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Analysis of Subgroup Effects in Randomized Trials When
Subgroup Membership is Informatively Missing: Appli-
cation to the MADIT Il Study
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Steven Goodman
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Summary . In this paper, we develop and implement a general sensitivity analysis methodology
for drawing inference about subgroup effects in a two-arm randomized trial when subgroup
status is only known for a non-random sample in one of the trial arms. The methodology is
developed in the context of the MADIT Il study, a randomized trial designed to evaluate the
effectiveness of implantable defibrillators on survival.

Keywords: Bounds, Expert Opinion, Identifiability, Missing covariates, Selection Model

1. Introduction

Missing data is a hallmark of most clinical trials. Whether it appreciably affects the sub-
sequent inference depends on the extent and pattern of the missing data, the reasons for
missingness, and the statistical procedures used to estimate the effect of interest and its
uncertainty. The greatest scientific challenge occurs when the data is missing informatively,
as the estimates of effect and their uncertainty depend on assumptions not identifiable
from the data. However, in biomedical settings, treating clinicians often can provide plau-
sible explanations for the missingness. Sensitivity analyses that incorporate this clinical
information can provide statistically and scientifically plausible bounds on effect estimates,
facilitating the translation of clinical knowledge into quantitative inference.

In this paper we present an example of a high-stakes medical technology being considered
for reimbursement by government agencies and other payors for which the critical clinical
trial evidence had a large proportion of what was thought to be a key covariate missing partly
by design. We present a statistical approach to incorporate plausible clinical/biological
information to see if it could have been useful in this context to represent the uncertainty
introduced by this missing data. We also describe what happened when simpler approaches
of analysis were used to assess and communicate that uncertainty.

2. Clinical Background

According to the Center of Health Statistics, heart disease is the leading cause of death in
the United States. More than half of these deaths are unexpected and occur within one hour
after the onset of acute symptoms (Myerburg and Wellens, 2006). Sudden cardiac death
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2 Daniel Scharfstein et al.

(SCD), as it is referred, claims the lives of roughly 325,000 Americans annually. Mecha-
nistically, SCD is typically initiated by ventricular tachycardia (VT), where the ventricles
of the heart beat at a very rapid rate with inadequate pumping, and then progresses to
ventricular fibrillation (VF), where the coordinated beating of the heart disintegrates into
uncoordinated, ineffective contractions (Winslow, Mehta, and Fuster, 2005). Death then
results from cerebral hypoxia (Zipes, 2005). Risk factors for SCD include advancing age,
male gender, African-American race, smoking, obesity, hypertension, and hereditary fac-
tors, such as hypertrophic cardiomyopathy (thickened heart muscle) and long-QT-interval
syndrome (Myerburg and Wellens, 2006).

There is no known way to prevent the abnormalities that result in SCD. Pharmacologic
means to reduce VT or VF are only partially successful. The only effective treatment
is defibrillation via electrical shock to the heart at the time of an arrhythmic event. In
the 1960s and 1970s an implantable, internal defibrillation device was developed and first
placed in a human being in 1980. The implantable cardiac defibrillator (ICD) is a device
that monitors the heart rate and rhythm continuously, is programmed to recognize VT and
VF, and deliver corrrective difibrillatory discharges when necessary (Mirowski, Mower, and
Reed, 1980). The FDA first approved ICDs in 1985 and Medicare initiated coverage of
ICDs in 1989, but only for extremely limited indications. In 1991 coverage was expanded
to include those who had an episode of cardiac arrest with ventricular fibrillation (VF)
which presumably would have resulted in SCD if defibrillation was not administered. In
1999, Medicare expanded coverage to include those who were deemed at high risk for SCD,
defined as either (1) a history of sustained ventricular tachycardia, occurring spontaneously
or induced by electrophysiological (EP) testing, or (2) familial or inherited conditions with
high risk for VT (e.g, long Q-T interval measured by an electrocardiogram or hypertrpophic
cardiomyopathy) (Phurrough, Farrell and Chin, 2003).

A series of randomized clinical trials conducted in the 1990’s and early 2000’s attempted
to establish the indications for implantation, i.e., to assess the existence and magnitude of
benefit in different populations. The first of these trials assessed ICD benefit in patients
who had experienced a near-fatal SCD event, and compared the ICD to medical (drug)
management. The largest of these trials, published in 1997, halted after 1016 patients, with
an observed 38% reduction in death rate in ICD patients after 18 months mean follow-up
(AVID, 1997). Subsequent analyses of this trial (Domanski, 1999) suggested that the benefit
was limited to subjects with poor cardiac function (Hallstrom, 2001).

Other trials evaluated the efficacy of ICD therapy in subjects without prior near-SCD
episodes, but deemed to be at high risk. The key eligibility criteria for these trials was LVEF
below a designated threshold, a documented history of VT, and a patient’s susceptibility to
an arrhythmia that could induced by electrophysiologic stimulation (EPS) and that was not
responsive to drug therapy. EPS is an invasive procedure wherein leads are introduced into
the heart during cardiac catheterization, and electrical shocks administered to produce a
sustained arrhythmia (i.e. maintained after stimulation ceases) similar to that presumably
experienced by a patient before SCD. Electrical stimulation or drug therapy is then used
to return the heart to a normal rhythm. Patients in whom such an arrhythmia could not
be induced were thought to be at low risk for SCD and were not eligible for these trials.

One of these trials was the Multicenter Automatic Defibrillator Intervention Trial (MA-
DIT), sponsored by Guidant Corporation (Moss et al., 1996). 196 patients were enrolled,
and the ICD was shown to have a dramatic effect on all-cause mortality; reducing it from
39% to 16%, with a hazard ratio of 0.46 (p=0.009) over a 27-month mean follow-up period.
On the basis of this and several other trials, a follow-up trial was initiated, called MADIT
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IT (Moss et al., 2002). This trial differed from MADIT in that prior EPS testing (and there-
fore confirmation of an inducible arrhythmia) was not required, nor was a history of an
arrhythmia. In addition, the threshold for LVEF was raised from 30% to 35% (i.e., better
cardiac function). The sample size was 1232 patients, much larger than MADIT because of
the anticipated lower mortality rate. The first patient was enrolled in July, 1997. The trial
was monitored by a data safety monitoring board (DSMB) and was stopped by the DSMB
due to efficacy in November 2001. With an average follow-up time of 20 months, the ICD
group exhibited a statistically and clinically significant 31% reduction in the overall mor-
tality hazard (p=0.016), with the proportion of patients who died in the ICD and control
arms during the follow-up period being 14.2% and 19.8%, respectively.

Based on the results of MADIT II, the Centers for Medicare and Medicaid Services
(CMS) was asked to expand Medicare coverage of ICDs to the MADIT II population. In
including patients with better heart function (i.e., 30< LVEF<35), and without prior history
of arrhythmia or evidence of inducibility, this represented a substantial expansion of the
eligible population. CMS wanted to be assured that the benefit seen in the MADIT II
trial was not restricted to patients with inducible arrhythmias, since the observed effect
(HR=0.69) was not as sizable as it was in the MADIT I trial (HR=0.46) in inducible
patients. An analysis stratified by inducibility status was not possible, since the control
patients did not undergo EPS testing as part of the trial, although 12 (2.4%) subjects in
control group did have EPS results, which were obtained in 583 (79.3%) of the implanted
patients. CMS obtained the MADIT II dataset to see if it was possible to estimate whether
the effect of ICDs differed according to inducibility status, even though this covariate was
missing for most of the control group.

Interestingly, it is likely that the missing inducible status in the implantation arm is
informative. Many clinicians were reluctant to enroll their patients in MADIT II, already
being convinced that ICDs benefited patients who met the original MADIT criteria, i.e.,
who were inducible. So some physicians performed EP testing, and if the patient was found
to be inducible, implanted an ICD and did not enroll them in MADIT II. If patients were
non-inducible, they were referred to MADIT II, although the preceding EP result was not
recorded as part of the trial dataset. EP testing post-randomization (but prior to implan-
tation) was likely to occur only in patients who had not previously had EP testing, making
it likely that those who were not EP tested in the implantation group were relatively more
likely to be inducible. Thus, it is plausible that missingness of inducibility status in the im-
plantation group was related to inducibility, even after controlling for risk factors (Personal
Communication with Dr. Hugh Calkins, Professor of Medicine, Division of Cardiology,
Johns Hopkins University).

In this paper, we develop a methodology for evaluating the effectiveness of ICD therapy
within inducibility strata that recognizes the fact that inducibility status may be informa-
tively missing. Our approach is an extension of the work of Rotnitzky, Scharfstein and
Robins (1998) and Rotnitzky et al. (2001) to informatively missing covariates.

The paper is organized as follows. In Section 2, we introduce notation and define the
causal effects of interest. In Section 3, we discuss issues of identifiability and introduce our
modeling assumptions. Section 5 discusses inference. Section 6 presents a re-analysis of
the MADIT II study. The final section is devoted to a discussion, including an epilogue of
CMS’s decision and how the cardiology community current view of inducibility as an effect
modifier.
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4 Daniel Scharfstein et al.

3. Notation and Data Structure

Consider the following notation for an individual. Let I denote the indicator of inducibility
(1 for inducible, 0 for non-inducible). Let T denote the indicator of assignment to the
ICD group (1 for ICD, 0 for control) . Further, let Y (¢) denote the indicator of dying
during follow-up if, possibly contrary to fact, the individual had assigned been assigned to
treatment group ¢, t = 0, 1. The observed outcome is Y = Y (T'). Let X denote the baseline
prognostic factors, excluding inducibility. We let V' denote a subset of X. Let M denote
the indicator of missingness of inducibility status, defined for those in the ICD group.

We consider the observed data for an individual asO = (T, Y, M : T =1,1: M =0,T =
1,X). We assume that we observe 1232 i.i.d. copies of O, O = {O; = (1},Y;,M; : T; =
1,Ij : Mj = O,Tj = 1),] = 1,,1232}

4. Causal Estimand, Assumptions, and Indentifiability

We are interested in estimating the relative risk of dying for ICD vs. control therapy,
stratified by inducibility status. The causal estimand is

where i = 0, 1. Since T is randomized, we know that
T 1 (Y(0),Y(1),1,X) (1)

Thus,
PlY =1T =1,1 =]

RR; = -
Py =T =0,1 =i

Since is I is missing on a subset of patients in the ICD group and the entire control group
(disccarded information on 12 subjects in the control group with inducibility status), we
need to make assumptions in order to draw inference about RR;. We start with identification
of P[Y =1|T = 1,1 =1].

4.1. Point Identification of P[Y = 1|T = 1,1 =]

Through the laws of probability,

PlY =1|T=1,I =]

LS LGP =iy =1,T=1,V=v,M=mlP[Y =1,M =m|T =1,V = v]dF(u|T = 1)
L oo PU =Y =y, T =1,V =v,M =m|P[Y =y, M =m|T =1,V = v]dF (s|T = 1)

Notice that all probabilities in this equation are identifiable from the observed data except
P[I=ilY =y, T =1,V =v,M = 1], for y = 0, 1. To identify this quantity, we will assume
the following pattern mixture model:

P[I=ilY =y, T=1,V =v, M = 0] exp(«i)

PISily =y, T=1V=yM=1]= )

(2)
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where

1
c(y,v;a) = ZP[I =Y =y, T =1,V =v, M = 0] exp(«i)
i=0
and « is a specified, non-identified constant. When a = 0, this model assumes that, for
patients in the ICD group with the same V and Y values, the distribution of inducibility
status among those with missing inducibility data is the same as those who are not missing
their inducibility data. When o > 0(< 0), this model assumes that, for patients in the ICD
group with the same V' and Y values, there is a higher (lower) proportion of inducibility
among those with missing inducibility data as compared to those who are not missing their
inducibility data. The difference between these proportions increases as the absolute value of
« increases. As a — +00(—00), the model assumes that everyone with missing inducibility
data is inducible (non-inducible). Since the probabilities on the right hand side of (2) are
identifiable, specification of «, therefore, identifies P[Y = 1|T = 1,1 = i]. Dr. Calkins (see
Section 2) makes the case that « is negative.
Using Bayes’ rule, it can be shown that model (2) is equivalent to the following selection
model:
logit PIM =1|T =1,V =uv,Y =y, =i = h(v,y) + i (3)

where
h(v,y) =logit PIM =1T =1,V =v,Y = y] —log c(y, v; a)

Here, « is interpreted as the conditional log odds ratio of having missing inducibility status
for an inducible vs. non-iducible patient in the ICD group. Under this formulation, o = 0
implies that, within the ICD group, missingness of inducibility status, is under-related to
the underlying inducibility status, given X and Y. « > 0(< 0) implies that, even after
adjusting for X and Y, patients who are inducible (non-inducible) are more likely to have
missing inducibile status than those who are non-inducible (inducible). Notice that, given
a, h(v,y) is identifiable.

Under the selection model formulation, we can write the following alterative identifica-
tion formula:

[ e | T = 1}

P[Y:1|T:1,I:Z]: (14exp(h(V, )Jr-az) (4)
[ — | T = 1]
(IFexp(h(V.Y)Fai)~1

Also, note that

(1— M)I(I =1)
1+ exp(h(V,Y) 4+ ai)~1

P[I:i|T:1]:E[(

T= 1] (5)

Under (1), P[I =T =1] = P[I =4|T =0].

Unfortunately, when V is high-dimensional, the curse of dimensionality tells us that
the the function h(v,y) cannot be estimated well in small to moderate sized samples. The
implication is that we will not be able to obtain an estimator of P[Y = 1|T = 1,1 = {]
that has adequate enough precision. As a result, we assume that h(v,y) follows a fully
parametric model. That is,

h(v,y) = U(v, 4;77) (6)
where [(v, ;) is a specified function of v, y, and v C R* and v* denotes the true unknown
parameter.
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6 Daniel Scharfstein et al.
Note that, under model (3), (6), with fixed «,
E[(M — (1 - Myexp(i(V, Y;7") + aD))$(V,Y) | T =1] =0 (7)

for all k x 1-dimensional functions ¢(V,Y"). This latter formula will be used as the basis for
estimating ~y*.

4.2. ldentification Region for P[Y = 1|7 =0, = i

In the control group, there is no inducibility status data. However, we can identify the
P[Y = 1|T = 0] and, given «, the P[I = i|T = 0] (from Section 4.1). By the law of total
and conditional probability, we know that

PlY =1T=0]=P[Y =1|T =0, = 1]P[I = 1|T = 0]+P[Y = 1|T = 0,1 = 0]P[I = 0|T = 0]
(8)
Since the left hand side is identified and the mixing probabilities P[I = |T = 0], the
quantities of interest P[Y = 1|T = 0,1 = ] are constrained. Without additional modeling
assumptions, we can find the minimum and maximum solutions for P[Y = 1|T = 0,1 = 4.
By imposing additional constraints, we can further restrict the range between the minimum
and maximum. In consultation with Dr. Hugh Calkins, we imposed the very conservative
assumption that
0.05 < P[Y = 1|T =0, = i] < 0.50 (9)

fori=0,1.

4.3. Identification Region for RR;

For each «, the maximum (minimum) value of RR; is P[Y = 1|T = 1,1 = i], identified in
(4), divided by the minimum (maximum) solution for P[Y = 1|T' = 0,1 = i] in (8) subject
to constraint (9).

5. Estimation

For specified o and function ¢(V,Y’), we can estimate v* as the solution, ~,(o; ¢) to the
E,[Uy(O;v;¢)] =0, where

Ua(0;7;0) = T(M — (1 = M) exp(I(V, Y577) + al))$(V,Y)

and F,[-] is the empirical expectation operator. When « = 0, it is natural to estimate v* by
maximum likliehood. We seek to choose ¢(V,Y) so that when oo = 0, the above estimating
equation will yield the maximum likelihood estimator. By taking ¢(V,Y") equal to

U(V,Y ;ML)

(VoY) = GV, Y1 775)

(10)

where v M1 is the MLE for v* when o = 0 and I(V, Y; ) is the derivative of I(V,Y;~) with
respect to 7, we obtain an estimating function that yields the MLE when o = 0. For each
a, we estimate v* using U, (O;7; &n).

We estimate P[Y = 1|T = 1|I =] by

& - I (1—-M)I(I =1)
By = LT =L =i = B | G e h(V,Y) + ai)
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where E,[-|-] is the conditional empirical expectation operator.
We estimate the minimum and maximum of P[Y" = 1|T = 0, I = ] (found as the solution
to (8) subject to constraint (9)), as the minimum and maxium solution to

PJY =1T=0]=P[Y =1|T =0, =1]P,[I =1|T = 0]+P[Y = 1|T = 0,1 = 0]P,[I = 0|T = 0]

(12)
subject to the the constraint (9), where P,[-|-] is the conditional empirical probability
operator. Denote the minimum and maximum as min P,[Y = 1T = 0, = i] and

max P,[Y = 1T =0, =]
The bounds on the relative risk of death for ICD vs. no treatment for inducibility status
1 is estimated by

P[Y =1T =1,1 =] P,[Y =1T =1,1 =1
max P, [Y =1|T =0,1 =i min P,[Y = 1|T = 0,1 = 1]

(13)
The variability of our estimators are evaluated using non-parametric bootstrap.

6. Data Analysis

Before we can implement our methods, we must address the issues of missing baseline
prognostic factors, V. In the pre-imputation columns of Tables 1 (age and general health), 2
(heart-related) , and 3 (medications-related), we show the numbers missing and the observed
means/percentages of various baseline characteristics. With the exception of inducibility
status, the factors have low levels of missing data. In the ICD and control arms, 89% of
patients had their baseline factors (except inducibility) completely recorded. To maximize
the generalizability to the original population, we multiply imputed the missing baseline
factors.

6.1. Imputation of Baseline Prognostic Factors
We utilized the sequential regression imputation method of Ragunathan et al. (2001) as
implemented in IVEware (Raghunathan, Solenberger, and Van Hoewyk, 2002) The method
assumes that the data are missing at random (Little and Rubin, 2002). The variables listed
in Tables 1-3 and the indicator of death were modeled in the imputation procedure. For
proper imputation, the joint conditional distribution of the missing variables (17 variables)
given the completely observed variables (12 variables) must be specified. The IVEware
procedure approximates this distribution by the product of conditional distributions of each
variable with missing data given all the other variables, including those with and without
missing data. Linear regression with normal errors is used for continuous variables; logistic
regression for binary variables; and polytomous logistic regression for categorical variables.
The results are shown in the post-imputation columns in Tables 1, 2, and 3. They are
based on the average of 5 imputed datasets. With the exception of inducibility status, the
pre- and post- imputation means/percentages are, as expected, almost identical. Further,
notice that the treatment groups are well balanced with respect to these factors.
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8 Daniel Scharfstein et al.

Table 1. Baseline Chacteristics, Pre- and Post-
Imputation

Pre-Imputation  Post-Imputation
Variable ICD Control ICD Control

Age 64.4 64.6 64.4 64.6
Missing 0 0 - -
Female 16.0 14.9 16.0 14.9
Missing 0 0 - -
BMI 27.6 277 27.6 277
Missing 6 3 - -
BUN 23.3 2338 23.2 238
Missing 11 10 - -
Diabetes 33.3 377 33.3 378
Missing 3 2 - -
Smoking 79.0 819 79.5 819
Missing 5 3 - -

Using the imputed inducibility status, we can, under the assumption of missing at ran-
dom, estimate the inducibility subgroup effects. In fact, we find that the relative risk of
dying for those treated with ICD vs.control is 0.54 (95% CI: [0.29,1.03]) for inducibles and
0.78 (95% CI: [0.56,1.09]) for non-inducibles. These relative risks and their associated con-
fidence intervals were determined using Rubin’s rules for combining results across imputed
datasets.

6.2. Sensitivity Analysis

In what follows, we address the issue that inducibility status is unlikely to be missing at
random. The imputed information on inducibility status and the inducibility status that is
measured on the 12 patients in the control group was not used. We used imputed versions
of the other baseline prognostic factors. We performed our analysis separately for each of
5 imputed datasets. Since there was essentially no variation across imputed datasets, we
simply report the results for the first imputed dataset.

In our analysis, we first selected a model for I(v,y;v*) in model (3,6) by setting a« = 0
and including all covariates in Tables 1 - 3 (except inducibility status) that were significant
predictors of M at the 0.30 significance level. Death status was retained in the model
regardless of its level of significance. The final logistic regression results (when a = 0)
are displayed in Table 4. Only use of ace inhibitors, presence of angina debicutus, and
myocardial infarction were significant (at the 0.05 level) predictors of missing inducibility
status in ICD group.

In our analysis, we assumed that o ranged between 0 and -2.0. That is, within levels of
covariates listed in Table 4, we assumed that non-inducible patients in the ICD group had
equal to 7.4 times the odds of having missing inducibility status as inducible patients in the
ICD group. Figure 1 displays estimates (along with 95% pointwise confidence interval) of
the probability of inducibility as a function of « for the first imputed dataset. The estimates
range from a maximum of 40.0% (95% CI: [0.35,0.45]) at « = —2.0 to a minimum of 35.6%
(95% CI: [0.32,0.39]) at « = 0.0.

In Figure 2, panels (a) and (b) display, respectively, present estimates (along with 95%
pointwise confidence intervals) for the probability of dying under ICD for inducibles and non-
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Table 2. Baseline Heart-Related Chacteristics
Pre-Imputation Post-Imputation

Variable ICD Control ICD Control
DBP 71.1 70.4 71.1 70.4
Missing 4 3 - -
SBP 122.4 120.8 122.4 120.8
Missing 4 3 - -
EF 23.1 23.2 23.1 23.2
Missing 0 0 - -
Heart Rate 72.5 71.9 72.5 71.9
Missing 5 3 - -
QRS Interval 0.12 0.12 0.12 0.12
Missing 11 8 - -
CHFNYHA
Grade 1 10.3%  12.1% 10.3%  12.0%
Grade 2 35.3% 33.8% 35.5% 33.8%
Grade 3 25.6% 23.1% 25.3% 23.1%
Grade 4 4.5% 4.2% 4.5% 4.2%
No CHF 24.5%  26.9% 24.4%  26.9%
Missing 10 10 - -
Angina
Grade 1 17.2% 16.8% 17.3% 16.7%
Grade 2 15.3% 17.4% 15.3% 17.3%
Grade 3 5.7% 6.2% 5.7% 6.2%
Grade 4 1.9% 1.2% 2.0% 1.2%
Decubitus 48%  2.9% 48%  3.0%
None 55.1%  55.5% 55.0% 55.6%
Missing 10 7 - -
Atrial Arrhythmia 27.7%  25.4% 27.6% 25.5%
Missing 17 13 - -
Hypertension 53.0% 53.5% 53.1% 53.6%
Missing 6 2 - -
Inducibile 36.0% 66,7% % 36.2% 38.9%
Missing 159 478 - -
Myocardial Infarction 12.4%  12.6% 13.0% 13.0%
Missing 40 31 - -
Non CABG revascularization 45.1%  45.2% 451% 42.1%
Missing 11 6 - -
Ventricular Arrhythmia, 10.3%  13.5% 10.4%  13.6%
Missing 21 14 - -
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10 Daniel Scharfstein et al.

Table 3. Baseline Medications, Pre- and Post Imputation
Pre-Imputation  Post-Imputation

Variable ICD Control ICD Control
ACE inhibitors 77.4%  17.4% 77.4%  17.4%
Missing 0 0 - -
Aspirin 67.8% 70.2% 67.8%  70.2%
Missing 0 0 - -
Beta Blockers 63.2%  60.4% 63.2% 60.4%
Missing 0 0 - -
Coronary bypass surgery 57.8% 55.9% 58.0% 56.1%
Missing 3 1 - -
Calcium Channel Blockers 11.9%  14.3% 11.9%  14.3%
Missing 0 0 - -
Digitalis 59.6% 56.5%  59.6% 56.5%
Missing 0 0 - -
Diuretic agents 72.9% 77.6% 72.9% 77.6%
Missing 0 0 - -
Lipid Lowering agents 66.3% 64.5% 66.3% 64.5%
Missing 0 0 - -
Lipid Lowering Statins agents 63.5% 61.8% 63.5% 61.8%
Missing 0 0 - -

Table 4. Inference aboutv* when a = 0

Parameter Estimate Standard Error  95% Confidence Interval
Intercept -1.14 0.69 (-2.49,0.22)
EF 0.02 0.02 (-0.01,0.06)
QRS -3.41 2.85 (-9.00,2.18)
CHFNYHA - 1 -0.26 0.37 (-0.99,0.47)
CHFNYHA - 2 0.42 0.25 (-0.07,0.92)
CHFNYHA - 34 0.06 0.28 (-0.49,0.60)
Angina - 1 0.05 0.26 (-0.45,0.55)
Angina - 2 -0.06 0.27 (-0.59,0.46)
Angina - 3,4 0.61 0.33 (-0.04,1.25)
Angina - Decubitis -1.11 0.62 (-2.33,-0.10)
Atrial Arrhythmia -0.32 0.22 (-0.76,0.12)
Myocardial Infarction 0.65 0.27 (0.12,1.19)
Non CABG Revasularization 0.22 0.19 (-0.15,0.60)
Ace Inhibitors -0.49 0.21 (-0.90,-0.08)
Beta Blockers -0.27 0.20 (-0.65,0.12)
Lipid Lowering Agents -0.75 0.66 (-2.03,0.54)
Lipid Lowering Statins 0.71 0.64 (-0.55,1.98)
Death 0.12 0.28 (-0.42,0.66)
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Fig. 1. Estimates (along with 95% pointwise confidence interval) of the probability of inducibility as a

function of « for the first imputed data set.
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12 Daniel Scharfstein et al.

Fig. 2. Panels (a) and (b) display, respectively, estimates (along with 95% pointwise confidence
intervals) of the probability of death under ICD for inducibles and non-inducibles, respectively, as a
function of « for the first imputed dataset.
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inducibles as a function of o. For inducibles, the estimates and confidence intervals for the
probability of dying under ICD are constant functions of a up to the second decimal place.
Specifically, the probability of death is 9.3% (95% CI: 6.1%,14.0%). For non-inducibles, the
probability of dying under ICD varies slightly from a minimum of 15.9% (95% CI: [13.0%,
19.2%)]) at @ = —2.0 to a maximum of 16.5% (95% CI: [13.3%, 20.1%)]). It is important to
highlight that the probability of dying under ICD is estimated to be lower for inducibles
than non-inducibles.

Panels (a) and (b) in Figure 3 display the estimated bounds and 95% pointwise confi-
dence intervals for the bounds on the probability of dying under standard care for inducibles
and non-inducibles, respectively, for the first imputed dataset. At each «, the 95% confi-
dence interval is interpreted as an interval that would wholly contain, under repeated sam-
pling, the true interval 95% of the time. The interval was formed by using non-parametric
bootstrap and a bi-section grid search. In panel (a), we see that the bounds are [6.0%,42.0%
] (95% CTI: [5.0%,49.5%]) at o = —2.0 and [6.8%,46.5%] (95% CI: [5.0%,49.9%]) at o = 0 for
inducibles. So, for inducibles, our data do not further constrain the probability of dying un-
der standard therapy, above and beyond the constraints imposed by Dr. Calkins. In panel
(b), we see that the bounds for the probability of dying is estimated as [5.0%, 29%] (95%
CI: [5.0%, 35%)]) at @ = —2.0 and [5.0%,27%] (95% CI: [5.0%, 33.0%)]). For non-inducibles,
our data further constrain the upper bound (relative to the 50% conservative prior upper
bound) on the probability of dying under standard therapy.
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In panels (c) and (d) of Figure 3, we display the relative risks (ICD vs. standard
therapy) of dying for inducible and non-inducible patients, respectively. It is estimated
that the relative risk for inducibles lies between 0.23 and 1.60 (95% CI: [0.13, 2.47] at
a = —2.0 and between 0.20 and 1.40 (95% CI: [0.12,2.36]) at «« = 0. For non-inducibles, the
equivalent bounds are [0.55,3.18] (95% CI: [0.41,3.86]) and [0.61,3.30] (95% CI: [0.45,3.88]).
For the first imputation and for all o, 100% of the bootstrapped samples had overlapping
intervals for the relative risks for inducibles and non-inducibles.

These results demonstrate, in the context of the prior assumptions and our sensitivity
analysis based model, that the data from MADIT II do not provide evidence of a differential
effect of ICD therapy for inducible vs. non-inducible patients.

In discussions with Dr. Calkins, we also considered the additional constraint:

PIY(0) = 1|I =1] > P[Y(0) = 1|I = 0] (14)

That is, prior to the MADIT II, it was generally believed that inducible patients were
at higher risk of death than non-inducible patients, under standard therapy. Figure 4
shows, for the first imputed dataset, the results when this additional constraint is imposed.
In panel (c), we see that the relative risk of dying for inducibles lies between 0.23 and
0.46 (95% CI: [0.13,0.68]) at o = —2.0 and between 0.20 and 0.45 (95% CI: [0.12,0.67])
at @ = 0.0. These bounds are much tighter than ones that did not impose the above
constraint (compare Figure 3¢ with Figure 4c¢). For non-inducibles, the bounds for the
relative risk of dying are estimated as [0.84,3.18] (95% CI : [0.63,3.84]) at @ = —2.0 and
[0.87,3.30] (95% CI: [0.65,3.88] ) at aw = 0. These bounds are only slightly tighter than the
ones without the above constraint (compare Figure 3d with Figure 4d). Here, for all a, less
than 0.25% of the bootstrapped intervals for the relative risks of dying for inducibles and
non-inducibles overlap. With the additional constraint, we would be able to conclude that
there is strong evidence to suggest that ICDs are more effective for inducibles as compared
to non-inducibles.

7. Discussion

In this paper, we demonstrated a general sensitivity analysis methodology for drawing
inference about subgroup effects in a two-arm randomized trial when the subgroup status
is only known for a non-random sample of one of the trial arms. Our methodology allows
the incorporation of scientific constraints to increase the precision of the inferences. The
methodology will be useful in settings where an intervention affords the opportunity to
collect risk factors, which are not available otherwise. This may occur when the intervention
is invasive.

We generally advocate the use of sensitivity analysis and bounds in settings where the
parameters of primary of interest are not identifiable without strong untestable assumptions.
We believe that such an approach is useful in conveying the additional uncertainty in the
analysis that is generated above and beyond sampling variability.

7.1. CMS Process

The Medicare Advisory committee met on February 12 , 2003 in order to evaluate the
scientific evidence of the effectiveness of the ICD’s in Medicare patients, to analyze the
external validity of MADIT II and to characterize the magnitude of the effect size for
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14 Daniel Scharfstein et al.

Fig. 3. Panels (a) and (b) display the estimated bounds and 95% pointwise confidence intervals for
the probability of dying under standard therapy for inducibles and non-inducibles, respectively as a
function of «, for the first imputed dataset. Panels (c) and (d) displays display the estimated bounds
and 95% pointwise confidence intervals for the relative risk of dying for ICD vs. standard therapy for
inducibles and non-inducibles, respectively as a function of «, for the first imputed dataset.
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Fig. 4. Panels (a) and (b) display the estimates and 95% pointwise confidence intervals for the
probability of dying under standard therapy as a function of «, for the inducible and non-inducible
groups, respectively, under constraints (9,10). Panels (c) and (d) display the estimated bounds and
95% pointwise confidence intervals for the relative risk of dying for ICD vs. standard therapy as a
function of « for inducible and non-inducible patients, respectively, under constraints (9,10).
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different populations of patients. The goal of the discussion and decisions was to provide
the evidence to CMS who had to make a coverage recommendation for the ICD. CMS was
particularly interested in whether there were differential effects of ICD’s by inducibility
status. One of the authors (SNG) was asked to assist in the subgroup analysis. His analysis
used data on patients who had EP testing to develop a prediction model for inducibility
given baseline factors. He found that NYHA functional class, ejection fraction, heart rate,
and blood urea nitrogen (BUN) were the strongest predictors, albeit with a ROC curve AUC
of 0.65, indicating that the predictors of inducibility status were not highly informative. He
used this model to multiple impute inducibility status for those in the control group and
those in the ICD group without EP testing results. His analysis assumed that missingness
of inducibility status was unrelated to death or inducibility status conditional on NYHA
functional class, ejection fraction, heart rate, and blood urea nitrogen (BUN). The results
of this MAR analysis showed an absolute decrease in mortality of -9.5% (95% CI, -16.9%
to -2.2%) in the inducible group and -3.6% (95% CI, -9.1% to 2.0%) in the non-inducibles,
from a baseline mortality of about 20% in each. The difference between the two effects was
estimated as -5.9% (-15% to 3.1% ). Based on this, he concluded

“that the data strengthened the finding from MADIT I that inducible patients
experience a substantial benefit from ICDs, that it provides weak to moderate
evidence that the ICD effect is greater in inducible than in non-inducible pa-
tients, and that it would be an error to interpret the results as indicating no
benefit in the non-inducible group. The adjudged strength of the evidence for
an ICD effect in non-inducibles must come from a qualitative, biologic judgment
about the similarity of the physiologic mechanism producing the treatment ef-
fect in the two types of patients If similar, the evidential strength and treatment
effects lie somewhere between the separate and combined results.” (Anderson,
2003)

Our most restrictive analysis (based on assumptions 9 and 14) is consistent with this con-
clusion; however our less restrictive analysis (based on assumption 9) is less so. Using the
approach developed in this paper would require the members of the scientific advisory board
to specify their beliefs regarding assumptions 9 and 14.

Although Goodman’s analysis and interpretation supported the company position, it
was widely misperceived. A Washington Post editorial written several months after the
meeting, Berger (2003) condemned this analysis, saying, “I attended the proceedings and
was appalled by what I witnessed. CMS presented a specious analysis to discredit the rigor
of the study’s landmark findings. The agency was manipulating data in an effort to limit
access to the therapy.”

Guidant Corporation argued that coverage should not be based on inducibility status,
and made available at the hearing previously undisclosed pre-enrollment inducibility status
on 257 patients, 113 randomized to standard therapy and 114 to the ICD arm (Ander-
son, 2003). For this possibly non-random subset of patients, they reported that 19.5% of
inducibles died under conventional therapy versus only 9% in the ICD group, yielding a
relative risk of death for non-inducibles of 0.54. No confidence intervals were reported in
the meeting minutes. The point estimate is consistent with our bounds generated under
constraint (9) and inconsistent with the bounds under constraints (9,14).

Panel members tended to find the analysis of the pre-randomization inducibility data
compelling, and unanimously voted that the “evidence is adequate to draw conclusions
about health outcomes in patients identical to the patients enrolled in the MADIT II trial.”
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Risk stratification based on inducibility status was not part of their recommendation (An-
derson, 2003).

On June 6, 2003, a CMS decision memorandum stated CMS’s intent to expand the 1999
coverage criteria to include patients with previous MI, LVEF less than or equal to 30%
and a QRS duration greater than 120 milliseconds, a subset of the MADIT II population
(Phurrough, Farrell, and Chin, 2003). Inducibility was not part of their coverage decision. It
has been argued that QRS duration, a factor that was collected routinely in MADIT II, was
added as an restriction to reduce the financial impact of allowing coverage for all MADIT II-
type patients (Reynolds and Josephson, 2003) until further clinical trial information could
be obtained. The restriction was removed by CMS in September, 2004 after the release
of findings from a subsequent trial (SCD-HeFT) that supported the MADIT II results,
although subsequent CMS coverage was made contingent on the institution of a registry of
all ICD users, with the ostensible purpose of facilitating further research and refining ICD
indications in the future (Phurrough et al., 2004).

7.2. Final Thoughts

This story highlights the difficulty of both calculating and communicating quantitative
results that reflect both sampling and non-sampling uncertainty in a policy arena. Those
who most need to understand and process the quantitative information often have difficulty
doing so. The methodology proposed in this paper would require individuals to think about
the underlying assumptions in the analyses, to formalize their prior beliefs, and hopefully
understand better the impact of these priors on conclusions, as well as present conclusions
that reflect current biologic and clinical understanding.
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