
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year Paper

Optimization of the Architecture of Neural
Networks Using a

Deletion/Substitution/Addition Algorithm

Blythe Durbin∗ Sandrine Dudoit†

Mark J. van der Laan‡

∗Postdoctoral Fellow, Division of Biostatistics, School of Public Health, University of Califor-
nia, Berkeley, bpdurbin@stat.berkeley.edu
†Division of Biostatistics, School of Public Health, University of California, Berkeley, san-

drine@stat.berkeley.edu
‡Division of Biostatistics, School of Public Health, University of California, Berkeley,

laan@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper170

Copyright c©2005 by the authors.

Optimization of the Architecture of Neural
Networks Using a

Deletion/Substitution/Addition Algorithm

Blythe Durbin, Sandrine Dudoit, and Mark J. van der Laan

Abstract

Neural networks are a popular machine learning tool, particularly in applications
such as the prediction of protein secondary structure. However, overfitting poses
an obstacle to their effective use for this and other problems. Due to the large num-
ber of parameters in a typical neural network, one may obtain a network fit that
perfectly predicts the learning data yet fails to generalize to other data sets. One
way of reducing the size of the parameter space is to alter the network topology
so that some edges are removed; however, it is often not immediately apparent
which edges should be eliminated. We propose a data-adaptive method of se-
lecting an optimal network architecture using the Deletion/Substitution/Addition
algorithm introduced in Sinisi and van der Laan (2004) and Molinaro and van der
Laan (2004). Results of this approach in the regression case are presented on two
simulated data sets and the diabetes data of Efron et al. (2002).

1 Introduction

1.1 Motivation

Artificial neural networks are a popular tool for the prediction of both poly-
chotomous and continuous outcomes, that is, for classification and regression.
Because the sigmoidal basis functions upon which they rely can closely approx-
imate a wide variety of functions, neural networks have the capacity to provide
good estimates of parameters with complex functional forms (Barron, 1993). In
recent years, neural networks have been used with some success for the predic-
tion of the secondary structure of a protein from its amino acid sequence (Jones,
1999).

However, neural networks are not without problems. If all possible edges
are included in the network graph, the size of the parameter space may become
unwieldy even for a network with a relatively small number of nodes. For
example, one of the neural networks used for structure prediction in Jones (1999)
has 315 input units, 75 hidden units, and 3 output units, for a total of 24,240
parameters.

Eliminating some edges in the neural network can reduce the size of the pa-
rameter space and improve prediction accuracy; however, it is not immediately
apparent how one might go about this. One approach has been to select the
network architecture by hand based on subject matter knowledge, as in Riis
and Krogh (1996). However, this method relies on such expert knowledge being
available, which may not be the case for all types of data. A better approach
would be to select the neural network data-adaptively, that is, allowing the data
themselves to select a network giving the best predictions.

We present a method for data-adaptive optimization of the architecture of a
neural network in order to reduce the number of parameters in the model and
improve prediction. This method uses a
Deletion/Substitution/Addition algorithm of the type introduced by Sinisi and
van der Laan (2004) and Molinaro and van der Laan (2004). By deleting,
substituting, and adding edges in the network graph, a sequence of networks
is produced from which an optimal model may be selected by cross-validation.
This method is demonstrated on two simulated data sets and the diabetes data
from Efron et al. (2002). In this paper we illustrate only the application to
single-output neural networks for regression, in which the response consists of a
single, continuous variable; however, future work will focus on the extension of
the neural network Deletion/Substitution/Addition algorithm to classification,
where the neural network has multiple output nodes.

1.2 The Neural-Network Model

Let X = (W, Y), where W ∈ RNinput is a covariate vector (possibly includ-
ing an intercept) with Ninput components and Y is a univariate continuous
response variable. For simplicity, we first present the neural-network model for
a fully-connected network, that is, one in which every input unit (covariate) is

1

Hosted by The Berkeley Electronic Press

connected to every hidden unit. In the case of a fully-connected network with
Nhidden hidden units and univariate continuous output (response), the condi-
tional expectation of the response Y given the covariates W is modeled as

ψ(W) = E(Y |W) = β10 +
Nhidden∑

j=1

β1jσ(β>2jW), (1)

where β1j ∈ R1, β2j ∈ RNinput , and σ(·) is a sigmoidal function1. Let β =
[β10, β11, . . . , β1Nhidden

, β21, . . . , β2Nhidden
]> denote the complete parameter vec-

tor, of dimension O(Ninput ·Nhidden).
The function in Equation (1) corresponds to a fully-connected neural net-

work, of the sort represented by the graph in Figure 1. However, as mentioned

A Fully−Connected Neural Network with 4 Input Units,
2 Hidden Units, and 1 Output Unit

W
1
 W

2
 W

3
 W

4

Y

Input Units

Hidden Units

Output Unit

1
2 3 4 5 6 7

8

Figure 1: A fully-connected neural network, where every input unit is connected
to every hidden unit.

previously, not every input unit need be connected to every hidden unit. Indeed,
it is these sparser networks in which we will be most interested as we seek to

1A sigmoidal function σ(·) is “a bounded measurable function on the real line for which
σ(z) → 1 as z →∞ and σ(z) → 0 as z → −∞” (Barron, 1993). A popular choice of sigmoidal
function for neural networks is the logit function σ(t) = 1/[1 + exp(−t)].

2

http://biostats.bepress.com/ucbbiostat/paper170

reduce the size of the parameter space by eliminating edges in the network. We
will use the following parameterization to describe these sparser networks.

With each hidden unit, associate a binary vector p ∈ {0, 1}Ninput indicating
which covariates feed into that hidden unit, with pl = 1 if the lth covariate Wl

is present in the linear combination inside the sigmoidal function and pl = 0
otherwise. Define an index set I = {p1, . . . ,pNhidden

}. Notice that this index
set I completely describes the network architecture, assuming in the regression
case that every hidden unit is connected to the single output unit. A null vector
p = 0 denotes a hidden unit with no covariates feeding into it.

Let
φp,β2p(W) = σ(

∑

{l:pl=1}
β2plWl). (2)

The neural-network model may now be rewritten as

ψI,β(W) = β10 +
∑

p∈I

β1pφp,β2p(W). (3)

Notice that ψI,β(W) is a linear combination of basis functions parameterized by
p and β2p. It is this parameterization with which we will work when applying
the Deletion/Substitution/Addition algorithm to neural networks.

2 The Deletion/Substitution/Addition Algorithm
for Selection of Network Architecture

2.1 Loss-Based Estimation with Cross-Validation

Deletion/Substitution/Addition (D/S/A) algorithms (Sinisi and van der Laan,
2004; Molinaro and van der Laan, 2004) provide an aggressive and flexible ap-
proach to selecting estimators from among possible linear combinations of basis
functions such as that in Equation (3). In order to motivate this class of meth-
ods, a brief discussion of loss-based estimation with cross-validation appears to
be in order at this point (as in van der Laan and Dudoit (2003)).

For a random variable X with data-generating distribution P , define the
parameter of interest ψ ∈ Ψ as the minimizer of risk (or the expected value of
the loss function) with respect to a given loss function L(·, ·) over a parameter
space Ψ:

ψ = argminψ′∈Ψ

∫
L(x, ψ′)dP (x). (4)

In the case of neural networks for regression, X = (W, Y) and the parameter of
interest is the conditional expected value of the response Y given the covariates
W,

ψ(W) = E(Y |W),

which minimizes the risk with respect to the squared-error loss function,

L(X, ψ) = (Y − ψ(W))2.

3

Hosted by The Berkeley Electronic Press

Now, when presented with data {X1, . . . ,Xn}, with empirical distribution
Pn, a naive approach might be to attempt to minimize the empirical risk∫

L(x, ψ)dPn(x); however, this would of course produce an overfit estimate.
Sieve estimation, to which Deletion/Substitution/Addition algorithms provide
one approach, confronts this problem by minimizing the empirical risk over
subspaces of increasing size.

As in Section 1.2, define the parameter of interest in terms of a linear com-
bination of basis functions, and let an index set I define which basis functions
are used in a given linear combination. Then, collections Ik of index sets I,
corresponding to neural networks of size k, may be used to define subspaces
Ψk ⊆ Ψ of the parameter space. The “size” of a neural network might refer
to the number of parameters, the number of lower edges in the network graph,
or the number of hidden units. The term “sieve” refers to a sequence of sub-
spaces Ψk, corresponding to collections Ik of index sets of size k, where, loosely
speaking, the size of an index set I refers to a suitably defined size for the
corresponding neural network.

For each subspace Ψk of the parameter space, one can generate a candidate
estimator with minimum empirical risk in two steps:

1. For a fixed index set I ∈ Ik, obtain ψI,βn,n by finding βn minimizing the
empirical risk.

2. For each index set size k, find I ∈ Ik minimizing the empirical risk.

Finally, given a sequence of estimators, one for each subspace Ψk, select among
estimators corresponding to different values of k using cross-validation.

The D/S/A algorithm is concerned with Step 2 of the risk optimization
problem and produces a sequence Ik, k = 1, . . . , K of index sets, one for each
subspace.

In the implementation of the D/S/A algorithm for neural networks in Section
2.3, we define the size of the neural network as the number of lower edges in
the network graph. Another implementation might define size to be the number
of parameters in the network model; these two definitions are related but not
identical. In either case, one only makes comparisons between models of the
same size, based on whichever definition of size is given.

2.2 Deletion/Substitution/Addition Algorithms

Deletion/Substitution/Addition algorithms (Sinisi and van der Laan, 2004; Moli-
naro and van der Laan, 2004) attempt to solve the second aspect of the above
problem: that of finding, for a given subspace Ψk, an index set I of size k
with minimum empirical risk. Sinisi and van der Laan (2004) apply a D/S/A
algorithm to basis functions consisting of tensor products of polynomials, while
Molinaro and van der Laan (2004) use indicator basis functions of the sort used
in recursive partitioning.

For a given index set I of size k, a Deletion/Substitution/Addition algorithm
is defined by three types of moves on I: deletion moves, substitution moves, and
addition moves.

4

http://biostats.bepress.com/ucbbiostat/paper170

In a deletion move, an element is deleted from the index set I, producing an
index set I− of size k − 1 corresponding to a smaller model:

I → I−

k → k − 1.

In a substitution move, an element of the index set I is replaced with another
element, producing a new index set I= of size k corresponding to a model of
the same size:

I → I=

k → k.

Finally, in an addition move, an element is added to the index set I, producing
an index set I+ of size k + 1:

I → I+

k → k + 1.

Let fE(I) denote the empirical risk associated with the index set I, with
respect to a given loss function (e.g. the squared error loss function in the
case of regression), and I0 denote the current index set. Let Ik and BEST (k)
denote, respectively, the current best index set of size k and corresponding value
of fE(I); that is, Ik is the current estimate of argminI∈Ik

fE(I), where Ik is the
collection of all possible index sets of size k. Let DEL(I) be the set of indices I−

that may be obtained from the index set I via a single deletion move, SUB(I)
be the set of indices I= that may be obtained from the index set I via a single
substitution move, and ADD(I) be the set of indices I+ that may be obtained
from the index set I via a single addition move. (Note that for a given index
set I, the sets DEL(I) or SUB(I) may be empty, for example if I = ∅.)

The D/S/A algorithm proceeds as follows:

1. Initialization: Set I0 = ∅, BEST (k) = ∞, k = 1, 2, . . .

2. Algorithm: (?) Let k = |I0|.
• Find best deletion move. Let I− ≡ argminI∈DEL(I0)fE(I). If fE(I−) <

BEST (k − 1), set I0 = I−, BEST (k − 1) = fE(I−), Ik−1 = I−, go
to (?).

• Else find best substitution move. Let
I= ≡ argminI∈SUB(I0)fE(I). If fE(I=) < fE(I0), set I0 = I=, go to
(?). If additionally, fE(I=) < BEST (k), set BEST (k) = fE(I=),
Ik = I=.

• Else find best addition move. Let I+ ≡ argminI∈ADD(I0)fE(I). Set
I0 = I+. If fE(I+) < BEST (k + 1), set BEST (k + 1) = fE(I+),
Ik+1 = I+.

5

Hosted by The Berkeley Electronic Press

3. Stopping rule: Run algorithm until index sets exceed a predetermined size
(other criteria are possible–see Sinisi and van der Laan (2004)).

Select among final index sets Ik, k = 1, 2, . . . using cross-validation.
By always attempting to update smaller models before increasing the model

size, D/S/A algorithms allow an aggressive search of each subspace Ψk for the
best model.

The D/S/A algorithm, as described above, applies to general estimation
problems with arbitrary loss functions and parameterizations. However, the
deletion, substitution, and addition moves are specific to the parameterization
of the problem.

2.3 Deletion/Substitution/Addition Moves for Neural Net-
works

We will use a Deletion/Substitution/Addition algorithm to data-adaptively op-
timize the architecture of a neural network by deleting, substituting, and adding
edges in the neural-network graph. The number of parameters in a neural-
network model for regression is determined both by the number of edges in the
lower part of the network graph and the number of hidden units. The number
and placement of the edges in the lower part of the network graph, determining
which covariates feed into which hidden units, will be the main focus of the
algorithm. This leaves the number of hidden units as a tuning parameter, to be
selected via cross-validation.

First, let us define the edge set E ⊆ {1, . . . , Ninput ·Nhidden}, derived from
the previously defined index set I = {p1, . . . ,pNhidden

} as follows: Let

e = e(I) = [p>1 , . . . ,p>Nhidden
]>

E = E(e(I)) = E(I) = {i ∈ {1, . . . , Ninput ·Nhidden} : ei = 1}. (5)

Loosely speaking, the edge set E is defined by numbering from 1 to
Ninput · Nhidden all of the possible lower edges that would be present in the
fully-connected network and listing which ones are actually present.

The D/S/A moves described below will act on the edge set E rather than on
the index set I. This means that the size k mentioned in Section 2.2 refers to the
number of lower edges in the network graph; we have |E| = k and |I| = Nhidden.

The moves of the D/S/A algorithm for neural networks are defined as follows:

Starting Value Initially, let pj = 0, j = 1, . . . , Nhidden, and I0 = {p1, . . . ,pNhidden
}.

The number of allowed hidden units Nhidden is fixed in advance.

Deletion Move In a deletion move, an edge is deleted from the lower part
of the network graph, decreasing the size of the edge set E by 1. Formally
speaking, for a hidden unit j, this is equivalent to subtracting a unit vector ul

6

http://biostats.bepress.com/ucbbiostat/paper170

p

1
 = [1,1,0,0]

p
2
 = [0,0,1,1]

I = {p
1
, p

2
}

E = {1,2,7,8}
k = |E| = 4

p
1
 = [1,1,0,0]

p−
2
 = [0,0,1,0]

I− = {p
1
, p−

2
}

E− = {1,2,7}
k = |E−| = 3

Deletion Move

 1 2 7 8

1 2 7

Figure 2: A deletion move.

(where ulm = 1, l = m, ulm = 0, l 6= m) from pj .

pj → p−j = pj − ul, l s.t. pjl = 1

I → I− = {p1, . . . ,p−j , . . . ,pNhidden
}

E → E− = E(I−),
|E−| = |E| − 1

where the mapping from I− to E− is as defined in Equation (5). A deletion
move is shown in Figure 2.

Note, that when a deletion move of the type described above is performed,
the number of identifiable parameters in the network model may be reduced by
as many as three if the last edge feeding into a hidden unit is deleted in the
process.

7

Hosted by The Berkeley Electronic Press

Substitution move In a substitution move, an edge is removed from one
hidden unit and a different edge is added either to that hidden unit or to a
different existing hidden unit (meaning a hidden unit j for which pj 6= 0),
producing a graph with the same number of lower edges. Formally speaking,
for a hidden unit j, this is equivalent to subtracting a unit vector ul from pj

and adding a unit vector ul′ to pj or pj′ .
If an edge is substituted within the same hidden unit,

p → p=
j = pj − ul + ul′ , l s.t. pjl = 1, l′ s.t. pjl′ = 0

I → I= = {p1, . . . ,p=
j , . . . ,pNhidden

}
E → E= = E(I=),

|E=| = |E|.
If an edge is substituted between two different hidden units,

pj → p=
j = pj − ul, l s.t. pjl = 1

pj′ → p=
j′ = pj′ + ul′ , l′ s.t. pj′l′ = 0

I → I= = {p1, . . . ,p=
j , . . . ,p=

j′ , . . . ,pNhidden
}

E → E= = E(I=),
|E=| = |E|.

A substitution move is shown in Figure 3.
When a substitution move of the type described above is performed, the size

of the edge set E remains constant, but the number of parameters in the model
may be reduced by up to two if the last edge is removed from a hidden unit in
the process.

Addition Move In an addition move, either an edge is added to an existing
hidden unit or a new hidden unit with a single covariate feeding into it is added
to the neural-network model, increasing the number of lower edges in the model
by 1. Formally, this is equivalent to adding a unit vector ul to some pj ∈ I.

We have

pj → p+
j = pj + ul, l s.t. pjl = 0

I → I+ = {p1, . . . ,p+
j , . . . ,pNhidden

}
E → E+ = E(I+),

|E+| = |E|+ 1.

An addition move is shown in Figure 4.
When an addition move is performed, the number of identifiable parameters

in the model may increase by as many as three if the first edge is added to a
previously unused hidden unit.

These deletion, substitution, and addition moves are used in the D/S/A algo-
rithm outlined in Section 2.2 to produce a sequence of edge sets Ek correspond-
ing to neural networks with k lower edges, each of which is an approximation
to argminI:|E(I)|=kfE(I).

8

http://biostats.bepress.com/ucbbiostat/paper170

p
1
 = [1,1,0,0]

p
2
 = [0,0,1,1]

I = {p
1
, p

2
}

E = {1,2,7,8}
k = |E| = 4

p
1
 = [1,1,0,0]

p=
2
 = [1,0,1,0]

I= = {p
1
, p=

2
}

E= = {1,2,5,7}
k = |E=| = 4

Substitution Move

1 2 7 8

1
2

5 7

Figure 3: A substitution move.

9

Hosted by The Berkeley Electronic Press

p
1
 = [1,1,0,0]

p
2
 = [0,0,1,1]

I = {p
1
, p

2
}

E= {1,2,7,8}
k = |E| = 4

p
1
 = [1,1,0,0]

p+
2
 = [1,0,1,1]

I+ = {p
1
, p

2
+}

E+ = {1,2,5,7,8}
k = |E+| = 5

Addition Move

1 2 7 8

1
2

5 7 8

Figure 4: An addition move.

10

http://biostats.bepress.com/ucbbiostat/paper170

Note that in the D/S/A algorithm for neural networks outlined above, the
index k (from the basic D/S/A algorithm in Section 2.2) refers to the number of
lower edges in the network graph; that is, we use k = |E| where E = E(I) is the
set of lower edges. An alternate version of D/S/A for neural networks might add
and delete hidden units rather than edges. In this alternate version, we would
then have k = |I|, where I is the index set defining which covariates feed into
each hidden unit. We have chosen to use k = |E| because the number of lower
edges in the network graph more closely reflects the number of parameters in
the model than does the number of hidden units, although adding or deleting
a single lower edge does sometimes result in more than one parameter being
added to or deleted from the network model. In the version we have used, |I|
remains fixed at Nhidden.

2.4 Cross-Validation

The D/S/A algorithm produces a sequence of K candidate estimators ψ1,n, . . . , ψK,n

of the parameter ψ. We use V -fold cross-validation to select a single estima-
tor ψn from this sequence. In V -fold cross-validation, the learning sample
Ln = {X1, . . . , Xn}, Xi = (Wi, Yi) ∼ P , is partitioned into V mutually ex-
clusive and exhaustive sets. Each of these sets is used in turn as the validation
sample, while the remaining (V − 1) parts are combined to make up the train-
ing sample. As in Dudoit and van der Laan (2003), let Bn be a binary random
vector of length n, where Bn(i) = 0 if the ith observation is in the training set
and Bn(i) = 1 if the ith observation is in the validation set. In V -fold cross
validation, Bn comes from a distribution placing mass 1/V on each of V binary
vectors bv

n of length n, such that
∑

i bv
n(i) ≈ n

V ∀ v and
∑

v bv
n(i) = 1∀ i. Let

P 0
n,Bn

denote the empirical distribution of the training sample and let P 1
n,Bn

denote the empirical distribution of the validation sample.
The cross-validated risk estimator for ψk,n, θ̂pn,n(k), is defined as

θ̂pn,n(k) ≡ EBn

∫
L(x, Ψ̂k(P 0

n,Bn
))dP 1

n,Bn
(x), (6)

where Ψ̂k(P 0
n,Bn

) denotes the estimator obtained using only the training data
and pn is the proportion of observations in the validation sample. Essentially,
the cross-validated risk estimator is obtained by evaluating the predictive power
on the validation data of an estimate Ψ̂k(P 0

n,Bn
) trained on the training data,

then averaging over all possible splits of the learning sample into training and
validation sets.

The cross-validated selector k̂pn,n is the value of k with lowest cross-validated
risk, or

k̂pn,n ≡ argmink∈{1,...,K}θ̂pn,n(k). (7)

Dudoit and van der Laan (2003) establish finite sample and asymptotic op-
timality results for the cross-validation selector, for general data generating
distributions, loss functions, estimators, and cross-validation procedures. The
asymptotic optimality results state that the cross-validation selector performs

11

Hosted by The Berkeley Electronic Press

(in terms of risk) asymptotically as well as an optimal benchmark or oracle se-
lector based on the true unknown data generating distribution. For this reason,
we use cross-validation to select among elements of the sequences produced by
the D/S/A algorithm and to select tuning parameters, such as the number of
hidden units.

3 Simulation Studies

3.1 Implementation

Two simulation studies were conducted to evaluate the performance of the cross-
validated D/S/A algorithm for selection of neural-network architecture and to
compare it to other predictors. This proceeded as follows: First, a learning set
was simulated according to the specified simulation model. For 5-fold cross-
validation, the learning set was then divided into 5 parts of equal size, each of
which served in turn as the validation data set, with the remaining 4/5 of the
learning set making up the training data. For each split of the learning set into
training and validation data, the maximum number of hidden units allowed was
fixed and the D/S/A algorithm was run on the training data. This produced,
for each training/validation split and each maximum number of hidden units,
a sequence of networks with increasing numbers of lower edges, ranging from
a network with 1 lower edge to a fully-connected network. The empirical risk
associated with each of these networks was then evaluated on the validation
data. Averaging over each of the possible splits into training and validation data
and repeating this procedure for different maximum allowed numbers of hidden
units, we obtained the 5-fold cross-validated risk for each maximum number of
hidden units and number of lower edges. The hidden unit-edge combination
with the lowest cross-validated risk was selected as the optimal network size.

Note that this cross-validation procedure had not yet yielded a specific net-
work architecture, as each training/validation split might well have produced
a different sequence of networks. In order to obtain our final choice of net-
work and estimates of the parameters β, the D/S/A algorithm was run again
on the full learning set, with the maximum number of hidden units fixed at
the previously-selected optimum. The network architecture in this final se-
quence with the previously-selected number of edges was chosen as the final,
optimal network. The performance of this final model was then evaluated on
independently-simulated test sets from the same simulation model. In order to
obtain 95% confidence intervals for the test-set risk, 100 test sets were simulated
and the average and standard deviation of these test-set risks computed.

For analysis of the data sets described below, a variant of the D/S/A al-
gorithm presented in Section 2.2 was used in which a substitution move was
accepted only if it improved on the best network of size k (i.e. if fE(I=) <
BEST (k)), rather than if it improved on the current network, (i.e. if fE(I=) <
fE(I)). This has the effect of speeding up the algorithm slightly.

The neural-network D/S/A method was compared with several other pre-

12

http://biostats.bepress.com/ucbbiostat/paper170

dictors on the same simulated learning and test sets. These predictors were:

• Least angle regression (LARS) (fit using the lars package in R, Version
0.9-5, by T. Hastie and B. Efron, see also Efron et al. (2002)), using both
the Cp criterion and 5-fold cross-validation to select the LARS model;

• A multiple linear regression model including all of the predictor variables
but no interactions (fit using the lm() function in R, Version 1.9.1);

• Recursive partitioning (fit using the rpart() function in R, from the rpart
package, Version 3.1-2.1, by T. M. Therneau and B. Atkinson, see also
Breiman et al. (1984));

• Multivariate adaptive regression splines (fit using the polymars() function
in R, from the polspline package, Version 1.0.8, by C. Kooperberg, see
also Friedman (1991));

• A full neural network (fit using the R function nnet(), Version 7.2-11, by
B. D. Ripley.).

All of these computational methods were applied using default settings except
where otherwise indicated. Code in R implementing the neural network-D/S/A
algorithm used the nnet() function to fit each neural network model. 95%
confidence intervals for test-set risks for each of these predictors were obtained
using the same 100 simulated data sets described above.

It should be noted that the computation time for our prototype cross-
validated D/S/A algorithm for neural networks exceeds that of the other pre-
dictors described above. Various options are being considered to increase com-
putational efficiency.

3.2 Friedman 1 Simulation

The first simulation study used the Friedman 1 simulation (Friedman, 1991),
implemented in the mlbench package in R, Version 1.0-0. This model consists of
10 independent covariates, W1, . . . , W10, generated from a U(0, 1) distribution,
and a univariate continuous outcome Y , where

Y = 10 sin(πW1W2) + 20(W3 − 0.5)2 + 10W4 + 5W5 + ε, (8)

and ε ∼ N(0, 1). Notice that the last 5 covariates, W6, . . . ,W10, are not actually
used to generate the response Y . The learning set and each of 100 independent
test sets consisted, respectively, of 500 and 10,000 observations simulated from
this model.

The cross-validated D/S/A procedure described above was applied to the
learning set, examining models with up to 4 hidden units. Five-fold cross-
validation selected 4 hidden units and 9 lower edges as the optimal network size.
Notice that this model has only 18 unknown parameters (including intercept
terms), compared to 49 (= 4×(10+1)+4+1) in a fully-connected network with

13

Hosted by The Berkeley Electronic Press

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
9
 = {[0,1,1,1,1,0,0,0,0,0],

 [1,1,0,0,0,0,0,0,0,0],
 [1,1,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

Neural Network Selected by D/S/A Algorithm
for Friedman 1 Data

Figure 5: Friedman 1 simulation: Neural-network model selected by 5-fold cross-
validated D/S/A algorithm.

4 hidden units. The D/S/A algorithm was run again on the full learning set in
order to select the final network architecture, which is shown in Figure 5. Notice
that this model does not include any of the “irrelevant” covariates, W6, . . . , W10.
Part of the final D/S/A sequence on the full learning set, consisting of models
with 1 through 9 edges, is shown in Figures 14–22 in Appendix A.

Test-set risks for the neural-network D/S/A method and 6 other predictors
are shown in Table 1, ranked in order of performance. D/S/A on neural networks
was compared to a full neural network with 4 hidden units, to LARS, using
both the Cp criterion and 5-fold cross-validation to select the LARS model,
to recursive partitioning fit using rpart(), to multivariate adaptive regression
splines fit using polymars(), and to a multiple linear regression model including
all of the predictor variables but no interactions fit using lm(). The table shows
the mean test-set risk and, in parentheses, 95% confidence intervals based on 100
simulated test sets (using the same simulated test sets for each predictor). The
covariates selected by each predictor are shown in the fourth column, recalling
that only covariates 1–5 were used to simulate the response. The “ratio” column
shows the ratio of the average test-set risk for the predictor in question to that
of the neural-network D/S/A method. Boxplots of the test-set risks are shown
in Figures 6 and 7, listed in order of performance as in Table 1.

For this simulation model, the neural-network D/S/A had the lowest test-

14

http://biostats.bepress.com/ucbbiostat/paper170

D
/S

/A

po
ly

m
ar

s

fu
ll

nn
et lm

LA
R

S
−

C
V

LA
R

S
−

C
p

rp
ar

t
10

20

30

40

T
es

t−
S

et
 R

is
ks

Figure 6: Friedman 1 simulation: Boxplots of test-set risks. If notches in box-
plots do not overlap, there is evidence that the medians of two groups differ
(Chambers et al., 1983).

15

Hosted by The Berkeley Electronic Press

D
/S

/A

po
ly

m
ar

s lm

LA
R

S
−

C
V

LA
R

S
−

C
p

rp
ar

t

2

4

6

8

10

T
es

t−
S

et
 R

is
ks

Figure 7: Friedman 1 simulation: Boxplots of test-set risks. The risks for the full
neural network have been omitted for easier viewing. If notches in boxplots do
not overlap, there is evidence that the medians of two groups differ (Chambers
et al., 1983).

16

http://biostats.bepress.com/ucbbiostat/paper170

Predictor Test-set risk Ratio Covariates
nnet-D/S/A 3.285 (1.732, 4.837) 1 1,2,3,4,5
polymars 3.504 (3.409, 3.598) 1.07 1,2,3,4,5
full nnet (4) 4.750 (0, 11.895) 1.45 (all)
lm 6.976 (6.745, 7.206) 2.12 (all)
LARS (CV) 7.033 (6.203, 7.864) 2.14 1,2,3,4,5,7
LARS (Cp) 7.117 (6.889, 7.345) 2.17 1,2,4,5
rpart 9.430 (9.186, 9.673) 2.87 1,2,3,4,5

Table 1: Friedman 1 simulation: Comparison of test-set risks. Table shows mean
test-set risk and 95% confidence intervals from 100 independently simulated test
sets, the ratio of the mean test-set risk for each predictor to that of the neural-
network D/S/A algorithm, and covariates included in the model.

set risk, followed by multivariate adaptive regression splines, the full neural
network, the linear regression model, LARS using cross-validation, LARS using
the Cp criterion, and recursive partioning. Selection of a good model for these
data requires both the ability to select the most informative covariates and to
approximate the complicated functional form of the response. Neural-network
D/S/A and multivariate adaptive regression splines appear to accomplish both
of these tasks, resulting in a low test-set risk. The full neural network might
approximate the functional form well, but the performance of this method is
hampered by inclusion of irrelevant covariates. Recursive partitioning selects
the correct covariates, but the piecewise-constant basis function cannot fit the
complicated functional form of the response. The two methods, neural-network
D/S/A and multivariate adaptive regression splines, that are able fit the com-
plicated functional form and select covariates data-adaptively perform best in
this situation.

As Figures 6 and 7 indicate, the test-set risks for the neural-network models
appear to be much more variable than for the other predictors, particularly
those for the full neural network. However, as will be seen in Sections 3.3 and
4, the Friedman 1 data are the only example data set on which this occurs, and
the increased variability may be an anomaly specific to these data.

Figure 8 shows the correlation matrix for the test-set risks of the 7 different
predictors on 100 simulated data sets. From this figure, the performance of the
linear model and that of the two LARS models appear to be highly correlated
(likely because the models themselves are very similar), with little correlation
between any of the other predictors.

3.3 Polynomial Simulation

The second simulation study uses a simple polynomial model with second-order
interaction terms. Three independent covariates, W1, . . . , W3, were simulated

17

Hosted by The Berkeley Electronic Press

Correlation of Test−Set Risks for 7 Methods, Friedman 1 Data

risks.nnet.DSA

risks.polymars

risks.full.nnet

risks.lm

risks.lars.CV

risks.lars.Cp

risks.rpart

ris
ks

.n
ne

t.D
S

A

ris
ks

.p
ol

ym
ar

s

ris
ks

.fu
ll.

nn
et

ris
ks

.lm

ris
ks

.la
rs

.C
V

ris
ks

.la
rs

.C
p

ris
ks

.r
pa

rt

Figure 8: Friedman 1 simulation: Correlation matrix for test-set risks. Each
ellipse represents a level curve of a bivariate normal density with the matching
correlation.

18

http://biostats.bepress.com/ucbbiostat/paper170

Predictor Test-set risk Ratio Covariates
Truth 1.008 (0.9790, 1.036) 0.995 1,2,3
nnet-D/S/A 1.012 (0.9822, 1.042) 1 1,2,3
polymars 1.019 (0.9898, 1.048) 1.01 1,2,3
LARS (CV), lm 1.025 (0.9955, 1.054) 1.01 1,2,3
rpart 1.273 (1.237, 1.310) 1.26 1,2,3
LARS (Cp) 1.814 (1.760, 1.868) 1.79 1,2

Table 2: Polynomial simulation: Comparison of test-set risks. Table shows mean
test-set risk and 95% confidence intervals from 100 independently simulated test
sets, the ratio of the mean test-set risk for each predictor to that of the neural-
network D/S/A algorithm, and covariates included in the model.

from a U(0, 1) distribution, and the response Y was generated as

Y = W1 + W2 + W3 + W1 ∗W2 + W1 ∗W3 + W2 ∗W3 + ε, (9)

where ε ∼ N(0, 1).
A learning set of size 500 was simulated from this model, as were 100 in-

dependent test sets of size 10,000. The neural-network D/S/A procedure with
cross-validation was implemented as described in Section 3.1, examining mod-
els with up to 3 hidden units. This method selected a fully-connected neural
network with 2 hidden units as the optimal network architecture for these data.

The neural-network D/S/A procedure was compared to the true model with
parameters estimated using lm(), to multivariate adaptive regression splines
fit using polymars(), to LARS, using both the Cp criterion and 5-fold cross-
validation to select the LARS model, to a multiple linear regression model in-
cluding all of the predictor variables but no interactions fit using lm(), and to
recursive partitioning fit using rpart(). Table 2 shows, for each predictor, the
mean test-set risks and 95% confidence intervals obtained from 100 indepen-
dently simulated test sets of size 10,000, as well as the ratio of the mean test-set
risk for each predictor to that of the neural-network D/S/A method. Boxplots
of the test-set risks are shown in Figure 9.

As one would expect, the true model has the lowest test-set risk, followed by
the neural-network D/S/A procedure, multivariate adaptive regression splines,
LARS using cross-validation (which selected the multiple linear regression model
including all of the covariates but no interactions), recursive partitioning, and
LARS using the Cp criterion. The neural-network basis appears to be able
to approximate the functional form well, and the D/S/A procedure selected
a network architecture (a fully-connected network) that, like the true data-
generating model, is symmetric in all of the covariates.

Figure 10 shows the correlation matrix for the test-set risks of the 6 different
predictors on 100 simulated data sets (results are only shown for 6 predictors
because CV-LARS selected the linear model in this case). From this figure, the
performances of the true model, nnet-D/S/A, polymars, and the LARS model

19

Hosted by The Berkeley Electronic Press

tr
ut

h

D
/S

/A

po
ly

m
ar

s

LA
R

S
−

C
V

rp
ar

t

LA
R

S
−

C
p

1.0

1.2

1.4

1.6

1.8

T
es

t−
S

et
 R

is
ks

Figure 9: Polynomial simulation: Boxplots of test-set risks. If notches in box-
plots do not overlap, there is evidence that the medians of two groups differ
(Chambers et al., 1983). For these data, LARS using cross-validation (LARS-
CV) selected the multiple regression model, so separate results for that model
are not shown.

20

http://biostats.bepress.com/ucbbiostat/paper170

Correlation of Test−Set Risks for 6 Methods, Polynomial Data

risks.truth

risks.nnet.DSA

risks.polymars

risks.lars.CV

risks.rpart

risks.lars.Cp

ris
ks

.tr
ut

h

ris
ks

.n
ne

t.D
S

A

ris
ks

.p
ol

ym
ar

s

ris
ks

.la
rs

.C
V

ris
ks

.r
pa

rt

ris
ks

.la
rs

.C
p

Figure 10: Polynomial simulation: Correlation matrix for test-set risks. Each
ellipse represents a level curve of a bivariate normal density with the matching
correlation.

21

Hosted by The Berkeley Electronic Press

Age Sex BMI BP S1 S2 S3 S4 S5 S6

I
37

 = {[1,1,1,1,1,1,1,1,1,1],

 [1,1,0,1,1,1,1,0,1,1],
 [1,1,1,0,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1,1]}

Neural Network Selected by D/S/A Algorithm on Diabetes Data

Figure 11: Diabetes data: Neural-network model selected by the 5-fold cross-
validated D/S/A procedure.

selected by cross-validation appear to be highly correlated with one another,
with a fair amount of correlation exisiting between the other predictors as well.

4 Diabetes Data Analysis

The methods above were next applied to the diabetes data from Efron et al.
(2002). These data consist of a univariate continuous response measuring disease
progression and 10 covariates: age, sex, blood pressure, body mass index, and
6 continuous blood serum measurements referred to as S1–S6.

We randomly divided the 442 observations into a learning set with 392 ob-
servations and a test set with 50 observations (thus allocating 11% of the data
to the test set). The covariates were scaled to lie between 0 and 1, which is rec-
ommended by Ripley (1996) for use with neural networks and does not change
the test-set risk of models fit using LARS, recursive partitioning, or linear re-
gression.

The neural-network D/S/A procedure selected a model with 4 hidden units
and 37 lower edges from models with up to 4 hidden units. Figure 11 shows this
network, which is nearly indistinguishable from a fully-connected network.

The performance of the neural-network D/S/A procedure on the diabetes
data was compared to that of a multiple linear regression model including all

22

http://biostats.bepress.com/ucbbiostat/paper170

Predictor Test-set risk Ratio Covariates
lm 3182.0 (1966.2, 4397.7) 0.892 (all)
LARS (CV) 3270.9 (2118.6, 4423.2) 0.917 Sex, BMI, BP, S1–S3, S5, S6
polymars 3301.8 (2123.8, 4479.9) 0.926 Sex, BMI, BP, S3, S5, S6
LARS (Cp) 3336.7 (2206.2, 4467.3) 0.936 Sex, BMI, BP, S2, S3, S5, S6
full nnet (4) 3552.4 (2297.2, 4807.6) 0.996 (all)
nnet-D/S/A 3565.2 (2368.4, 4175.8) 1 (all)
rpart 3692.0 (2498.9, 4885.0) 1.04 BMI, BP, S2, S3, S5, S6

Table 3: Diabetes data: Comparison of test-set risks. Table shows the mean
test-set risk and 95% confidence intervals over 100 bootstrap samples from the
test set, the ratio of the mean test-set risk for each predictor to that of the
neural-network D/S/A algorithm, and covariates included in the model.

of the predictor variables but no interactions fit using lm(), to LARS, using
both the Cp criterion and 5-fold cross-validation to select the LARS model,
to multivariate adaptive regression splines fit using polymars(), to recursive
partitioning fit using rpart(), and to a full neural network with 4 hidden units
fit using nnet(). 95% confidence intervals for the test-set risks were calculated
from 100 bootstrap samples taken with replacement from the test set of size 50.
Table 3 shows the mean test-set risk over the bootstrap samples, 95% confidence
intervals for the test-set risks, and the covariates each predictor selected for
inclusion in the model. Boxplots of the test-set risks are shown in Figure 12.

On these data, curiously, the multiple linear regression model has the lowest
test-set risk and the neural-network D/S/A procedure does not perform particu-
larly well. However, the good performance of a linear regression model suggests
that the relationship between covariates and response might in fact be linear in
nature. Thus, it is not particularly surprising that the sigmoidal basis functions
used by neural networks might not suit data that appear to follow a simpler
functional form. Neural networks appear to be, so to speak, too big of a ham-
mer for this problem. However, as Figure 12 shows, the performance of all of
these predictors is quite similar.

Figure 13 shows the correlation matrix for the 100 bootstrap test-set risks of
the 7 different predictors. A fair amount of correlation appears to exist between
the performances of most of the predictors.

5 Conclusions

The neural-network D/S/A algorithm performed well compared to other pre-
dictors on two simulated data sets. The use of neural networks, which allows
approximation of complicated functional forms, and of data-adaptive selection of
the network architecture, which allows selection of the most relevant covariates,
combine to provide good prediction of new observations. The neural-network
D/S/A method performed less well on the diabetes data of Efron et al. (2002),

23

Hosted by The Berkeley Electronic Press

lm

LA
R

S
−

C
V

po
ly

m
ar

s

LA
R

S
−

C
p

fu
ll

nn
et

D
/S

/A

rp
ar

t

2000

3000

4000

5000

T
es

t−
S

et
 R

is
ks

Figure 12: Diabetes data: Boxplots of bootstrap test-set risks. If notches in
boxplots do not overlap, there is evidence that the medians of two groups differ
(Chambers et al., 1983).

24

http://biostats.bepress.com/ucbbiostat/paper170

Correlation of Test−Set Risks for 7 Methods, Diabetes Data

risks.lm

risks.lars.CV

risks.polymars

risks.lars.Cp

risks.full.nnet

risks.nnet.DSA

risks.rpart

ris
ks

.lm

ris
ks

.la
rs

.C
V

ris
ks

.p
ol

ym
ar

s

ris
ks

.la
rs

.C
p

ris
ks

.fu
ll.

nn
et

ris
ks

.n
ne

t.D
S

A

ris
ks

.r
pa

rt

Figure 13: Diabetes data: Correlation matrix for test-set risks. Each ellipse rep-
resents a level curve of a bivariate normal density with the matching correlation.

25

Hosted by The Berkeley Electronic Press

but this is likely because the data have a rather simple functional form (to
which neural networks might be less well-suited), as evidenced by the strong
performance of a linear regression model.

Future work will center on the extension of the D/S/A approach to poly-
chotomous outcomes, where one wishes to classify new observations into one of
K classes. This differs from the regression case in that there are multiple out-
put units in the network, and every hidden unit must no longer be connected
to every output unit. In this setting, one may delete, substitute, and add edges
in the upper part of the neural-network graph as well as the lower part, which
increases the complexity of the problem. This D/S/A algorithm for classifica-
tion neural networks will be applied to the prediction of the secondary structure
of proteins from their amino acid sequences. Additionally, one may use neural
networks to assess the importance of covariates in predicting an outcome, with
measures such as the number and coefficients of edges feeding from a given co-
variate. Another approach is to derive loss-based variable importance measures
from the neural-network model, as in Dudoit et al. (2003).

6 Acknowledgements

Funding for the work presented in this paper was provided in part by the Na-
tional Science Foundation. Discussions with Kasper Hansen and Sandra Sinisi
of the Division of Biostatistics at UC Berkeley and with Theresa Head-Gordon
of the Department of Bioengineering at UC Berkeley and the Lawrence Berkeley
National Laboratory are also gratefully acknowledged.

References

A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39:930–945, 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical
Methods for Data Analysis. Wadsworth, Belmont, CA, 1983.

S. Dudoit and M. J. van der Laan. Asymptotics of cross-validated risk esti-
mation in model selection and performance assessment. Technical Report
126, Division of Biostatistics, University of California, Berkeley, 2003. URL
www.bepress.com/ucbbiostat/paper126.

S. Dudoit, M. J. van der Laan, S. Keleş, A. M. Molinaro, S. E. Sin-
isi, and S. L. Teng. Loss-based estimation with cross-validation:
Applications to microarray data analysis. In G. Piatetsky-
Shapiro and P. Tamayo, editors, Microarray Data Mining, vol-

26

http://biostats.bepress.com/ucbbiostat/paper170

ume 5 of SIGKDD Explorations, pages 56–68. ACM, 2003. URL
www.bepress.com/ucbbiostat/paper137,www.acm.org/sigs/sigkdd/explorations/issue5-2.htm.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Technical Report 220, Department of Statistics, Stanford University, 2002.

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statis-
tics, 19:1–67, 1991.

D. Jones. Protein secondary structure prediction based on position-specific
scoring matrices. Journal of Molecular Biology, 292:195–202, 1999.

A. Molinaro and M. J. van der Laan. A Deletion/Substitution/Addition al-
gorithm for partitioning the covariate space in prediction. Technical Report
162, Division of Biostatistics, University of California, Berkeley, 2004. URL
www.bepress.com/ucbbiostat/paper162.

R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2004.
URL http://www.R-project.org. ISBN 3-900051-00-3.

S. Riis and A. Krogh. Improving prediction of protein secondary structure
using structured neural networks and multiple sequence alignments. Journal
of Computational Biology, 3:163–183, 1996.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, 1996.

S. E. Sinisi and M. J. van der Laan. Deletion/Substitution/Addition algorithms
in learning with applications in genomics. SAGMB, 3(1), 2004.

M. J. van der Laan and S. Dudoit. Unified cross-validation methodology for
selection among estimators and a general cross-validated adaptive ε-net es-
timator: Finite sample oracle inequalities and examples. Technical Report
130, Division of Biostatistics, University of California, Berkeley, 2003. URL
www.bepress.com/ucbbiostat/paper130.

A D/S/A Sequence on Friedman 1 Data

27

Hosted by The Berkeley Electronic Press

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
1
 = {[0,0,0,1,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 1 Edge

Figure 14: Friedman 1 simulation: D/S/A sequence–model with 1 lower edge.

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
2
 = {[0,0,0,1,0,0,0,0,0,0],

 [1,0,0,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 2 Edges

Figure 15: Friedman 1 simulation: D/S/A sequence–model with 2 lower edges.

28

http://biostats.bepress.com/ucbbiostat/paper170

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
3
 = {[0,0,0,1,0,0,0,0,0,0],

 [1,0,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 3 Edges

Figure 16: Friedman 1 simulation: D/S/A sequence–model with 3 lower edges.

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
4
 = {[0,0,0,1,0,0,0,0,0,0],

 [1,0,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 4 Edges

Figure 17: Friedman 1 simulation: D/S/A sequence–model with 4 lower edges.

29

Hosted by The Berkeley Electronic Press

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
5
 = {[0,0,0,1,1,0,0,0,0,0],

 [0,1,0,0,0,0,0,0,0,0],
 [1,0,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 5 Edges

Figure 18: Friedman 1 simulation: D/S/A sequence–model with 5 lower edges.

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
6
 = {[0,0,1,1,1,0,0,0,0,0],

 [0,1,0,0,0,0,0,0,0,0],
 [1,0,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 6 Edges

Figure 19: Friedman 1 simulation: D/S/A sequence–model with 6 lower edges.

30

http://biostats.bepress.com/ucbbiostat/paper170

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
7
 = {[0,0,1,1,1,0,0,0,0,0],

 [1,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 7 Edges

Figure 20: Friedman 1 simulation: D/S/A sequence–model with 7 lower edges.

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
8
 = {[0,0,1,1,1,0,0,0,0,0],

 [1,1,0,0,0,0,0,0,0,0],
 [1,1,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 8 Edges

Figure 21: Friedman 1 simulation: D/S/A sequence–model with 8 lower edges.

31

Hosted by The Berkeley Electronic Press

W
1
 W

2
 W

3
 W

4
 W

5
 W

6
 W

7
 W

8
 W

9
 W

10

I
9
 = {[0,1,1,1,1,0,0,0,0,0],

 [1,1,0,0,0,0,0,0,0,0],
 [1,1,0,0,0,0,0,0,0,0],
 [0,0,1,0,0,0,0,0,0,0]}

D/S/A Sequence for Friedman 1 Data: 9 Edges

Figure 22: Friedman 1 simulation: D/S/A sequence–model with 9 lower edges,
selected as best model by 5-fold cross-validation.

32

http://biostats.bepress.com/ucbbiostat/paper170

	text.pdf.1110909415.titlepage.pdf.aTcHj
	tmp.1110909415.pdf.9trmh

