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ABSTRACT 

Background: Air pollution studies increasingly estimate individual-level exposures from 

area-based measurements by using exposure prediction methods such as nearest monitor 

and kriging predictions.  However, little is known about the properties of these methods 

for health effects estimation.  This simulation study explores how two common 

prediction approaches for fine particulate matter (PM2.5) affect relative risk estimates for 

cardiovascular events in a single geographic area. 

Methods: We estimated two sets of parameters to define correlation structures from 2002 

PM2.5 data in the Los Angeles (LA) area and selected additional parameters to evaluate 

different correlation features.  For each structure, annual average PM2.5 was generated at 

22 existing monitoring sites and 2,000 pre-selected individual locations in LA.  

Associated survival time until cardiovascular event was simulated for 10,000 

hypothetical subjects.  Using PM2.5 generated at monitoring sites, we predicted PM2.5 at 

subject locations by nearest monitor and kriging interpolation.  Finally, relative risks 

(RRs) of the effect of PM2.5 on time to cardiovascular event were estimated. 

Results: Health effect estimates for cardiovascular events had higher or similar coverage 

probability for kriging compared to nearest monitor exposures.  The lower mean square 

error of nearest monitor prediction resulted from more precise but biased health effect 

estimates.  The difference between these approaches dramatically moderated when spatial 

correlation increased and geographical characteristics were included in the mean model. 

Conclusions: When the underlying exposure distribution has a large amount of spatial 

dependence, both kriging and nearest monitor predictions gave good health effect 

estimates.  For exposure with little spatial dependence, kriging exposure was preferable 
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but gave very uncertain estimates.
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1. INTRODUCTION 

 Studies of health effects of long-term air pollution have traditionally assigned 

exposures to individuals using measurements made at a few fixed site monitoring 

stations.
1,2

  This approach was based on the assumption that the spatially-averaged 

ambient air pollution concentrations measured at monitoring sites in an administrative 

area, such as a community or a metropolitan area, is representative of the exposure of 

individuals residing at different locations in the area.  However, such exposure data do 

not capture all the individual spatial heterogeneity in exposure and may result in less 

accurate or reliable health effect estimates.   

In order to improve exposure assessment, some more recent studies used 

predicted individual air pollution exposure instead of an average area-wide monitored 

concentration.  One prediction approach assigns exposure based on nearest monitor to the 

participant’s residential location.
3-6

  Another common approach is to interpolate 

predictions by applying a geo-statistical method such as kriging.
7-10

  Kriging predicts 

individual concentrations corresponding to residential locations after estimating the 

parameters of a model of the spatial surface of air pollution concentration.  Although both 

methods have been used in practice, little is known about how these prediction methods 

affect health effect estimation.  Using assumptions derived from an analysis of annual 

average concentration of particulate matter less than or equal to 2.5 microns in 

aerodynamic diameter (PM2.5) and a previous analysis of the effect of particulate matter 

on cardiovascular events,
4
 we conducted a simulation study to investigate the impact on 

the health effect estimate of using predicted exposure from these two exposure prediction 

approaches.    
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2. METHODS 

2.1. Data and assumptions 

2.1.1. Population 

 We selected 2,000 residential locations from the Los Angeles-Long Beach-Santa-

Ana urbanized area of California (LA urbanized area) as defined by the US census 

classification (figure 1).  Random selection of locations was made using a uniform 

distribution stratified by census tract to obtain up to three residential locations per tract 

with the number of individual sites proportional to the population size.  To obtain 10,000 

subjects, five subjects were assumed to live around each residential site, and have 

identical PM2.5 exposure. 

2.1.2. PM2.5 data and analysis 

 The twenty two PM2.5 monitoring stations used in the simulation were located in 

five counties (Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties) 

surrounding the LA urbanized area.  These stations were nearly identical to those used in 

Jerrett et al, 2005.
8
  Using annual average concentrations from 2002, we estimated 

parameters for a spatial model of PM2.5 by fitting mean and covariance models.  We fit a 

covariance model to the empirical variogram, the squared differences of PM2.5 against 

distance.  The covariance model has a specific functional form with three parameters: the 

range, partial sill, and nugget.  The range is the distance where the variogram curve 

reaches the maximum variability.  The total variance, named sill, is partitioned into the 

partial sill and nugget.  The partial sill is the component of variance due to spatial 

variability, while the nugget is considered measurement error.  The mean model is a 

regression model with covariates assumed to affect PM2.5.  In this analysis, we only 
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considered longitude (X) and latitude (Y) as possible covariates.  After exploration of 

several covariance and mean models, the best fitting model, chosen by cross-validation, 

was a spherical covariance model with a second-order polynomial mean model using the 

XY coordinates as predictors.  This model is referred to as TEM 1 in the tables and 

figures.  It is similar to the one used in previous studies in the LA area.
8,9

  For sensitivity 

analysis, we also estimated spatial parameters from a constant mean model (TEM 4).  

2.1.3. Disease 

 We used an exponential relative risk (RR) model for time to first cardiovascular 

event and used the RR, baseline rate, and drop-out patterns consistent with a previous 

study of postmenopausal women in the Women’s Health Initiative (WHI) cohort.
 4

  

Miller et al reported a cardiovascular and cerebrovascular disease incidence proportion of 

0.032 for a median follow-up of 6 years among 65,893 women and estimated overall 

hazard ratio of 1.24 for a 10 ㎍/m
3 increase in long-term average PM2.5 concentration.  

In the simulation, we assumed a baseline incidence rate of 0.032 per year and a beta 

coefficient of 0.0215 (=log(1.24)/10) for the RR parameter. 

2.2. Simulation 

 Given the residence locations and model parameters, we generated true PM2.5 

exposures for 2,000 residence and 22 monitor locations, and 10,000 outcomes (times to 

cardiovascular disease event) in 1,000 simulations.  We made the simplifying assumption 

that PM2.5 concentration equals PM2.5 exposure.  Using only monitoring data, we then 

predicted PM2.5 exposure by two methods: nearest monitor and kriging.  The effect of 

PM2.5 on cardiovascular disease incidence was estimated conditional on predicted or true 

exposure in a Cox proportional hazards regression analysis.  Across all simulations, 
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locations were fixed for the 22 monitors (real locations) and 2,000 residences; the true 

exposures and health outcomes were generated in every simulation. 

2.2.1. True models 

1) Underlying exposure model 

 We assumed exposure to PM2.5 followed a multivariate normal distribution with 

variability consisting of spatial and non-spatial components parameterized by the partial 

sill ( 2σ ), range (φ ), and nugget ( 2τ ) in the spherical covariance model.  True exposure 

(W ) at location 
is  was generated as   

 )()()()( iiii ssvssW εµ ++=   (1) 

The true exposure was composed of the mean ( )( isµ ) and two error terms, the spatial 

( )( isv ) and non-spatial errors ( )( isε ).  Variances of these errors are the partial sill ( 2σ ) 

and nugget ( 2τ ), respectively.  Correlation of spatial errors is a function of the range 

(φ ).
11

  To represent different spatial correlation scenarios, we focused primarily on six 

true exposure models with different mean and covariance parameters (table 1).  

Parameters for the two models were estimated from analyses of PM2.5 data in LA 

(section 2.1.2).  In the first true exposure model (TEM 1), most of the variability of 

PM2.5 was dominated by the geographical covariates.  The mean was determined by a 

second-order polynomial function of XY coordinates, 

( )**0016.0()*31.0()*09.0()*07.24()*69.6()46771()(
22

YXYXYXs i −+−+−+++−=µ ), 

while the partial sill, range, and nugget were relatively small 

( 43.0,km4481.5 22 === τφσ ).  The other model (TEM 4) had a constant mean 

( 35.81)( =isµ ㎍/m
3
) so all the spatial dependence was parameterized in the covariance 
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model.  Thus, the partial sill and range were larger ( km120,9.462 == φσ ) and there 

was no nugget ( 02 =τ ).  To explore sensitivity to the exposure model structure, arbitrary 

parameter values were chosen for four other models (TEM 2, TEM 3, TEM 5, and TEM 

6).  These models had the same constant mean and partial sill as the TEM 4 but different 

range parameters to represent a range of spatial correlations from none to high.  Figure 2 

shows examples of each exposure surface; the spatial surface is smoother in the first, 

fourth, fifth, and sixth models with large spatial dependence from the variogram or the 

second-order mean models.  In order to better understand how modeled exposure affected 

health effect estimates, we conducted a sensitivity analysis by simulating an additional 

set of forty true exposure models.  We assigned a constant mean to half and a polynomial 

mean to the other half (mean identical to the first true exposure model).  Each of the 

twenty pairs had range parameters (φ ) between 10 and 500 km, partial sill parameters 

( 2σ ) between 0.1 and 90, and no nugget ( 02 =τ ). 

2) Underlying disease model 

 Survival time to cardiovascular event occurrence (T ) followed an exponential 

distribution with mean, 
))(exp(

1

0 WW −
=

βλ
γ ,  i.e.  

 )(~ γExpT   (2) 

Censoring was based on two mechanisms: cardiovascular disease-free survival for ten 

years (study duration) and loss to follow-up (drop-out).  Ten percent of all subjects 

dropped out in the first ten years with time determined by the uniform distribution so the 

probability of drop-out was constant over all study years. 

2.2.2. Fitted models 
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1) Predicted exposure 

 For each of the six exposure models, two versions of predicted PM2.5 were 

estimated from the simulated (“measured”) PM2.5 concentration at the twenty-two 

monitor locations.  Nearest monitor exposures (
*

W ) assigned the measured PM2.5 at the 

closest monitor to each individual residential location.  Kriged exposures (
**

W ) 

interpolated measured PM2.5 by universal kriging methods.  Kriging prediction consists 

of two parts: estimating the spatial structure and interpolating the spatial surface.  We 

estimated parameters from the monitor measurements under a variogram with a spherical 

covariance and a second-order polynomial mean model.  Given the estimated parameters, 

we predicted PM2.5 at individual residence locations.   

2) Fitted disease model 

 The effect of PM2.5 on time to cardiovascular event was estimated by the Cox 

proportional hazards model, conditional on true ( WW =' ) or predicted exposure 

( *' WW =  or **
W ), 

 ))''(ˆexp()( 0 WWt −= βλλ . (3) 

3) Assessment of validity and reliability 

 To evaluate validity and reliability of health effect estimates, bias, variance, mean 

square error, and 95 percent coverage probability were estimated.  Coverage probability 

is the proportion of 95 percent confidence intervals of health effect estimates that include 

the true β . 

 In order to gain insight into properties of health effect estimates based on 

properties of exposures and their prediction, we also investigated validity and reliability 

of predicted exposure by summarizing average prediction error (difference of predicted 
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PM2.5 minus true PM2.5), variance of true and predicted exposures at subject locations, 

mean square prediction error, and 1 minus mean square prediction error relative to true 

exposure variance (constrained to always be greater than or equal to 0), which is an 

estimate of R-square.   

3. RESULTS 

 Summary statistics of true and predicted PM2.5 in the first simulation are shown 

in the online appendix.  Across the exposure models, the true PM2.5 exposure means for 

the 2,000 residential sites were between 17.10 and 26.08 ㎍/m
3
.  Predicted PM2.5 had 

smaller standard deviations and ranges than true PM2.5, particularly for kriging 

prediction.  Relative to the variation in the true exposure data, kriged PM2.5 varied much 

less in the second and third true exposure models (TEM 2 and TEM 3) which assumed 

little spatial correlation.  A more detailed picture emerges from the true versus predicted 

exposure scatter plots displayed in figure 3.  Predicted PM2.5 was more correlated with 

true PM2.5 when the true exposure models had more spatial structure.  Although models 

1 and 4 (TEM 1 and TEM 4) were based on different fits to the same data, model 1 

predictions were more correlated with true exposures.   

 Table 2 gives summary statistics for the quality of predictions over all simulations.  

Across the models, kriged PM2.5 had smaller average prediction error and variance than 

nearest monitor PM2.5.  Mean square prediction error was smaller for kriging as well, 

except for model 4.  Likewise, estimated R-square was generally higher for kriged 

predictions. 

Table 2 also summarizes qualities of health effect estimates.  Kriged PM2.5 health 

effect estimates were less biased and more variable than health effects from nearest 
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monitor PM2.5.  Estimates with the highest bias were from exposures with the least 

amount of spatial structure.  However, because variance dominated bias, nearest monitor 

predictions had smaller mean square error than kriging predictions.  This trend was 

consistent across all six exposure models.  Moreover, the same pattern was found for  

higher (RR=1.34) and lower (RR=1.14) true effects (results not shown).  Coverage for 

kriged exposure was generally better than for nearest monitor, but was mostly less than 

the target 95 percent.  With respect to the relationship between predicted exposure and 

health effect estimates, spatial exposure structures with higher estimated R-square 

produced higher coverage of health effect estimates. 

Figure 4 shows scatter plots of the relationship between health effect estimates.  

Predictions from the first exposure model (TEM 1) gave the best health effect estimates 

from kriged exposure.  Similarly, the fourth, fifth, and sixth exposure models with larger 

spatial correlation (TEM 4, TEM 5, and TEM 6) produced a stronger association between 

health effect estimates for true and predicted exposures than the exposure models with no 

or little spatial dependence (TEM 2 and TEM 3).  Nearest monitor prediction 

underestimated true effects on average, while kriging only underestimated on average 

when there was little spatial correlation in the exposure.  Note that since there are 

estimates in the second and fourth quadrants of the nearest vs. kriged exposure scatter 

plots, there are multiple realizations for each exposure model where the kriging and 

nearest monitor prediction approaches would lead to health effect estimates with opposite 

signs. 

Figure 5 shows a sensitivity analysis of the relationship between spatial 

correlation (represented by the range) and health effect estimate properties (mean square 
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error and coverage) across exposure models with different covariance parameters and 

mean structure.   The models that produced the best health effect estimates (as defined by 

good coverage and small mean square error) had large range parameters relative to the 

partial sill.  As the range increased, coverage increased towards 95 percent and mean 

square error decreased.  Moreover, the difference between prediction approaches for both 

coverage and mean square error became smaller.  Addition of mean structure had a 

dramatic effect on mean square error but relatively small impact on coverage.  In 

particular, with mean structure in the model there was only a small difference in mean 

square error between kriging and nearest monitor exposures for all range parameters. 

4. DISCUSSION 

We explored two exposure prediction approaches in a simulation study to 

estimate the effect of PM2.5 on cardiovascular events.  Kriging prediction estimated 

more accurate exposure because it had smaller average mean square prediction error.  

However, kriged exposure predictions were also less variable which has implications for 

health effect estimates.  Overall, health effect estimates were better with kriged exposure 

when comparing results based on coverage probability.  In contrast, for mean square error 

kriging generally performed worse than nearest monitor prediction due to greater 

variance in the health effect estimates resulting from smaller exposure variance.  

Differences between the two approaches diminished in more spatially-dependent 

exposure structures where the dependence is represented by a longer range and/or the 

polynomial mean model. 

Health effect estimates for both exposure prediction approaches had better 

properties as spatial correlation in the covariance model increased and a spatially varying 
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mean structure was included.  Coverage converged to 95 percent and mean square error 

decreased as the range became larger.  This improvement was consistent across different 

partial sill parameters (figure 5).  In addition, when the spatially varying mean model was 

included, coverage improved slightly while mean square error reduced more dramatically.  

In particular, mean square error of kriging prediction dramatically declined and even 

became smaller than that of nearest monitor prediction.   

The mean square error and coverage criteria led to generally different conclusions 

about the preference of nearest monitor versus kriging predictions.  Coverage is a very 

important property of health effect estimates since interval estimates are the basis for 

inference.  Coverage of 95 percent means that the 95 percent confidence interval 

estimated in an observational study has the correct interpretation, i.e. that the interval has 

a 95 percent probability of covering the true effect.  While nearest monitor prediction had 

generally smaller estimated mean square error, this was due to less variable but mostly 

biased effect estimates that produced generally smaller coverage below 95 percent.  

When we examined the expanded set of exposure models with different range, partial sill, 

and mean parameters, all models except five showed better coverage for kriged versus 

nearest monitor exposures.  Four models among them had medium range (120 km) and 

large partial sill (46.9 and 90), with and without mean structure.  The coverages of the 

health effect estimates of nearest monitor were slightly better (by 1-4 percent).  In the 

remaining models, coverage in kriging was much better (by over 50 percent) when spatial 

correlation was small with the range of 10 km and became slightly better (by 1-3 percent) 

as spatial correlation increased up to the range of 500 km (figure 5).   
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 Health effect estimates from the two prediction methods showed features typically 

attributed to classical and Berkson measurement errors depending upon the spatial 

structure.  Nearest monitor health effect estimates were always attenuated as seen from 

the lower fitted regression line for nearest monitor compared to true exposure (figure 4).  

Attenuation was also present for kriged exposure with no spatial correlation or little range 

(TEM 2 and TEM 3).  These underestimated effects behave like attenuation due to 

classical measurement error.  In contrast, health estimates from kriged predictions of 

exposure models with strong spatial structure showed little or no attenuation of the 

regression slope but the estimates were more variable than for true exposures.  This is 

behavior typically attributed to a Berkson measurement error model, although in this 

application the error structure is not independent and identically distributed so the 

Berkson model does not apply exactly.  The standard errors of the health effect parameter 

estimates in such Berkson-like measurement error models can be corrected with a 

sandwich variance estimator
12

.  Since we also showed kriged exposures in models with 

poor spatial structure gave health effect estimates that were both attenuated and more 

variable, our results suggest this correction will not suffice.  Szpiro et al identify two 

additional sources of error that result from uncertainty in the estimation of the parameters 

in the prediction model
13

.  They propose methods to correct the measurement error biases 

from using kriging predictions in a health effects analysis.   In future work, we plan to 

evaluate the performance of their methods for our examples, and we expect the corrected 

coverage probabilities will be closer to the target 95 percent.   

One of the features of our approach is that we considered a monitoring network 

and exposure models based on existing data in order to ensure the relevance of our results.  
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Health effect estimates from exposure models derived from analysis of Los Angeles data 

(TEM 1 and TEM 4) showed good properties.  Although the Los Angeles area has a great 

deal of spatial variability of PM2.5 and a relatively large number of monitors compared 

to other areas, the monitoring network is still relatively sparse from a spatial statistics 

perspective and thus it may be challenging in practice to model the spatial structure.  

More work is needed to determine the best approaches to spatial prediction for air 

pollution exposure data.  As a sensitivity analysis for one aspect of this question, we 

looked at the impact of monitor density on our simulation results.  First we increased the 

number of monitors by five up to forty-two in the first true exposure model (TEM 1).  

Locations of additional monitors were uniformly distributed within the area covered by 

the existing twenty-two monitors.  The denser network did produce marginally better 

exposure predictions and health effect estimates.  With twenty additional monitors, mean 

square error for health effect estimates decreased by 16 and 15 percent in nearest monitor 

and kriging predictions, respectively.  However, the coverage probability was almost 

identical to that of the original number of monitors.  We also explored the influence of a 

sparser monitoring network, a more frequent occurrence in air pollution epidemiology, by 

reducing the number of monitors by five down to twelve in total.  With only twelve 

monitors (ten less than original monitoring network), our health effect estimates yielded 

similar coverage probability estimates and a small increase of mean square error 

estimates for kriged exposures.  In contrast, nearest monitor prediction performed much 

worse.  Mean square error increased by over 50 percent.  Coverage probability dropped 

by around 20 percent.  This sensitivity analysis suggests that a large number of monitors 

may not be necessary for kriging prediction in a health effect analysis, at least when there 
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is adequate spatial variability and the form of the spatial model is not in question.  Health 

effect estimates were more sensitive to monitor reduction when individual exposure was 

predicted using nearest monitor. 

We observed that for the kriged exposure, a small percentage of health effect 

estimates resulted in large outliers (omitted from figure 4).  In further evaluation of those 

simulations, we found the exposure model covariance parameter estimates were 

unreasonably large.  Under the spatial structure with very small range, poorly estimated 

covariance parameters induced the most extreme outlier occurrences.  As part of our 

analysis, we examined both universal and ordinary kriging fitting procedures for all 

exposure models.  We found that estimation using ordinary kriging (i.e. with a constant 

mean) produced consistently poorer covariance parameter estimates across all exposure 

models.  The universal kriging approach gave more stable parameter estimates even when 

there was no underlying mean structure in the true exposure model.  While it is not 

practical to investigate a large number of mean and covariance models in a simulation 

study, further research should be done to determine whether other spatial statistical 

models or fitting algorithms would produce more reasonable parameter estimates in such 

cases. 

In order to focus this research on features of spatially dependent exposure and 

prediction that affect health effect parameter estimates, we made some strong 

assumptions.  Most important, we assumed ambient air pollution concentration was 

identical to ambient source exposure.  This assumption does not reflect the difference of 

exposure from concentration due to time activity and local sources or the attenuation of 

ambient exposure by infiltration.  Future research will need to incorporate this exposure 
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feature.  Another topic that needs additional research is investigation of the importance of 

the multivariate normal distribution for the underlying true exposure.  It will be valuable 

to determine whether our conclusion that kriged exposure is preferable to nearest monitor 

prediction still holds when this distributional assumption is relaxed, since kriging 

assumes a multivariate normal spatial surface.  Finally, we assumed there was no 

additional spatial structure in the disease model.  There may be spatial dependence in the 

health outcome in addition to the spatial structure induced from the exposure distribution.  

Work is needed to incorporate spatial dependence in the disease model and determine 

how separable the two sources of spatial structure may be in the health analysis. 

While the focus of this paper is specific to the field of air pollution epidemiology, 

this research is broadly relevant to inference in epidemiological studies in the presence of 

limited exposure data.  We present a problem where there are no exposure measurements 

for study subjects but where it is possible to use an external dataset to develop an 

exposure prediction model to plug into the health effect analysis.  We evaluate the merits 

of two exposure prediction approaches directly in terms of the parameter of interest in the 

epidemiological study.  We learned that it is not sufficient to assess the accuracy and 

precision of the exposure predictions when the target of inference is the health effect 

parameter in the disease model.  We showed that the bias and precision of the resulting 

health effect estimates depend upon the approach to exposure prediction and the features 

of the underlying exposure distribution.  While the details of our results are specific to the 

air pollution epidemiology context, our general approach and overarching conclusions are 

relevant to other epidemiological study settings.    
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In summary, based on the generally better coverage and lower bias properties of 

the health effect parameter estimate of interest, we conclude that kriging exposure 

prediction is preferable to nearest monitor prediction for estimation of air pollution health 

effects, particularly when the underlying true exposure is less spatially correlated.  Both 

prediction approaches performed well when there is good spatial structure in the 

underlying exposure distribution. 
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Figure legends 

 

Figure 1. Locations of 2,000 hypothetical study subjects, and 22 PM2.5 monitors in the Los 

Angeles area. 

 

Figure 2. Spatial surface of the six true exposure models.  Darker shading indicates higher 

concentration.  Black dots on the spatial surface for the TEM 2 represent the locations of 

the 22 PM2.5 monitoring sites in LA. 

 

Figure 3. Relationship between true and predicted exposures for the six true exposure 

models in which sources of spatial variability come from geographic characteristics (TEM 

1), little spatial correlation (TEM 2 and 3), medium spatial correlation (TEM 4), and high 

spatial correlation (TEM 5 and 6).  Green line is the X-Y identity. 

 

Figure 4. Relationship between estimated health effects from true and predicted exposures 

for the six true exposure models in which sources of spatial variability come from 

geographic characteristics (TEM 1), little spatial correlation (TEM 2 and 3), medium spatial 

correlation (TEM 4), and high spatial correlation (TEM 5 and 6) after excluding outlying 

estimates.  Green and red lines display the X-Y identity line and the best-fit line between 

health effect estimates of true and predicted exposures, respectively. 
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Figure 5. Relationship of range versus mean square error (MSE) and coverage probability 

of health effect estimates for kriging exposure and differences of kriging from nearest 

monitor exposures for all forty true exposure models.  Solid and dotted lines represent 

constant and polynomial mean models, respectively.  Horizontal line in red for the 

difference figures is at zero to show no difference.  Several extreme values for MSE and the 

MSE difference occurred when partial sill is equal to 0.1 and are not shown.  Differences 

are for estimates (of MSE or coverage) for kriging exposure minus nearest monitor 

exposure 
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Table 1. Source of spatial variability and parameter value in the six true exposure models 

True exposure model Parameter value 

  

Nugget  

(τ
2
) 

Partial sill 

(σ
2
) 

Range (km) 

(φ) 

Mean (µg/m
3
) 

(µ(si)) 

TEM 1 Geographical characteristics 0.43 5.81 44 

-46771+6.69X+24.07Y 

-0.09X
2
-0.31Y

2
-0.0016XY

1)
 

TEM 2 No spatial correlation 46.9 0 0 18.35 

TEM 3 Low spatial correlation 0 46.9 10 18.35 

TEM 4 Medium spatial correlation  0 46.9 120 18.35 

TEM 5 High spatial correlation 0 46.9 277 18.35 

TEM 6 Highest spatial correlation 0 46.9 500 18.35 

1) ‘X’ and ‘Y’ mean X and Y coordinates.  Original latitude and longitude coordinates were converted into kilometers in the 

UTM coordinate system 
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Table 2. Summary estimates of validity and reliability of predicted exposure and health effect estimate by the six true 

exposure models across 1,000 simulations  

Exposure model Exposure 
1)

    Health effect 
2)

  

True Fitted MAPE 
3)

  RMV 
4)

 RMMSPE 
5)

 Estimated R
2 6)

   Bias
2
 Variance MSE CP 

7)
 

TEM 1 True  2.93    0  47  48  0.97  

 Nearest 0.43 2.59 2.44 0.29  36  93  129  0.83  

 Kriging 0.00 2.29 2.07 0.47  0  136  136  0.93  

TEM 2 True  6.84    0  8  8  0.95  

 Nearest 0.06 6.31 9.67 0  463  13  476  0.00  

 Kriging 0.04 2.07 7.45 0  472  291  763  0.51  

TEM 3 True   6.79      0  8  8  0.96  

 Nearest 0.06  6.44  8.92 0  326  21  347  0.02  

 Kriging 0.03  2.01  7.26 0  339  686  1025  0.54  

TEM 4 True   4.25     0  27  27  0.95  

 Nearest -0.01 4.03 3.22 0.35  34  54  88  0.75  
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 Kriging -0.02 2.42 3.91 0.20  0  727  728  0.71  

TEM 5 True  2.88     0  59  59  0.96  

 Nearest 0.01  2.74  2.13 0.36  30  108  139  0.85  

 Kriging 0.01  2.09  2.15 0.40  1  400  401  0.87  

TEM 6 True   2.16     0  108  108  0.94  

 Nearest -0.01  2.06  1.58 0.37  32  143  175  0.92  

 Kriging -0.04  1.71  1.44 0.47  0  332  332  0.95  

1) Summary of 1,000 realizations (average prediction error, variance, mean square prediction error, and estimated R-square) 

for 2,000 exposures in each simulation  

2) Bias
2
, variance, and mean square error (MSE) for health effect estimates in 1000 simulations were multiplied by 10

6
 

3) Mean of average prediction error for the difference of predicted PM2.5 minus true PM2.5 

4) Root mean of variance 

5) Root mean of mean square prediction error 

6) Mean of 1 minus mean square prediction error divided by variance of true exposure.  Estimates were constrained to have a 

minimum of zero. 

7) Coverage probability of health effect estimate  
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Figure 1 
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Figure 2 
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Figure 3 

-10 0 10 20 30 40

-1
0

1
0

3
0

TEM 1

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g
-10 0 10 20 30 40

-1
0

1
0

3
0

Nearest

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

TEM 2

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

Nearest

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

TEM 3

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g

-10 0 10 20 30 40
-1

0
1
0

3
0

Nearest

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

TEM 4

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

Nearest

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

TEM 5

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

Nearest

K
ri
g
in

g

-10 0 10 20 30 40
-1

0
1
0

3
0

TEM 6

True

N
e
a
re

s
t

-10 0 10 20 30 40

-1
0

1
0

3
0

True

K
ri
g
in

g

-10 0 10 20 30 40

-1
0

1
0

3
0

Nearest

K
ri
g
in

g

 
 

 

 

 

 

 

http://biostats.bepress.com/uwbiostat/paper331



 29 

Figure 4 

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6
TEM 1

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6
True

K
ri
g
in

g
-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

Nearest

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

TEM 2

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

True

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

Nearest

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

TEM 3

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

True

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6
Nearest

K
ri
g
in

g
-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

TEM 4

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

True

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

Nearest

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

TEM 5

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

True

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

Nearest

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

TEM 6

True

N
e
a
re

s
t

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

True

K
ri
g
in

g

-0.02 0.02 0.06

-0
.0

2
0
.0

2
0
.0

6

Nearest

K
ri
g
in

g

 
 

 

 

 

 

 

 

Hosted by The Berkeley Electronic Press



 30 

Figure 5 
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Online Appendix 

 

Table. Summary statistics of PM2.5 concentration by the six true exposure models in the first simulation 

True exposure model Fitted exposure model Min Q1 Median Q3 Max Mean SD 

Geographical characteristics True 11.34 19.64 20.92 22.38 28.98 20.94 2.36 

(TEM 1) Nearest 17.40 20.45 20.69 21.68 28.58 21.64 2.02 

 Kriging 16.38 20.02 20.85 21.75 22.94 20.79 1.26 

No spatial correlation True -9.71 13.41 18.44 22.84 39.77 18.26 6.82 

(TEM 2) Nearest 7.76 15.04 16.24 20.47 31.49 17.89 6.14 

 Kriging 12.41 15.70 17.84 19.87 24.50 17.91 2.59 

Low spatial correlation True -7.21 14.08 19.02 23.58 36.70 18.73 6.77 

(TEM 3) Nearest 10.63 14.12 17.49 23.62 33.75 19.20 6.14 

 Kriging 13.54 16.15 17.01 18.11 19.62 17.03 1.25 

Medium spatial correlation True 8.62 16.84 19.48 22.39 28.28 19.46 3.61 

(TEM 4) Nearest 11.47 16.85 17.94 23.58 25.16 18.82 3.66 

 Kriging 14.77 15.94 16.28 17.67 23.26 16.95 1.52 
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High spatial correlation True 15.47 23.84 26.57 29.15 33.28 26.08 3.79 

(TEM 5) Nearest 17.34 23.83 27.47 29.43 30.52 25.69 3.94 

 Kriging 17.17 23.45 26.44 28.61 31.98 25.70 3.64 

Highest spatial correlation True 13.00 16.11 17.07 18.13 20.73 17.10 1.47 

(TEM 6)  Nearest 16.08 16.46 17.07 17.40 19.42 17.21 1.01 

 Kriging 17.36 17.44 17.54 17.77 18.53 17.64 0.25 
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