but also the new marker’s distribution may depend on the baseline covariates. Whenever information about

baseline covariates are available, the covariate-specific predictiveness curve can be used to tailor a patient’s

view about worthiness of having an extra test. To illustrate this, we display covariates-specific predictiveness

curves for three individuals using the PMLE method (Figure 2). Results based on PMLE-M method are

fairly similar (omitted). Subject 1 is a 57 years old female with BMI 26.8kg/m3 who has a smoking history,

hypertension and hypercholesterolaemia. Her baseline risk is 25.6%. Subject 2 is a 65 years old male with

BMI 26.0kg/m3 who has atherosclerosis disease. His baseline risk is 38.1%. Subject 3 is a 57 years old female
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with BMI 22.2kg/m3 who has smoking history and atherosclerosis disease. Her baseline risk is 42.6%. Next

we look closely at the impact of measuring serum creatinine on each patient.

Subject 1 has her baseline risk in the middle of the equivocal range. If serum creatinine is included in

the risk calculation, she has 8.6% chance of being reclassified as low risk (with 95% CI (0%, 50.1%)), 11.9%

chance (95% CI (2.6%, 47.0%)) of being reclassified as high risk, and 79.5% chance (95% CI (36.8, 89.0%))

of remaining in the equivocal zone. Subject 2 is originally at the high end of the equivocal risk range. If

his serum creatinine level is measured, he has 0.5% chance of being declared as low risk (with 95% CI (0%,

10.7%)), 50.7% chance (95% CI (10.5%, 84.5%)) of remaining in the risk grey zone. At the same time, there

is 50.7% chance (95% CI (10.5%, 84.5%)) that he will be classified as high risk and receive recommendation

for treatment. Subject 3 has her baseline risk marginally above high risk threshold. By measuring serum

creatinine, there is almost zero possibility (with 95% CI (0, 5.6%)) that she will be classified as low risk; there

is 69.4% chance (95% CI (25.6%, 95.0%)) that her risk will remain high and 30.6% chance (95% CI (25.6%,

95.0%)) that her risk will be deemed inadequate for making recommendation for or against treatment.

A subject’s choice about whether or not to measure a new marker will be affected by the marker’s

potential impact on medical decisions as can be seen from the subject’s covariate-specific predictiveness

curve. The specific risk thresholds on the curve pertinent to an individual will depend on beneficial and side

effects of treatment, as well as one’s tolerance for the risk of the disease. In addition, the cost of measuring

the raw marker may enter. For example, if subject 3 has a low tolerance for risk of disease and is willing to

have routine angiography unless her risk is below 10%, she might choose not to measure serum creatinine

since it is highly unlikely that her estimated risk will go below 10% based on the extra test. For subject 2,

if he has low tolerance for risk, he might also choose not to measure serum creatinine since the chance for

his estimated risk to drop below 10% is small; but on the other hand, if he has relatively high tolerance for

risk and is willing to go through renal angiography only if his risk is above 40%, then measuring serum level

might be attractive to him considering the large possibility that he will have a risk calculated that allows

him to decide with confidence to have renal angiography.
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5 Discussion

In this article we developed methodology for estimating the covariate-specific predictiveness curve for a

single marker in a case-control study. Our method accommodate matching in design. Two types of semi-

parametric approaches are examined assuming risk is monotone increasing in the marker value. The first

approach is based on empirical likelihood of Y and is applicable to discrete covariates. The method can be

easily generalized to the setting when Y is multivariate by modeling the empirical likelihood of Riskz(Y )

following similar arguments as in Huang (2007). Note that another related estimator can be constructed by

estimating FDz and FD̄z empirically using the case or control sample within the zth covariate group. Since

the exponential tilt relationship (2) implied by the risk model is not incorporated into estimation of the

marker distribution, this estimator is probably less efficient than the MLE. This has been demonstrated for

the overall predictiveness curve estimated with a case-control study (Huang, 2007).

The second approach combines estimation of the risk model with estimation of the covariate-specific

marker distribution assuming a semiparametric location-scale model for Y . Different weighting schemes can

be applied to accommodate the biased sampling design. This approach is applicable to general settings and

is analogous to the semiparametric approach proposed in Huang et al. (2007) for a cohort design. For a

generalization of this method when Y is multivariate, we can obtain R̂isk(Yi), i = 1, . . . , n using say pseudo-

maximum likelihood method, and then estimate the covariate-specific distribution of Risk(Y ) by plugging

R̂isk(Yi) into the weighted semiparametric location-scale model for logit{Risk(Y )}.

Note that from a matched case-control biomarker study, there are other types of predictiveness curves

we might be interested in estimating besides the covariate-specific predictiveness curve investigated here.

For example, we might be interested in the predictiveness curve based on both the biomarker and the

covariates. Alternatively, we might want to investigate the covariate-adjusted predictiveness curve for the

marker, characterized by a weighted summary of the covariate-specific predictiveness curves with weights

related to the covariate distribution. These different types of predictiveness curves can be used to answer

different scientific questions. Estimation of these predictiveness curves in a matched case-control study

can be achieved by combining estimates of the covariate-specific predictiveness Rz(v) vs v and some extra

information. This is a topic of current research.
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Appendix

A1: Proof of Theorems 1 and 2

Proof of Theorem 1

By Taylor’s expansion,

√
n
{

R̂z(v) − Rz(v)
}

=
√

n
[
G
{
θ̂, F̂−1

z (v), z
}
− G

{
θ, F−1

z (v), z
}]

=
{

∂G(s, y, z)
∂y

|s=θ,y=F−1
z (v)

}T √
n
{

F̂−1
z (v) − F−1

z (v)
}

+
(

∂G(s, y, z)
∂s

|s=θ,y=F−1
z (v)

)T √
n(θ̂ − θ) + op(1).

The result follows according to the delta method. Asymptotic normality of θ̂ and F̂z follows similar arguments

as in Huang (2007).

Proof of Theorem 2

√
n
{
R̂−1

z (p) − R−1
z (p)

}
=

√
n
[
F̂z

{
G−1

(
θ̂, p, z

)}
− Fz{G−1(θ, p, z)}

]

=
√

n
[
F̂z

{
G−1(θ, p, z)

}
− Fz{G−1(θ, p, z)}

]
+

√
n
[
Fz

{
G−1

(
θ̂, p, z

)}
− Fz{G−1(θ, p, z)}

]

+ Rn,
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where

Rn =
√

n
[
F̂z

{
G−1

(
θ̂, p, z

)}
− F̂z

{
G−1(θ, p, z)

}]

−
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n
[
Fz

{
G−1

(
θ̂, p, z

)}
− Fz{G−1(θ, p, z)}

])
= op(1)

by equicontinuity of the process
√

n
(
F̂z − Fz

)
. The result follows according to the delta method.

A2: Estimation without including main effect for each covariate group

Start from (6)

piz =
1

nz + λ2z {LRz(Yi, Zi) − 1}
=

1
nz + λ2z

[
exp

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

}
− 1
]

and
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exp
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2 ZM
i + θT

3 YiZ
I
i
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− 1
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[
exp

{
θ0 + η(z) + θ1Yi + θT

2 ZM
i + θT

3 YiZI
i

}
− 1
] = 0. (11)

Substituting piz into (5) we have

l =
Z∑

z=1

∑

i∈Uz

− log
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3 YiZ
I
i

}
.

Thus the maximum likelihood estimators θ̂0 and θ̂1 solve
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Observe that these are the score equations if we fit a prospective logistic model

logit{P (D = 1|Y, Z = z)} = θ0 + ξ(z) + θ1Yi + θT
2 ZM

i + θT
3 YiZ

I
i

to the case-control sample using ξ(z) = log {λ2z/(nz − λ2z)}+η(z) as the offset term. Therefore, one way to

estimate θ is to iteratively estimate λ2z and θ. That is, given some starting value of λ2z, we fit the modified
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logistic regression model to obtain an estimate of θ. Given the current estimate of θ, a new λ̂2z is solved as

the solution to (11). Continue till convergence.
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