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Abstract
In environmental epidemiology and related problems in environmental statis-

tics, it is typically not practical to directly measure the exposure for each subject.
Environmental monitoring is employed with a statistical model to assign exposures
to individuals. The result is a form of exposure misspecification that can result in
complicated errors in the health effect estimates if the exposure is naively treated
as known. The exposure error is neither “classical” nor “Berkson”, so standard
regression calibration methods do not apply. We decompose the health effect esti-
mation error into three components. First, the standard errors are too small if the
exposure field is correlated, independent of variability in estimating the exposure
field parameters. Second, the standard errors are too small because they do not
account for variability in estimating the exposure field parameters. Third, there is
a bias from using approximate exposure field parameters in place of the unobserved
true ones. We outline a three-stage correction procedure to account separately for
each of these errors. A key insight is that we can account for the second part of
the error (sampling variability in estimating the exposure) by averaging over sim-
ulations from the part of the posterior exposure surface that is informative for the
outcome. This amounts to averaging over samples of the posterior exposure model
parameters, a procedure that we call “parameter simulation”. One implication is
that it is preferable to use a parametric correlation model (e.g., kriging) rather
than a semi-parametric approximation. While the latter approach has been found
to be effective in estimating mean exposure fields, it does not provide the needed
decomposition of the posterior into informative and non-informative components.
We illustrate the properties of our corrected estimators in a simulation study and
present an example from environmental statistics. The focus of this paper is on lin-
ear health effect models with uncorrelated outcomes, but extensions to generalized
linear models and correlated outcomes are possible.

Key words: air pollution, measurement error, universal kriging, exposure modeling,
environmental epidemiology, environmental statistics
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1 Introduction

Recently there has been significant interest in assessing the relationship between health

outcomes and environmental exposures. Technical or logistical constraints typically

preclude directly measuring the exposure for individual subjects. Limited environmen-

tal monitoring is employed instead, and a statistical model is constructed to assign

exposures based on the available measurements. This methodology exploits the fact

that exposures are often predictable based on Geographic Information System (GIS)

covariates and, further, that they tend to exhibit spatial or spatio-temporal correlation

structures that can be useful for interpolation.

An important example is evaluating the relationship between exposure to ambient

air pollution and adverse health outcomes. Many studies have documented adverse ef-

fects of air pollution (Dockery et al. 1993; Samet et al. 2000; Pope et al. 2002), but until

recently most studies have assigned exposures based on area-wide monitored concentra-

tions. In order to improve exposure assessment, some recent studies have used predicted

individual air pollution exposure. Prediction approaches include assigning the nearest

monitor value to the participant’s residential location (Miller et al. 2007; Basu et al.

2000; Ritz et al. 2006), regression based on GIS covariates (Brauer et al. 2003; Jerrett

et al. 2005a), and interpolation by a geostatistical method such as kriging (Jerrett et al.

2005b; Kunzli et al. 2005) or semi-parametric smoothing (Gryparis et al. 2007; Kunzli

et al. 2005).

Many environmental applications that do not involve human health effects are anal-

ogous from a statistical perspective. An example that we will return to later in this
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paper involves assessing the relationship between chloride levels in streams and nearby

watershed land cover (Madsen et al. 2007; Herlihy et al. 1998). Another application

involves assessing the relationship between changes in annual rainfall and vegetation

cover. This has been studied in the African Sahel, where remotely sensed vegetation

levels are available everywhere but rainfall levels are only monitored at a limited num-

ber of locations. As in the case of air pollution epidemiology, several approaches to

predicting precipitation levels at locations without measurements have been proposed

(Los et al. 2006; Lindstron and Lindgren 2008).

A common feature is that little is known about the properties of the resulting infer-

ence for regression models based on estimated exposures. Kim et al. (2008) have shown

that plugging in the mean exposure estimates from kriging tends to perform better

than assigning exposures based on the nearest neighbor monitoring location, but the

resulting errors are complicated and involve both biased point estimates and incorrect

standard errors. Madsen et al. (2007) describes a methodology to correct the standard

errors when the exposure is estimated with ordinary kriging. Their “krige and regress”

approach has key features in common with ours, but the development has several lim-

itations. First, although Madsen et al. (2007) combines two stages of standard error

correction to separately account for spatial correlation in the exposure and variability

in its estimation (as we do in Sections 4.1 and 4.2), the second stage of the correction

does not seem to be required in their examples. Therefore, it is difficult to assess how

well it will work when it is needed. Second, the examples do not suffer from bias and,

perhaps for this reason, no attempt is made to address this potential source of error.

Our examples show that there can be residual bias. Finally, the methodology is spe-
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cific to ordinary kriging. It can probably be extended to universal kriging and other

more flexible models, but this would involve significant calculations and approximations

beyond what is described in the paper.

Gryparis et al. (2007) reviews the relevant measurement error literature and com-

pares several strategies in a simulation study. They recommend using a fully Bayesian

joint model for the exposure and outcome when computationally feasible. For larger

data sets, this is generally not practical. It has also been noted by Gryparis et al. (2007),

Best et al. (2006), and others that a joint Bayesian approach may result in poor estima-

tion of the exposure surface because of a combination of model misspecification and/or

outliers in the outcome variable. Therefore it is preferable to separate estimation of the

exposure surface from inference about the outcome. As an alternative to joint Bayesian

modeling, Gryparis et al. (2007) suggests applying standard regression calibration tech-

niques that are based on the assumption of classical measurement error in the estimated

exposure (Carroll et al. 1995). While this seems to work reasonably well in some of the

simulation examples, it is not conceptually consistent with the actual error structure

that results from using an estimated exposure surface based on modeling. Also, the

implementation considered in Gryparis et al. (2007) requires holding out a sub-sample

of monitoring data for calibration.

One of the interesting findings in Gryparis et al. (2007) is that a strategy they call

“exposure simulation” performs extremely poorly, resulting in significant bias toward

the null. The idea of “exposure simulation” is to plug multiple realizations from the pos-

terior exposure surface into the health model and average the resulting effect estimates.

This approach is appealing because it seems to provide a natural way of assessing the
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variability in the effect size due to uncertainty in the exposure estimation. However, as

Gryparis et al. (2007) show, posterior realizations of the exposure surface contain some

variability that is entirely non-informative for the outcome, and adding this to the mean

exposure estimate is equivalent to introducing classical measurement error.

An important contribution of our work is to clarify why “exposure simulation” fails

and to describe an alternative that avoids the problem of bias toward the null. Essen-

tially the idea is that we only want to simulate from the part of the posterior that is

informative for the outcome. In a kriging model, it is clear that this should not include

the nugget. Even though we regard the nugget as part of the exposure field (not mea-

surement error), there is no useful information from the nugget at locations without

measured exposure data. Thus, it is easy to see that including the nugget in “exposure

simulation” is analogous to introducing classical measurement error. It turns out that

the variability corresponding to the partial sill is also non-informative for the outcome.

This is somewhat less intuitive, but one way of seeing it is to appreciate that conditional

on the kriging model parameters, samples from the correlated residuals are independent

of the measured exposure data and are therefore independent of the outcome.

We conclude that the correct approach is to average over multiple realizations of

the conditional mean of the exposure field, where the conditioning is on the observed

exposure data and on the model parameters. This amounts to averaging over multi-

ple realizations from the posterior distribution for the exposure model parameters and

plugging in the corresponding conditional mean exposure fields. We call this proce-

dure “parameter simulation”. There is no systematic bias toward the null of the type

that arises in “exposure simulation” because we avoid introducing random fluctuations
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unrelated to the outcome.

In addition to variability from estimation of the exposure surface, there are two

additional sources of error. First, even if we know the exact values of the model param-

eters, naively plugging the mean exposure field into a health effect model gives standard

errors that are too small if the exposure surface is correlated. We correct for this with

a version of the “sandwich” estimator. Second, using estimated values of the exposure

model parameters results in a bias of the effect estimate. This bias vanishes asymptoti-

cally if there is much exposure monitoring data (in contrast to the bias toward the null

that results from full “exposure simulation”), but it can be important in realistic situa-

tions where the monitoring data is limited. We correct the bias by a form of regression

calibration that is appropriate for the error structure.

In the remainder of this paper we describe in detail our strategy for using modeled

exposures in a linear health effect model. We begin in Section 2 by introducing notation

and setting out the problem. In Section 3 we analyze the relatively simple situation

of an uncorrelated linear regression model for the exposure. Without some of the sub-

tleties of a more general model, this case provides a clear motivation for “parameter

simulation”. In Section 4 we consider a more general exposure model that includes uni-

versal kriging and various spatio-temporal correlation structures as special cases. We

describe the three sources of error that arise from ignoring estimation of the exposure

variable, and we give a three-stage procedure for correcting these errors. In Section 5 we

use simulation examples to illustrate the frequentist properties of our corrected effect

estimates. We consider an example with publicly available data from environmental

statistics in Section 6, and we conclude in Section 7 with a discussion.
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2 Notation and Problem Setup

Consider an epidemiology study with N subjects and the corresponding N ×1 vector of

outcomes Y , N×1 vector of exposures X, and N×n matrix of covariates Z (potentially

including an intercept). We assume

Y = Xβ1 + Zγ + ε, (1)

with unknown regression coefficient β1 for the exposure and n × 1 vector of regression

coefficients γ for the covariates. Assume that ε is an N × 1 random vector distributed

as N(0, σ2
εIN ), where σ2

ε is unknown and IN is the identity matrix.

The goal is inference for β1, and this is routine if X is known without error. The

ordinary least squares (OLS) point estimate is

 β1(X)

γ(X)

 =


 X

Z


t  X

Z



−1  X

Z


t

Y, (2)

and the corresponding classical standard error is

 σβ1,class(X,σ2
ε)

σγ,class(X,σ2
ε)

 =

√√√√√√√√σ2
εdiag




 X

Z


t  X

Z



−1, (3)

using for σ2
ε the method-of-moments estimate from the residuals.

We are interested in the situation where Y and Z are directly observed, but X needs

to be estimated using a model. Assume that the related N∗ × 1 vector X∗ is observed.

Typically X∗ is comprised of different samples from the same field as X, and we refer to

N∗ as the number of exposure monitors. Assume that X and X∗ are jointly distributed
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as  X

X∗

 =

 S

S∗

α+

 η

η∗

 . (4)

In this expression, S and S∗ are known N × m and N∗ × m dimensional matrices of

covariates, α is an unknown m× 1 vector of coefficients, and η

η∗

 ∼ N
(
0,Ση,η∗(θ)

)
(5)

for a known positive definite matrix function Ση,η∗(·) and unknown parameter θ. Univer-

sal kriging is a special case if θ comprises the range, partial sill, and nugget parameters

from a geostatistical model (Cressie 1993). More general spatio-temporal correlation

structures also fit naturally in this framework (Banerjee et al. 2004). The remainder of

this paper is concerned with the question of how to use an estimate of X based on the

observed values of X∗ to derive valid inference for β1.

3 Linear Regression Exposure Model

We begin with a simple example that illustrates the key ideas we will develop in the

following section for a more general model. Let the covariance function from equation (5)

be

Ση,η∗(σ2
η) = σ2

ηI(N+N∗)

so that the joint vector of measured and unmeasured exposures is independent, condi-

tional on the covariates S and S∗. A natural strategy is to estimate α from X∗ and S∗,

use this to derive an estimate X̂ based on S, and then to make inference about β1 by

plugging X̂ into equations (2) and (3).
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The best possible situation is if N∗ is arbitrarily large, in which case we can assume

that α is known exactly. Then letting

X̂exact = Sα

results in pure Berkson error that can be ignored in estimating β1 (Zeger et al. 2000).

That is, plugging X̂exact into the classical estimators in equations (2) and (3) gives

correct frequentist inference for

β̂1,exact = β1(X̂exact)

σ̂β1,exact = σβ1,class(X̂exact, σ̂
2
ε,exact),

where σ̂2
ε,exact is the method-of-moments estimate of σ2

ε . The only difference from the

case where we know X without error is that the sampling variability is greater, but this

is correctly accounted for by σ̂β1,exact. One way to see this is by noticing the equivalence

to estimating β1 in

Y = (Sα)β1 + Zγ + (ε+ ηβ1)

= (Sα)β1 + Zγ + ε′, (6)

with independent errors

ε′ ∼ N(0, σ2
ε′IN ),

where σ2
ε′ = σ2

ε + σ2
ηβ1. It doesn’t matter that β1 appears in the mean and the variance

since the covariance matrix is diagonal, and we can estimate σ2
ε′ without regard to the

contribution from β1.

In reality, we typically have few exposure monitoring locations and need to estimate
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α. It is convenient to use a Bayesian model. With the standard reference prior

p(α, σ2
η) ∝ σ−2

η ,

it is known (Box and Tiao 1992) that the posterior parameter α̃ has a multivariate

t-distribution with mean

α̂ = (S∗tS∗)−1S∗tX∗.

The naive “plug-in” approach is to let

X̂plug-in = Sα̂

and plug this estimate into the classical estimators in equations (2) and (3) to obtain

β̂1,plug-in = β1(X̂plug-in)

and its associated standard error estimate σ̂β1,plug-in. However, the standard error is

evidently too small because it fails to account for sampling variability of α̂. It also

turns out that β̂1,plug-in is biased for estimating β1. Note that both of these problems

go away in the asymptotic limit for large N∗, but they can be important in applied

settings where there is limited exposure monitoring data.

We can account for variability in the posterior mean α̂ by “parameter simulation”,

which entails averaging over simulated samples from the posterior random variable α̃.

We set X̃ = Sα̃ and use this in the classical estimators from equations (2) and (3) to

obtain

β̃1 = β1(X̃)

= β1(Sα̃)
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and its associated standard error estimate σ̃β1 . It is then natural to define

β̂1,sim = Ẽ(β̃1)

and

σ̂β1,sim =
√

Ẽ(σ̃2
β1

) + Ṽar(β̃1)

where Ẽ and Ṽar refer to the posterior expectation and variance, respectively.

There is an important distinction between “parameter simulation” and the “exposure

simulation” approach described in Gryparis et al. (2006). Our X̃ does not sample from

the full posterior for X. As noted in Gryparis et al. (2006), such sampling would involve

adding random noise corresponding to η, and this noise would behave like classical

measurement error. This would bias the estimate of β1 toward the null in a way that

does not vanish even in the asymptotic limit with a large number of exposure monitors.

Instead, we only sample from the part of the posterior for X that is informed by the

data through the posterior estimate of the parameter α.

There is still the potential for a bias in β̂1,sim which we can correct by a form of

regression calibration. Since β̂1,exact is an unbiased estimator for β1, the residual bias

in β̂1,sim is

π = E(β̂1,sim − β̂1,exact)

= E(β̂1,sim − β̂1,plug-in) + E(β̂1,plug-in − β̂1,exact)

= E
[
Ẽ(β1(Sα̃))− β1(Sα̂)

]
+

[
E(β1(Sα̂))− β1(Sα)

]
(7)

= E
[
Ẽ(β1(Sα̃))− β1(Ẽ(Sα̃))

]
+

[
E(β1(Sα̂))− β1(E(Sα̂))

]
,

where the expectation denoted by E is over the frequentist sampling distribution. Notice
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that in fourth line above we use that Sα̂ = Ẽ(Sα̃) is an unbiased estimator for Sα.

The Bernstein-von Mises theorem (Le Cam and Yang 2000) implies that for almost

every realization of X∗, the posterior distribution of α̃ is approximately equal to the

sampling distribution of α̂ . Based on this approximation, we define an estimate of the

bias by

π̂ = 2
[
Ẽ(β1(Sα̃))− β1(Ẽ(Sα̃))

]
= 2(β̂1,sim − β̂1,plug-in)

and then define the calibrated estimator

β̂1,sim-cal = β̂1,sim − π̂

= 2β̂1,plug-in − β̂1,sim.

The calibration procedure can change the variability, but we neglect this and set

σ̂β1,sim-cal = σ̂β1,sim.

It appears from our simulation examples in Section 5 that the correct value of σ̂β1,sim-cal

is slightly smaller than σ̂β1,sim. This phenomenon will be the subject of future study.

Overall, our simulation examples show that the pair β̂1,sim-cal and σ̂β1,sim-cal has good

inference properties, with accurate coverage and minimal bias.

4 General Exposure Model

In this section we return to the more general exposure model from Section 2 that allows

for spatial or spatio-temporal correlation. We need to estimate θ̂ in addition to α̂ in
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order to derive an estimate X̂ from equation (4), but beyond that the situation is very

similar. The naive approach would be to treat the estimate X̂ as if it were the true

exposure and to derive β̂1 = β1(X̂) and σ̂β1 = σβ1,class(X̂, σ̂2
ε), where σ̂2

ε is a method-

of-moments estimate for σ2
ε . There are three problems with ignoring the errors from

estimating X:

A. The standard error σ̂β1 is too small because it does not account for correlation in

X conditional on θ and α (i.e., even if the parameters are known, the error is not

strictly Berkson).

B. The standard error σ̂β1 is too small because it does not account for variability in

estimating θ and α.

C. The point estimate β̂1 is biased because it is based on estimated values for θ and

α. The bias can be in either direction, depending on details of the true exposure

model.

Notice that item (A) does not pertain for the uncorrelated linear exposure model dis-

cussed in the previous section, but items (B) and (C) pertain in that situation similarly

to here. Thus, our strategy in what follows is to first address (A) in Section 4.1 by deriv-

ing correct standard errors when θ and α are known. Then, following the approach take

in the previous section, we proceed in Sections 4.2 and 4.3 to address the standard error

and bias problems in (B) and (C). The only other difference from the previous section

is that an additional approximation is needed to justify the regression calibration for

item (C).
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4.1 Standard Error Correction (Stage I)

If the parameters α and θ are known exactly, it is natural to define

X̂exact = E(X|X∗, α, θ) (8)

= Sα+ Ση|η∗(θ)Σ−1
η∗ (θ)(X∗ − S∗α).

It follows from the properties of multivariate normal distributions that

(X − X̂exact)|X̂exact = Λ ∼ N(0,ΣΛ(θ)) (9)

where

ΣΛ(θ) = Cov(X|X∗, α, θ) (10)

= Ση(θ)− Ση|η∗(θ)Σ−1
η∗ (θ)Ση∗|η(θ).

In the above expressions Ση, Ση∗ , and Ση∗|η are derived from sub-matrices of Ση,η∗ .

This is similar to Berkson error and suggests that using X̂exact in place of X will not

introduce bias in estimating β1. As in (6) we can reformulate the regression problem

for Y in terms of X̂exact

Y = X̂exactβ1 + Zγ + (ε+ Λβ1)

= X̂exactβ1 + Zγ + ε′, (11)

where

ε′ ∼ N(0,Σε′)

for

Σε′ = Σε + β2
1ΣΛ(θ). (12)
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Unlike in equation (6), the elements of ε′ are neither independent nor homoscedastic

and classical standard errors based on assuming a diagonal covariance matrix are not

correct (Carroll et al. 1995, page 63).

One approach to accounting for the non-i.i.d. error structure is to use generalized

least squares (GLS). This seems to work well in the ordinary kriging examples of Madsen

et al. (2007) where it is called “krige-and-regress”. Their methodology also includes a

correction to the standard error to account for variability in estimating X. Gryparis

et al. (2006) also consider a GLS methodology, but without the additional standard error

correction. Both papers note that since β1 appears in the mean and in the non-diagonal

covariance matrix that determines weights, GLS can not be applied in a straightforward

way and there is the potential for numerical difficulties.

Instead of using GLS, we adopt the philosophy of generalized estimating equations

(Liang and Zeger 1986). That is, we estimate

β̂1,exact = β1(X̂exact) (13)

by OLS using (2) and then derive standard errors from the “sandwich” estimator (Car-

roll et al. 1995, Section A.3) σβ1,sand(X,Σε)

σγ,sand(X,Σε)

 =
[
diag

(
A(X)−1B(X,Σε)A(X)−1

)]1/2
(14)

with X̂exact plugged in forX and Σ̂ε′,exact plugged in for Σε, where Σ̂ε′,exact is an estimate

of the now non-diagonal covariance matrix of ε′ in equation (12). The “bread” in the
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“sandwich” estimator is defined by

A(X) =

 X

Z


t  X

Z


and the “meat” is

B(X,Σε) =

 X

Z


t

Σε

 X

Z

 .

What remains is to construct Σ̂ε′,exact as an approximation to (12). Since θ is

assumed to be known, we can derive ΣΛ(θ) from (10) and plug in β̂1,exact. As an

approximation to σ2
ε , we take difference between the variance of residuals from (11) and

the average of the diagonal entries in ΣΛ(θ)β̂2
1,exact. That is

σ̂2
ε,exact = σ2

ε(X̂exact, β̂1,exact, γ̂exact, θ)

where γ̂exact = γ(X̂exact) and

σ2
ε(X,β1, γ, θ) =

1
N

N∑
i=1

Yi −

 X

Z


 β1

γ


i


2

− β2
1

1
N

N∑
i=1

[
ΣΛ(θ)

]
ii
. (15)

This is one of several reasonable method-of-moments estimators for σ2
ε in this setting.

It is also possible to estimate σ2
ε using likelihood or Bayesian methods. Another alter-

native is to estimate Σε′ non-parametrically from the data using a “weighted empirical

adaptive variance estimator” (WEAVE) or similar adaptation of generalized estimating

equations to spatial or spatio-temporal correlation structures (Lumley and Heagerty

1999). Extensions to accommodate correlated errors in ε are also possible.

To summarize in the case where θ and α are known exactly, the Berkson-like error

structure means that the OLS estimator β̂1,exact defined by (2), (8), and (13) is unbi-
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ased. Based on (11) we get a standard error estimate σ̂β1,exact by using the “sandwich”

form (14), replacing X by X̂exact and Σε by

Σ̂ε′,exact = σ̂2
ε,exactIN + ΣΛ(θ)β̂2

1,exact.

The simulation examples in Section 5 show that the estimators defined in this subsection

have good frequentist properties.

4.2 Standard Error Correction (Stage II)

The development in the previous subsection assumes that θ and α are known exactly.

This is not the case, but they can be estimated based on the model for X∗ implied

by (4) and (5)

X∗ = S∗α+ η∗, η∗ ∼ N(0,Ση∗(θ)).

It is convenient to use a Bayesian model with prior distributions on θ and α and then

to derive posterior random variables θ̃ and α̃.

A simple approach would be to derive “plug-in” estimators β̂1,plug-in and σ̂β1,plug-in

that incorporate the standard error correction from Section 4.1. We would do this by

replacing θ and α in the derivations of β̂1,exact and σ̂β1,exact with their posterior means

θ̂ = Ẽ(θ̃), α̂ = Ẽ(α̃)

and replacing X̂exact with

X̂plug-in = E(X|X∗, α̂, θ̂).

However, as we remarked in item (B) above, σ̂β1,plug-in is too small because it fails to

account for the sampling variability of θ̂ and α̂.
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We can address this problem by “parameter simulation”, which entails averaging

over simulated samples from the posterior random variables θ̃ and α̃. Define a random

variable X̃ having the posterior distribution of conditional means of X by

X̃ = E(X|X∗, α̃, θ̃),

and β̃1 by plugging X̃ into the OLS estimator (2)

β̃1 = β1(X̃).

The corresponding posterior standard error from the sandwich estimator (14) is

σ̃β1 = σβ1,sand(X̃, Σ̃ε′)

where

Σ̃ε′ = σ2
ε(X̃, β̃1, γ̃, θ̃)I + ΣΛ(θ̃)β̃2

1

with γ̃ = γ(X̃). It is then natural to define

β̂1,sim = Ẽ(β̃1)

and

σ̂β1,sim =
√

Ẽ(σ̃2
β1

) + Ṽar(β̃1),

where Ẽ and Ṽar refer to the posterior expectation and variance, respectively.

As in Section 3, the distinction from the “exposure simulation” approach that is

found to perform poorly in Gryparis et al. (2006) is important. Our X̃ does not sample

from the full posterior for X, but only from the conditional mean of the posterior

that is informed by X∗ and estimates of θ and α. Therefore, our approach does not
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introduce the kind of bias toward the null that would be characteristic of adding classical

measurement error. Instead, sampling from θ̃ and α̃ inflates the standard error to

properly account for uncertainty from parameter estimation. While there is still residual

bias in σ̂β1,sim, it vanishes asymptotically for large N∗ since θ and α can be estimated

arbitrarily well. This does not occur with “exposure simulation”. The next subsection

describes how we correct for the residual bias using a form of regression calibration.

4.3 Bias Correction

Although β̂1,sim is asymptotically unbiased for large N∗ corresponding to the situation

with many exposure monitors, in practice N∗ tends to be relatively small. So we use a

form of regression calibration to correct the residual bias. Since β̂1,exact is an unbiased

estimator for β1, similarly to (7) we can write the bias of β̂1,sim as

π = E
[
Ẽ(β1(X̃))− β1(X̂plug-in)

]
+

[
E(β1(X̂plug-in))− β1(X̂exact)

]
≈ E

[
Ẽ(β1(X̃))− β1(ẼX̃)

]
+

[
E(β1(X̂plug-in))− β1(E(X̂plug-in))

]
(16)

The approximate equality in the second line comes from the assumption that

E(X̂plug-in) ≈ X̂exact.

The corresponding relationship in (7) holds exactly, but in this case the potentially

nonlinear role of θ in E(X|X∗, α, θ) and details of the choices for priors on θ and α

make it an approximation.

Finally, we assume that for almost every realization of X∗, the posterior distribution

of X̃ is approximately equal to the sampling distribution of X̂plug-in. For independent

data this would would be a consequence of the Bernstein-von Mises theorem. Le Cam
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and Yang (2000) give abstract conditions for a Bernstein-von Mises theorem in terms

of local asymptotic Normality that show independence is not necessary, and our ex-

perience with spatial and spatio-temporal modeling suggests that the result is at least

approximately true, although largeN∗ may be required for the asymptotics to dominate.

As in Section 3, we define an estimate of the bias by

π̂ = 2
[
Ẽ(β1(X̃))− β1(Ẽ(X̃))

]
= 2(β̂1,sim − β̂1,plug-in)

and then define the calibrated estimator

β̂1,sim-cal = 2β̂1,plug-in − β̂1,sim. (17)

This procedure generally works well at reducing the bias in our simulations. It may be

possible to improve on the calibration by refining the approximation in the second line

of equation (16) for specific covariance models.

We neglect changes in variability from the calibration and set

σ̂β1,sim-cal = σ̂β1,sim.

It appears from our simulation examples in Section 5 that the correct value of σ̂β1,sim-cal

is slightly smaller than σ̂β1,sim. This phenomenon will be the subject of future study.

5 Simulations

5.1 Linear exposure model

We begin with a simulation study in the context of the linear regression exposure model

from Section 3. The number of subjects is set at N = 1010, and we consider varying
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numbers of exposure monitors N∗ = 25, 50, 100, or 200. The exposure model is

X = 2 + 8S + 3N(0, IN )

where IN is the N ×N identity matrix and the covariate S is random with a uniform

distribution on [0, 1]. The model for the health outcome is

Y = 2 +X + 2N(0, IN ),

so the parameter of interest is β1 = 1. Results from 5000 simulations are shown in

Table 1.

As expected, using an estimated exposure based on the exact parameters gives cor-

rect inference for β̂1,exact with larger standard errors than if the true exposure were

known (pure Berkson error). Plugging in an exposure based on estimated parameters

and treating it as known gives β̂1,plug-in and standard errors σ̂β1,plug-in that are too small,

resulting in significantly less than nominal coverage. If we attempt to correct this by

using “exposure simulation”, the estimate of β1 is biased toward the null regardless of

the number of exposure monitors. Instead, we successfully correct the standard errors

by doing “parameter simulation” and averaging over simulated samples from the poste-

rior distribution of the exposure model parameters to get β̂1,sim and σ̂β1,sim. Notice that

for N∗ = 25, the expected value of σ̂β1,sim does not agree with the standard deviation of

σ̂β1,sim but the coverage for 95% confidence intervals is nearly nominal. This suggests

that σ̂β1,sim generally performs well but that outliers affect the estimated mean values

over the set of 5000 simulations. Although bias is not a significant contributor to the

error (i.e., SD(β̂1) is very close to the RMSE), regression calibration reduces the small

residual bias that is present (at least for N∗ ≥ 50).
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5.2 Universal kriging model

We now consider simulations using exposures that follow a universal kriging structure.

In a 500× 500 box we randomly select locations for N = 410 subjects and N∗ = 25, 50,

or 100 exposure monitors. The universal kriging exposure model is

X = 2 + α1S + η

with uncorrelated random covariate S drawn from a uniform distribution on [0, 1]. The

error term η has an exponential variogram structure with parameters

θ = (φ, ψ, τ),

where φ is the inverse range, ψ is the partial sill, and τ is the nugget (Cressie 1993).

The model for the health outcome is the same as in Section 5.1.

We consider four sets of exposure model parameters, corresponding to combinations

of short and long correlation ranges and strong and weak dependence on the covariate

S. The parameter specifications are given in Table 2, and example realizations are

shown in Figure 1. Notice that since the covariate S has no spatial structure, strong

dependence on S has the appearance of adding spatial roughness. However, it is part

of the mean model so it affects the inference differently than having a short correlation

range.

For each of twelve scenarios corresponding to N∗ = 25, 50, or 100 and the four

classes of spatial exposure field, we simulate 5000 Monte-Carlo runs and estimate β1

and σβ1 according to the methodology described in Section 4. To estimate parameters

in the exposure model, we fit Bayesian kriging using the spBayes package for R (Finley
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et al. 2007; R Development Core Team 2008) with diffuse inverse gamma priors Γ−1(2, 5)

on ψ and τ and with a uniform prior U(0.003, 0.3) on φ−1 . We run a single chain for

ten thousand iterations and discard the first two thousand iterations as “burn-in”. We

graphically verify for a small subset of Monte-Carlo runs that the chain has good mixing

and convergence properties. The posterior distribution is approximated by 100 samples

from the MCMC output.

The results for the four combination of short and long correlation ranges and strong

and weak dependence on the covariate S are shown in Tables 3 - 6. The findings are

generally consistent with the theory developed in Section 4. Using estimated expo-

sures based on the exact parameters (which are not known in practice) gives unbiased

estimates for β1, but the standard errors are too small resulting in less than nominal

coverage for 95% confidence intervals. As expected, this discrepancy is more pronounced

in the exposure fields with long ranges since these have more spatial correlation. Ap-

plying the correction from Section 4.1 to obtain σ̂β1,exact inflates the standard errors

to appropriately account for spatial correlation and results in nominal coverage for the

confidence intervals.

The “plug-in” estimator β̂1,plug-in obtained by treating the estimated kriging pa-

rameters as known and plugging in the corresponding exposure field is slightly biased.

More importantly, the corresponding confidence intervals based on σ̂β1,plug-in (which al-

ready incorporate the standard error correction from Section 4.1) are too narrow. Using

“exposure simulation” in an attempt to correct the standard errors leads to significant

bias toward the null. We successfully correct the standard errors to account for pa-

rameter estimation by employing “parameter simulation” and averaging over simulated
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samples from the posterior parameter distribution and deriving β̂1,sim and σ̂β1,sim as

in Section 4.1. The coverage of the corresponding 95% confidence intervals is close to

nominal, but this procedure actually introduces additional bias. In some scenarios there

is a significant difference between the standard deviation of β̂1,sim and its root-mean-

square-error (RMSE), indicating that the bias is an important contributor to the overall

error. In most of our simulation scenarios the bias is away from the null, but in some

cases it is toward the null.

The regression calibration of Section 4.3 gives β̂1,sim,cal which tends to have less bias

than β̂1,sim. In particular, the RMSE of β̂1,sim,cal is generally smaller than the RMSE of

β̂1,sim, and it also agrees well with the standard deviation of β̂1,sim,cal. The regression

calibration works better for the exposure fields with strong covariate dependence than for

those with weak covariate dependence. This is not surprising since the strong covariate

dependence cases are closer to the uncorrelated exposure model of Section 3, and the

calibration procedure’s validity requires fewer assumptions in that setting.

6 Example

An example application is the problem considered by Madsen et al. (2007) of estimating

the association between the log of chloride levels in streams

Y = log cl

and the logit of the fraction of forestation in the local watershed

X = logit for.
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We do not include additional covariates, so the assumed model is

Y = Xβ1 + Zγ + ε,

where Z is a vector of ones and γ is the intercept. Although it is plausible that ε

has a spatial correlation structure, for the purposes of this analysis it is assumed to be

uncorrelated. We utilize data collected by the Environmental Protection Agency in the

Mid-Atlantic Highlands region of the eastern United States during the years 1993-1996.

The data are freely available on the internet (U.S EPA Environmental Monitoring and

Assessment Program 1999).

For a subset of N = 157 streams the dataset includes only the outcome Y . Where

multiple measurements are available from different times, we use the earliest time. For

another N∗ = 337 streams the dataset includes the exposure X∗ and the outcome Y ∗

(we have restricted to streams with percent forestation strictly between 0% and 100%

in order to allow for the logit transformation). All of the locations are shown on a map

in Figure 2. Since we actually have full data at N∗ = 337 streams, we can examine

the association between chloride levels and forestation without having to estimate the

exposure. Simple linear regression gives β̂1,true = −0.278 with a standard error of

σ̂β1,true = 0.026. A scatterplot is shown in Figure 3.

In the remainder of the example, we assume that Y ∗ is not available and regard X∗

as exposure monitoring data as in Section 2. We need to predict the exposure vector

X at the N = 157 locations with measured outcomes Y in order to estimate β1. We

do this using a universal kriging model with a linear trend in latitude and longitude.

An empirical binned variogram for the residuals of X∗ is shown in Figure 4. Distances
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are calculated using a flat-earth approximation, with one degree of latitude equal to

111.3 km and one degree of longitude equal to 85.9 km.

Based on this empirical variogram we assume an exponential covariance model with

the same parameterization as in Section 5.2, and we estimate the posterior distribution

of the parameters in a Bayesian setting using the same methodology. The only difference

is that in this case we use a uniform prior U(0.001, 0.3) on the inverse range parameter φ.

The posterior means (standard deviations) of the variogram parameters are as follows:

Range−1 (φ) = 0.033(0.011)

Partial sill (ψ) = 3.01(0.58)

Nugget (τ) = 1.14(0.36).

The Bayesian kriging model can be used to estimate X at the N = 157 locations

without exposure data. Results of using the methods in Section 4 to make inference

on β1 are given in the top half of Table 7. The estimated value of β1 is approximately

−0.24 for all of our methods, which is close to β̂1,true = −0.278 that was obtained

with true exposure and outcome data. The standard error for the plug-in estimator

without any correction is 0.0786, and the first stage correction from Section 4.1 has little

effect. This is consistent with the fact that we estimate little spatial structure in the

exposure field (range of approximately 30 km). The “parameter simulation” standard

error correction from Section 4.2 accounts for uncertainty in estimating parameters in

the exposure model and slightly increases the standard error to 0.0835. There is little

change from the bias correction of Section 4.3, potentially because N∗ = 337 is relatively

large and the bias vanishes asymptotically. Overall these results are consistent with our
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expectations, although they suggest that N∗ = 337 is enough exposure monitors to

justify ignoring the errors described in items (B) and (C) of Section 4. As expected,

“exposure simulation” results in a seriously biased estimate for β1 of −0.0808.

As a sensitivity analysis, we evaluate what would happen if there were onlyN∗ = 157

exposure monitors. Results are given in the bottom half of Table 7, averaged over

1000 randomly selected subsets of monitor locations. Overall the mean estimate of β1

is approximatley −0.30, which is different from the value obtained using the full set

of exposure monitors but is still close to β̂1,true = −0.278. Now there is a significant

inflation of the standard error from “paramter simulation” compared to simply plugging

in the posterior mean parameters, and there is also a slight change in the estimate of β1

from the bias correction of Section 4.3. This suggests that with only N∗ = 157 exposure

monitors it is important to account for the errors described in items (B) and (C) of

Section 4. In particular, ignoring the uncertainty from estimating the exposure model

parameters results in standard error estimates σ̂β1,plug-in that are on average 25% smaller

than the corrected values σ̂β1,sim.

7 Discussion

The question of how to use estimated exposures in a regression model is of increasing

interest in air pollution epidemiology and other applications of environmental epidemi-

ology and statistics. There is a growing recognition that ignoring the uncertainty in

exposure induces serious and complicated errors in the resultant effect estimates (Kim

et al. 2008). It is also clear that the errors do not fit into the typical categories of “clas-
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sical” or “Berkson” measurement error, and standard regression calibration methods

do not apply (Carroll et al. 1995). While there has been some progress in the recent

literature (Madsen et al. 2007; Gryparis et al. 2007), to our knowledge this is the first

systematic description of the three sources of error that can occur along with general

methods for correcting each of them.

A key insight is that incorrect standard errors resulting from variability in estimation

of the exposure can be accounted for by averaging over simulations from the part of the

posterior exposure field that is informative for the outcome. This amounts to “parameter

simulation”, which entails simulating from the posterior parameters and averaging effect

estimates derived from the corresponding conditional mean exposure fields. There are

important implications for how environmental exposures should be modeled. Universal

kriging and related spatio-temporal methodologies that explicitly model the residual

correlation with a parametric covariance lend themselves to our approach. Some authors

have suggested using semi-parametric smoothing as a less computationally demanding

alternative (Gryparis et al. 2006; Kunzli et al. 2005). This can yield good estimates of

the mean exposure field, but there is no natural way to identify the part of the posterior

exposure field that is informative for the health outcome. Thus, it is not clear how to

account for variability in the exposure estimates. Our methodology applies for a general

parametric correlated exposure model where the posterior is Gaussian conditional on

the parameters. In future research we will explore how to isolate the informative part

of the posterior for non-Gaussian models.

In the interest of clarity, we have focused on a relatively simple health effect model,

restricting to linear regression for a continuous and uncorrelated outcome. Extension
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to a correlated outcome would require a modification of the standard error correction

in Section 4.2. The method of moments estimate of the standard deviation for ε will no

longer work, but it seems reasonable to use likelihood based methods if the correlation in

ε can be described parametrically or to use the WEAVE covariance estimator (Lumley

and Heagerty 1999). Extension to generalized linear models is also of interest. The

theory is more complicated, but we expect that our methods will work well, especially

in the typical environmental epidemiology situations where the effect size is small.

Finally, we remark that the bias correction of Section 4.3 involves approximations

that could be improved for specific exposure models. In particular, the approximate

equality in the second line of equation (16) results from nonlinearity of the covariance as

a function of its parameters. In future work we will look at improving the approximation

with higher order corrections for specific covariance models. This would come at the

expense of the simple formula in equation (17). In the examples we have considered

in this paper, the bias is a relatively minor contributor to the error and the simple

correction works reasonably well.
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Figure 1: Examples of simulated spatially correlated exposure surfaces. Strong de-
pendence on covariates and short correlation range (Top, Left); Strong dependence on
covariates and long correlation range (Top, Right); Weak dependence on covariates
and short correlation range (Bottom, Left); Weak dependence on covariates and long
correlation range (Bottom, Right).
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Figure 2: Locations at which full or partial stream data are available.
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Figure 3: Scatterplot of log(chloride concentration) vs. logit(fraction of watershed
forest) for the N∗ = 337 streams at which both values are available. Simple linear
regression gives β̂1,true = −0.278 with a standard error of σ̂β1,true = 0.026.

36

http://biostats.bepress.com/uwbiostat/paper330



Figure 4: Empirical binned variogram for residuals of logit(fraction of watershed forest)
with fitted linear trend in degrees latitude and longitude. Calculated using theN∗ = 337
streams at which forestation data are available.
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