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Semi-Parametrics Dose Finding Methods

Matthieu Clertant and John O’Quigley

Abstract

We describe a new class of dose finding methods to be used in early phase clinical
trials. Under some added parametric conditions the class reduces to the family
of continual reassessment method (CRM) designs. Under some relaxation of the
underlying structure the method is equivalent to the CCD, mTPI or BOIN classes
of designs. These latter designs are non-parametric in nature whereas the CRM
class can be viewed as being strongly parametric. The proposed class is char-
acterized as being semi-parametric since it corresponds to CRM with a nuisance
parameter. Performance is good, matching that of the CRM class and improving
on it in some cases. The structure allows theoretical questions to be more easily
investigated and to better understand how different classes of methods relate to
one another.
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Abstract: We describe a new class of dose �nding methods to be used in early phase clinical

trials. Under some added parametric conditions the class reduces to the family of continual

reassessment method (CRM) designs. Under some relaxation of the underlying structure the

method is equivalent to the CCD, mTPI or BOIN classes of designs. These latter designs are

non-parametric in nature whereas the CRM class can be viewed as being strongly parametric.

The proposed class is characterized as being semi-parametric since it corresponds to CRM with

a nuisance parameter. Performance is good, matching that of the CRM class and improving

on it in some cases. The structure allows theoretical questions to be more easily investigated

and to better understand how di�erent classes of methods relate to one another.
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Introduction

The importance of early phase dose �nding studies - so called Phase I and Phase I/II clinical

trials - is di�cult to overstate. This is particularly so in oncology where it is believed that

a signi�cant number of the more than ninety percent of failed large scale randomized clinical

trials can, to a more or lesser degree, be explained by an ine�cient or an inaccurate early

phase study. The recommended dose would have been either too high, and poorly tolerated,

or too low and, in consequence, unable to provide an adequate anti-tumour response. It

is widely recognized by statisticians and clinicians alike that the standard 3+3 dose �nding

design (Storer, 1989) widely employed in Phase I trials is fatally �awed and, in some sense, not

�t for purpose. As a result the last twenty �ve years has seen considerable statistical research

into early phase designs that are more e�cient while simultaneously paying attention to the

ethical constraints required in the running of any such trial.

Di�erent approaches divide themselves into two classes; the �rst - examples include the

3+3 and the Rolling Six (Skolnik et al., 2008) - are called algorithmic designs since no modeling

takes place and the escalation, de-escalation rules are determined solely as a function of some

set of the most recent observations. They have a Markov property, sometimes referred to in

this context as a lack-of-memory property. The second class of designs are called model-based

designs. Their motivation is to impose greater structure on the observations in order to increase

1Address for correspondence: Matthieu Clertant or John O'Quigley, LSTA, Université Pierre et Marie Curie
Paris 6, 15-25, 4, place Jussieu 75005 Paris France
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the information obtained through sampling as well as to satisfy large sample convergence of

the recommended dose to the true MTD. Statistical properties such as almost sure convergence

are important in as much as, without such properties, it is di�cult to feel con�dent in the

solidity of any approach. At the same time, in real studies, sample sizes are often no more than

20 to 30 and so it is also crucial to have desirable �nite sample properties such as coherence

(Cheung, 2005). Simulations, across broadly varying situations, have been a useful help in

developing methods. One clear advantage of the model-based designs is their ability to be

generalized to deal with more complex situations such as group heterogeneity, combination

therapies and toxicity attribution error.

The most well known of the model-based designs is the continual reassessment method

(CRM) introduced by O'Quigley, Pepe and Fisher (1990). The method has been very successful

but despite its now well known superior performance over the standard design, its use still lags

behind that of the standard design. One explanation for this is that many clinicians are not at

ease in using a method whose in-trial operating behaviour can not be immediately anticipated

as well as the fact that help in the form of an able bodied statistician is recommended. But

there are other statistical concerns (Azriel et al., 2011) that have led to the development of

many competing model-based approaches. Among these are EWOC (Babb et al., 1998), mTPI

(Ji et al., 2010) and BOIN (Liu and Yuan, 2015). Some authors have pointed out that the

conditions for almost sure convergence in Shen and O'Quigley (1996) are very restrictive, and

therefore not realistic. Cheung and Chappell (2002) and Azriel (2012) described ways to relax

these assumptions but the concerns still remain.

The CRM is based on a strong parametrisation of the regression function, so much so

that it is often described as an under parametrized model. Taking our cue from Cheung and

Chappell's work on the CRM, we introduce a semi-parametric characterization of the method

(Section 2). This characterization can also be viewed as a hierarchical Bayesian model having

as a �rst level the main parameter of interest, the MTD itself, and, on a secondary level, families

of dose-toxicity curves constrained only by the location of the MTD. Within this framework

we can characterize several other current methods. We immediately gain some theoretical

advantages such as almost sure convergence to the Maximum Tolerated Dose (MTD) under

weaker conditions than those currently admitted. It is also much easier to anticipate large

sample behaviour in more general situations. The general structure allowed for by semi-

parametric models enables deeper study of the various methods currently available. Perhaps

no less importantly, we propose methods bene�ting from improved asymptotics properties,

computationally very fast, which, for small samples, obtain as good and sometimes better

results than the CRM. Cheung and Chappell's characterization for the MTD as an interval

rather than a point paved the way to more realistic and achievable goals for dose �nding

studies. These ideas are fundamental to our development here and, within this context, we

describe two central features of asymptotic behaviour. The �rst is that of being �sensitive�

and the second that of being �balanced.� Under very wide and realistic dose-toxicity curves
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we show that the semi-parametric method exhibits desirable large sample behaviour regarding

these properties, and that this behaviour will indeed be re�ected in commonly observed �nite

samples. For any given situation, the large sample behaviour of the semi-parametric method

can be characterized by either almost sure convergence to the MTD or by in�nite oscillation

over two adjacent levels, the rates of visitation to either one of these levels being quanti�ed

according to Kullback-Leibler divergence.

A user friendly program in R is available at address https://github.com/MatthieuMC/

SPM_project_01 .

1 Context of model-based designs

1.1 Basic set-up and notation

The statistical purpose is to estimate the root of an unknown dose-toxicity regression function

as observations are accumulated sequentially. The observations are the sequences: (Xn, Yn)n∈N.

At step n, the variable Xn is the dose selected from a range of available doses; D = {1, . . . ,m}
and the variable Yn is the observed binary response at this dose taking values {0, 1} : 1 for

a Dose Limiting Toxicity (DLT) and 0 otherwise. The conditional distribution of Yn given

Xn = d is Bernoulli with parameter βd, which implies that at each dose is associated a prob-

ability of toxicity independent of the way in which patients are selected into the study. The

range D has been chosen by clinical expertise so that the doses are ordered in terms of the

probability of toxic response.

Assumption 1.1. ∀n ∈ N, ∀d ∈ D, βd = P(Yn = 1|Xn = d) with β1 < . . . < βm .

Estimating the root of the regression function enables us to determine which dose among

those available in the range D suggests itself as having a probability of toxicity the closest

to some maximum amount α chosen by the investigators. This dose, noted d∗, is called

the MTD (maximum tolerated dose): d∗ = arg infd∈D |βd − α|. As patients are included

sequentially into the study, we suppose that all of the information contained in the sample,

(Xn
1 , Y

n
1 ) = ((X1, . . . , Xn), (Y1, . . . , Yn)) is available to guide the selection of the dose Xn+1.

The ethical constraints of the study imposed by the clinical team encourages us to use all the

available information at each step in order to choose our best current estimate of the MTD as

the dose to be given to the following patient. The following de�nition (Cheung, 2005) describes

a property that any sensible design should have.

De�nition 1.1. A method, M, is said to be coherent if the selection of the next dose given

the observed sample satis�es, for all d ∈ D and n ∈ N:

(Xn, Yn) = (d, 0) ⇒ M(Xn
1 , Y

n
1 ) > d and (Xn, Yn) = (d, 1) ⇒ M(Xn

1 , Y
n

1 ) 6 d ,

whereM(Xn
1 , Y

n
1 ) denotes dose Xn+1 given (Xn

1 , Y
n

1 ).
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The following assumption restricts attention to design based estimates that are adapted

to the accummulating observations.

Assumption 1.2. The current estimator of the method satis�es: M(Xn
1 , Y

n
1 ) ∈ σ(Xn

1 , Y
n

1 ) ,

where σ(Xn
1 , Y

n
1 ) is the sigma-algebra generated by the sample.

Under this condition we are able to obtain classical asymptotic properties for frequentist

estimators β̂d,n de�ned by:

β̂d,n =
n1
d

n0
d + n1

d

=
n1
d

nd
, where nid =

n∑
j=1

1{Xn=d,Yn=i} , i ∈ {0, 1} . (1)

Lemma 1.1. For all methods satisfying Assumption1.2, we have:

(i) Law of large numbers: β̂d,n −→
nd→+∞

βd , a.s.

(ii) Law of the iterated logarithm: for all βd ∈]0, 1[, with σd =
√
βd(1− βd), we have

lim sup
nd→+∞

√
nd

(
β̂d,n − βd

)
σd
√

2 log (log(nd))
= 1 and lim inf

nd→+∞

√
nd

(
β̂d,n − βd

)
σd
√

2 log (log(nd))
= −1 , a.s.

Proof. Part (i) is shown in Azriel, Mandel, and Rinott (2011, lemma 3) and Part (ii) in the

supplementary material.

This very general result provides no useful method in itself. Indeed, the event {nd → +∞} is
random depending on the vector β = (βd)d∈D and the chosen method. It is not immediately

clear how to obtain a consistent estimator of the MTD because we do not wish for each dose

to be observed in�nitely often. A good dose �nding method will be all the more desirable as

it ful�lls two criteria:

(1) (TR, treatment): we would like the greatest possible number of patients to be treated at

and close to the MTD during the study.

(2) (PCS, percentage of correct selection): the method should lead us with high probability

to a correct determination of the MTD.

Reconciling and jointly optimising these two criteria creates speci�c di�culties for dose �nding

studies. In this context it is worth recalling an impossibility theorem of Azriel et al. (2011)

that throws a useful light on the asymptotic results obtained here. These authors have shown

that no method exists that would, for all situations, allow the current estimator to be strongly

consistent. Only particular con�gurations with respect to the employed method result in

strong consistency.
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Theorem 1.1. Let M be a method satisfying Assumption1.2. A scenario β satisfying As-

sumption 1.1 exists such that:

Pβ(∃N : ∀n > N,M(Xn
1 , Y

n
1 ) = d∗) < 1 .

Indeed, if the method recommends a single dose for n large enough, observations on competing

doses will cease. The information we have at these doses is �nished and, of course, we may

then make an incorrect recommendation however large n.

Example 1.1. Let β = (0.05, 0.10, 0.20, 0.35, 0.55, 0.7) and α = 0.2 . Suppose that, for n

large enough, the design selects only dose 2 and the results for dose 3 are 2 DLT among 5

observations: β̂3,n = 0.4. In such circumstances, for all dose d 6= 2, the law of large numbers

will not apply to β̂d,n because the dose d is not in�nitely tested. The inaccuracy in the estimate

of toxicity related to dose 3 will not be overcome by increasing sample size. However, note that

the event {n2 → +∞} together with the assumption of monotonicity 1.1 allow us to eliminate

almost surely dose 1 from the candidate doses for being the MTD.

According to the Assumption 1.1, the two doses associated with toxic probabilities either

side of the target dose α are consecutive. It would then appear desirable as a large sample

property to concentrate experimentation on these doses. The class of methods introduced in

this article arise in a natural way from a critical analysis of the asymptotic properties of the

CRM (O'Quigley et al., 1990). This very general construct would allow us to include a wide

range of, at �rst glance, diverse methods under a single general heading. This generalization

opens the way to make progress on two fronts; that of critical evaluation of the overall strategy

and that of more e�cient parameterization of particular existing methods alongside their

extensions when dealing with more complex clinical situations. In the rest of the article, we

study this in relation to the CRM. The proposed parametrisation enables us to reproduce

the global behavior of this method while obtaining better theoretical properties and allows

us to escape those di�culties consequent on poor model speci�cation (skeleton). In further

unpublished work we study more deeply this generalization as it relates to the CCD (Ivanova

et al., 2007), mTPI (Ji et al., 2010) and BOIN methods (Liu and Yuan, 2015), since the

semi-parametric structure leads to immediate improvements in all of these designs.

1.2 Parametric methods: Continual Reassesment Method

In this paragraph, we recall the principle features of the continual reassessment method. We

do this in a particular way which helps us to see how the new developments presented here

sit quite naturally within the basic framework of the CRM. The CRM method works by

approximating the dose-toxicity relationship d 7→ βd by a family of continuous functions of a

parameter a.

f : X × [A,B] → [0, 1]

(x, a) 7→ f(x|a) ,

5
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with [A,B] a �nite interval and X a continuous set containing the range of doses D. We call

the family of functions (f(.|a))a∈[A,B] the model and the vector β the scenario (or reality).

Note that f(x|a) is the toxicity associated with the dose x, that is to say a model for the

probability of toxicity at dose x under parameter a. The following algorithm describes the

general working of CRM. In the Bayesian setting, G is the prior distribution of a and Gn

its posterior given the observations (Xn
1 , Y

n
1 ) : Gn(da) ∝ Ln(a) × G(da), where Ln(a) =∏n

i=1f(Xi|a)Yi(1− f(Xi|a))1−Yi .

Step 1. Through the likelihood Ln, the current amount of information (Xn
1 , Y

n
1 ) is used to

update our estimate an of the parameter a or its posterior Gn.

Step 2. The estimator of the next dose, Xn+1 is obtained as a function of an or Gn.

Many possibilities are available for the second step. One approach is to calculate the

estimators of toxicity at each dose d ∈ D : β̃d,n = f(d|an) or β̃d,n = EGn
[f(d, a)]. The

next dose is then the one whose estimated probability of toxicity is the closest to the desired

target: : Xn+1 = arg mind∈D|β̃d,n − α| . In order to set the context for the general semi-

parametric model, we propose a new estimator for step 2 which is based on the analysis

of Cheung and Chappell (2002). These authors provided an interpretation and insight into

poor model speci�cation by breaking down the parameter space: [A,B] = ∪d∈DHd, with

Hd = {a ∈ [A,B] : |f(d|a)− α| < |f(d′|a)− α|,∀d′ 6= d} . The set Hd is the parametric space

on which the model recommends dose d as the MTD. Asymptotic concerns together with the

sequential nature of CRM and the partition of the parameter space leads to the following

assumption. Let ad be such that: f(d|ad) = βd.

Assumption 1.3. ad∗ ∈ Hd∗ and ∀d ∈ D \ {d∗} , ad /∈ Hd .

Assuming that the functions f(.|a) are increasing for all a, Assumption 1.3 is equivalent to

the one under which Azriel (2012) shows the strong consistency of CRM. Theorem 1.1 rules

out the existence of a method providing almost sure convergence to the MTD regardless of the

circumstances. Indeed, Assumption 1.3 can not be checked because it requires control over the

reality expressing itself via the parametric elements ad (Cheung and Chappell, 2002, Figure

1) (Section 2.2, Figure 1). However, it does throw light on how the method works: the goal is

to identify the MTD among a small range of doses D, at the same time the CRM leans on the

estimation of a parameter in an in�nite set [A,B]. The method tries to ascertain the belonging

of this parameter to one of the sets of the family (Hd)d∈D. On the basis of this analysis, we

propose the following Bayesian estimator for the next dose (step 2) of CRM:

Xn+1 = arg max
d∈D

Gn(Hd) . (2)

The parametrization of the CRM can be expressed in terms of the MTD, θ. The prior Π is

a distribution on the range of doses such that for all θ ∈ D, we have: Π(θ) = G(Hθ). The

6
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family of priors Λ = (Λθ)θ∈D describe the dose-toxicity curve and we set Λθ(.) = G(.|Hθ).

This means that Λθ is the distribution G on the set Hθ. The prior G is then equal to the

probability measure Λ⊗ Π and the posterior Πn, following the observations (Xn
1 , Y

n
1 ) can be

easily obtained by integrating the parameter of the dose-response curve for each θ : Πn(θ) ∝[∫
Ln(a)Λ(da|θ)

]
Π(θ) .

This hierarchical model being strictly equivalent to the Bayesian CRM, has no particular

value in this form. It does though allow a greater conceptual understanding of the distri-

butions Λ(.|θ) and their topological supports. Relaxing the structure of these distributions

and adding some �exibility amounts to a model involving a nuisance parameter. This semi-

parametric setting provides methods that bene�t from improved asymptotic properties while

still conserving operating caracteristics for small sample size that are similar and in some cases

better to those of the CRM.

2 Semi-Parametric Models

2.1 General semi-parametric structure

Semi-parametric models (SPM) take as their starting point the direct modelling of the MTD

itself. This is formalized within the framework of Bayesian hierarchical models. It can also be

viewed in terms of model selection based on bayes factors. The hierarchical posterior allows us

to compare and evaluatem classes indexed by the main parameter of interest, the MTD. These

classes are structured by a prior referred to as a prior model (see Section 2.2). The initial

topological support of the prior is a broad one, corresponding to a non-informative situation.

We model the accumulating information via an m-tuple of Bernoulli laws. To this end

we introduce F an m-dimensional vector space of Bernoulli parameters covering a very wide

range of situations. Let q = (q1, . . . , qm) ∈ F , and qj the speci�c parameter corresponding to

dose j. The set F is partitioned in terms of the main parameter of interest, θ, which provides

us m distinct classes, each individual class containing an in�nite set of members sharing the

same MTD: F =
⋃
θ∈D

Fθ, with

Fθ = {q ∈ F : ∀j ∈ D , |qθ − α| 6 |qj − α| , j < θ ⇒ qj < α , j > θ ⇒ qj > α} . (3)

Given that θ takes on the value of some particular dose-level, then Fθ is the collection of dose-

toxicity curves having θ as the MTD. Lower levels in Fθ will necessarily have probabilities of

toxicity less than α, and conversely for higher levels. For all β in Fθ, the MTD is θ. The

vector (f(d, a))d∈D, with a ∈ Hθ (see the preceding section), is then included in Fθ. Indeed,

Fθ can be seen as a general extension of Hθ, such that F contains all the probability measure

in compliance with Assumption 1.1. From our point of view, determining the MTD θ can be

summarized by the following question. Which class is the most plausible one to have generated
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the data? The likelihood is:

Ln(q) =
∏

16i6n
(qXi)

Yi(1− qXi)1−Yi =
∏

16j6m
q
n1
j

j (1− qj)n
0
j ,

where n1
j is the number of toxicities at dose j and nj = n1

j + n0
j is the number of patients

treated at dose j. The set F is endowed with a probability measure Λ ⊗ Π such that Π is a

measure on D and the support of the measure Λ(.|θ) = Λθ(.) is included in the class Fθ. This

means that Π is a vector of m non-negative numbers summing up to 1 and Λ is a family of

distribution (Λθ)θ∈D indexed by the potential MTD, θ. The posterior distribution of θ given

(Xn
1 , Y

n
1 ) is:

Πn(θ) = Π(θ|Xn
1 , Y

n
1 ) ∝

∫ m∏
j=1

q
n1
j

j (1− qj)n
0
jΛθ(dq)

Π(θ) . (4)

When we focus on the class Fθ, the posterior distribution of Λθ given (Xn
1 , Y

n
1 ) is: Λθ,n(dq) ∝∏

16j6mq
n1
j

j (1− qj)n
0
jΛθ(dq) . By replacing this result in (4), we have:

Πn(θ) ∝
[∫

qYnXn(1− qXn)1−YnΛθ,n−1(dq)

]
Πn−1(θ) . (5)

Thus, each new observation leads �rst to an update concerning the distribution Π by weighting

according to the expected value of the likelihood with respect to q conditioned by θ. In a second

step, this observation is used to update the probability measures Λθ on classes using Bayes

formula. In the following section, the family (Λθ)θ∈D will be called the prior model because

of the predictive model-like role it plays in sequential decision making. Fitting the model is

carried out by updating the prior Λθ. Finally, estimators of the MTD, θ̂ and of the toxicities

at dose j, β̃j , arise naturally and are the same we have already proposed and described for the

CRM:

θ̂n = arg max
θ∈D

Πn(θ) , β̃j = E(Λ⊗Π)n [qj ] =

m∑
θ=1

[∫
qjΛθ,n(dqj)

]
Πn(θ) . (6)

The general method might be summarized by the following points:

1. The current sample of observations (Xn
1 , Y

n
1 ) is used to update the posterior Πn.

2. The estimator of the next dose is Xn+1 = θ̂n.

We introduce this semi-parametric class of models in the most usual situation of a Phase study

I summarized by Assumption 1.1. Under this assumption, a phase I study only deals with

a �nite dimensional parameter. The term 'semi-parametric' refers to the methodology used

to build this structure. With the goal of determining the parameter of interest, the MTD,

a parametric model is extended by using nuisance parameters: when the MTD is dose 3,

8
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we do not have to estimate precisely q1 or q5. The proposed model covers the whole range of

scenarios, "which consists of all probability measures on the sample space for the observations"

(Bickel et al., 2005), as a non-parametric model does. The gain of �exibility does not result in

a loss of simplicity. As all the parameters are readily available, the semi-parametric class of

models can be easily calibrated to reproduce the behavior of almost all of the designs currently

in use, including the algorithmic designs. This broad generalization allows us to investigate

theoretical questions, to more readily allow comparison between competing designs and to

look for ways to improve on any given design. Finally, the simplicity of calibration (see below)

together with the great range of possibilities suggest that the semi-parametric class of models

might be extended to more complicated situations in phase I involving in�nite dimensional

parameters: known examples being continuous grade of toxicities, heterogeneous populations,

combination studies and time-to-event toxicities.

2.2 A simple prior model speci�cation

A general calibration of SPM can be obtained as follows. We focus on the prior distributions

inside the classes, (Λθ)θ∈D. The support Sθ of the distribution Λθ will be included in Fθ and

will re�ect locally the ordering of the parameters βj (Assumption 1.1). This local property

is su�cient to ensure that the design behaves in a sensible way. Indeed, after each new

observation or set of observations, the practitioner would like the method to indicate if the

dose appears too high, too low or acceptable. For this purpose, a natural partition of the

interval [0, 1] into 3 sets is introduced: Iε = [α−ε, α+ε], A = [α+ε, 1] and B = [0, α−ε]. The
support of distributions that we choose are in m dimension as the whole space of probability

measures for the observations. They are de�ned according to the constraints on the MTD.

The Bernoulli parameters at each dose are considered as independent from the point of view

of a single class θ.

Assumption 2.1. (i) The support Sjθ of the marginal Λjθ satis�es: Sjθ = B when j < θ,

Sjθ = Iε when j = θ and Sjθ = A when j > θ. We then have: Sθ = S1
θ × . . .×Smθ ⊂ Fθ. (i) Λθ is

a product of unidimensionnal distributions at each doses: Λθ(dq) = Λ1
θ(dq1)× . . .×Λmθ (dqm) .

The point (i) of the above assumption means that the support of qj depends on whether

j is above, below, or at the level of the MTD. In each circumstance the support re�ects the

constraints on qj . The point (ii) is an independence assumption given θ. This independence

assumption could be relaxed although we have not studied this. Choosing the width of the

central interval is an important step in the parametrisation as it determines consistency (see

section 3). We propose here to use an interval centered in α. This leads the method to mimic

the CRM under the most common scenarios. Non-centered intervals can also be used which

provide more or less conservative results.

The direct calibration of the supports Sθ allows us to avoid those cases described in (Shen

and O'Quigley, 1996) that can result in non-convergence (see Figure 1 and scenario 8 in
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(a) CRM, G(.|H3) (see section 1.2)
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Figure 1: Support of the dose-response curves for distributions G(.|H3) and Λ3. The broken
lines represent two kinds of poor speci�cation for CRM, the �atter curve fails Assumption 1.3.

Table 3) as well as poor performance consequent upon poor model speci�cation (a slope in

the neighborhood of the MTD, Figure 1 and scenario 5 and 6 in Table 3). Note that the

independance of parameters qj 's in Assumption 2.1 is only valid conditionally given θ. This

means that all the information about dependence is captured by θ and is used to accomplish the

main goal of the study: determining the MTD, θ. Thus, the independance in the class implies

that the supports Sθ include locally decreasing scenarios of the dose-response phenomenom,

but all the scenarios in that class respect the mononicity between θ and the other doses.

Figure 2 (b) illustrates the dependence between the parameters qj 's and how we can describe

sub-models that include monotonicity restrictions. In this way, the family (Λθ)θ∈D can be

built from the model of CRM. As it is used to make inference in place of the usual parametric

model, the family (Λθ)θ∈D is called the prior model.
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(a) Regression curves of CRM, modes for SPM
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(b) Sample under Λ2 and Λ3

Figure 2: Prior model built on the CRM model

The Beta distribution linked to the likelihood has a key role as it allows us to use conjugate
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priors. B(a + 1, b + 1) and BI(a + 1, b + 1) denote the Beta distribution and its restriction

to interval I with shape parameters a + 1 and b + 1. Let g be the following function: g :

[0, 1] × R2
+ → [0, 1] , with g(x, a, b) = xa(1 − x)b . The density function of B(a + 1, b + 1)

is g(., a, b)/B(a + 1, b + 1), with B(a + 1, b + 1) =
∫ 1

0 g(x, a, b)dx. When conjugate priors

are used, the whole prior model can be summarized by a triplet [ε, (qθ)θ∈D, c]. The number ε

belongs to [0, 1] and determines the centered interval. The vectors qθ ∈ [0, 1]m are the modes

of distributions Λθ. The positive real value c is the dispersion parameter of the distributions.

Uniform priors on the topological supports are updated so that,

Λθ ≈
θ−1∏
j=1

BB(cqθj+1, c(1−qθj )+1)×BIε(cqθθ+1, c(1−qθθ)+1)×
m∏

j=θ+1

BA(cqθj+1, c(1−qθj )+1) (7)

In Figure 2 (b), the prior model is built by using a model f of CRM: qθ = [f(j, |αθ)]j∈D, with
f(d, αθ) = α (see Figure 2 (a)). All the parametrisations proposed in this article ful�ll an

assumption about stochastic ordering on the prior model. At each moment of the trial, for

any dose j0, the marginal posterior Λj0θ,n(.) should be stochastically greater than Λj0θ′,n(.) when

θ is smaller than θ′ (see supplementary material, Section 2). In the setting of SPM, it is the

main argument needed to obtain the coherence property of Cheung (2005). The prior model

should respect a local order between the classes corresponding to the di�erent MTD, and not

inside one class.

Theorem 2.1. If the prior model satis�es 2.1 and the assumption about stochastical ordering

(supplementary material), then SPM is coherent (De�nition 1.1).

This analysis throws a light on the natural similarities between the prior model and parametric

models which satisfy the monotonicity assumption.

2.3 Summary and illustration

We have q = (q1, . . . , qm) a possible dose-toxicity scenario, i.e., qj is the probability of toxicity

at dose j. Λ = (Λθ)θ∈D is a family of priors for q, indexed by θ, the parameter identifying the

MTD. Given the MTD, θ, Λθ is made up of only those vectors q for which we know the MTD

to be at dose θ. Π is the prior on the parameter θ, often a discrete uniform. The couple (Π,Λ)

then describes a hierarchical model where the �rst level deals with the goal of the study, the

MTD itself, and the second level concerns the dose-response curve. Bayes formula is used for

obtaining the posterior Πn according to the data already observed (see Section 2.1, Equation

4). The next selected dose is chosen to be the most probable: Xn+1 = arg maxθ∈D Πn(θ). The

prior model (Λθ)θ∈D can be calibrated in such a way to avoid those di�culties that arise for the

parametric model as a result of misspeci�cation. Given θ, we assume independence between

the di�erent probabilities of toxicity, which means that each prior Λθ is the simple product of

his marginals Λjθ on each dose j (Section 2.2). Under this assumption, the next dose selected
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corresponds to the parameter θ that maximizes the product of the expected likelihood at each

doses weighted by the prior Π(θ) :

Xn+1 = arg max
θ∈D

Πn(θ) = arg max
θ∈D

 m∏
j=1

∫
Ln(qj)Λ

j
θ(dqj)

Π(θ) (8)

Our approach is based on the following two steps:

- Calibration of Λ: (a) A partition of the probability space of toxicities is used for

calibrating the marginal laws: B = [0, α − ε], Iε = [α − ε, α + ε] and A = [α + ε, 1].

(b) The marginals are chosen from the Beta family (conjugacy). (c) The support Sjθ
of the marginal Λjθ is restricted to one of the three preceding intervals according to the

following rules: if j < θ, the marginal has support limited to B, if j = θ, the marginal

has support limited to Iε and if j > θ, the marginal has support limited to A.

- Calibration of Π: This prior is a vector of probabilities on the range of doses. It can be

easily calibrated. When the clinician has no extra-information to provide on the location

of the MTD, a non-informative prior might be chosen, a discrete uniform being a natural

candidate. However, given that this prior will drive the early escalation behavior until

we encounter a DLT, it is appealing to note that, not only will this prior impact early

behavior but, we can calibrate the prior in such a way as to obtain the very behavior

we would like to see. Early escalation can be slowed down or speeded up by simple

calibration of this prior.

The following examples are based on a very simple parametrisation. The target is �xed at

α = 0.2.

SPM (0.05,0,0,0): The value ε is 0.05 such that Iε = [0.15, 0.25]. All the marginals are

uniform on their respective interval. The distribution Π is uniform on the range of doses.

SPM(0, 1/10, 1/3, 40) : The size of the centered interval is null: Λθθ is a constant random

variable in α, for all θ ∈ D. We set: j < θ ⇒ qjθ = 1/10, j > θ ⇒ qθj = 1/3 and c is equal to

40 (See Equation (7)). The distribution Π is uniform.

In Table 4, the overall performances are summarized. When escalating, skipping a dose is

not allowed as this is now a requirement in these kinds of designs. These designs are com-

putationally very fast. R codes are available from the authors on request or at address:

https://github.com/MatthieuMC/SPM_project_01.

3 Large sample theory

The interval Iε is centered on α: Iε = [α−ε;α+ε]. All of the results presented here remain valid

for a non symmetric interval. Theorem 1.1 states that if treatment in a sequential experiment

is determined by the current estimator of the MTD, then this estimator cannot be strongly
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consistent. However, setting ε > 0, if we assume that one or more doses are close enough to

α with accuracy ε, then we shall obtain almost sure convergence of the design to this set of

doses. Conversely, if we assume that neither dose is close enough to the threshold, the current

estimator shall recommend alternatively the two doses with toxicities directly located on both

sides of α. We introduce the following technical assumption which leans on the regularity of

the prior model.

Assumption 3.1. Let Sθ and Sjθ be the topological support of Λθ and Λjθ. The following

conditions are valid except when Λθθ is a Dirac measure.

(a) For all j ∈ D, the marginal distribution Λjθ is absolutely continuous with respect to

Lebesgue measure and λjθ denotes its density function.

(b) There exist two numbers s and S in (0,∞), such that, for all (j, θ) ∈ D2, we have:

∀ qj ∈ Sjθ , s < λjθ(qj) < S .

When the density function can not be bound into the neighborhoods of 0 or 1, we can obtain

compliance with the preceding assumption by using uniform priors on the small intervals [0, δ[

and ]1− δ, 1]:

λjθ(qj) ∝
∫ δ

0
g(q, cqθj , c(1− qθj ))dq 1[0,δ[(qj) + g(qj , cq

θ
j , c(1− qθj ))1[δ,α[(qj).

Moreover, from the point of view of proving consistency, this assumption deals only with

theoretical scenarios where there exist some doses which are never toxic and others which

are always toxic. The following two de�nitions characterize the asymptotic behavior of SPM:

ε-sensitivity is a property connected to indi�erence intervals. (Cheung and Chappell, 2002).

De�nition 3.1. Let ε > 0 et Iε = [α− ε;α+ ε]. We consider the collection of doses associated

with a toxicity belonging to Iε: E(Iε, β) = {j ∈ D : βj ∈ Iε} . A method, M, is called ε-

sensitive, if for all β such that E(Iε, β) 6= ∅, we have:

Pβ [∃N , ∀n > N :M(Xn
1 , Y

n
1 ) ∈ E(Iε, β)] = 1 .

If the true situation is such that a unique dose is associated with a target in the interval Iε,

then a method that is ε-sensitive converges almost surely to the MTD. When no dose has a

target located within Iε, the SPM will assume an oscillating behavior between two doses with

toxicities either side of the target α.

De�nition 3.2. The letter D̃ denotes the set of doses in�nitely observed:

D̃ = {j ∈ D : nj →
n→+∞

+∞} .

Let b (below) and a (above) be the two consecutive doses associated to toxicities either side of
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the target α. A method, M, is called ε-balanced, if for all β such that E(Iε, β) = ∅, we have:

D̃ = {a, b} , a.s.

We might view oscillation as a desirable property for designs whose aim is to locate some dose,

since, if it is not possible to obtain a method that converges almost surely in all circumstances

(Theorem 1.1), it is nonetheless natural to want to construct an estimator, on the basis of

observations, that is strongly consistent. As soon as a dose belongs to D̃, it becomes possible

to reliably estimate its associated toxicity and the MTD belongs to the set {a, b}, which is

the minimal set on which we need to have observation when the goal is that of determinating

almost surely the MTD.

Theorem 3.1. Under the Assumptions 2.1 and 3.1, SPM is ε-sensitive and ε-balanced (see

remark 1).

Proof. The proof is given in the supplementary material.

Remark 1. In this theorem, and its proof, we consider that there exists no dose j0 such that

βj0 equals α± ε, with ε > 0. This assumption is made for the purpose of clarity in presenting

the results.

Large sample behavior of SPM is established by Theorem 3.1. In the case where E(Iε, β) is

non empty, the sequence of doses selected by SPM converges almost surely to one or more

elements belonging to E(Iε, β). In the case where E(Iε, β) is empty, the running estimate of

SPM oscillates between those doses either side of the indi�erence interval. The two asymptotic

properties of SPM are simultaneously complementary and antagonistic, since, whenever we

diminish the size of the interval Iε, we increase the set of circumstances where the method

is ε-balanced and we diminish the ones where it is ε-sensitive. Furthermore, the interval Iε

can be chosen as small as we wish without having an e�ect on overall performance of the

method. In the case of the simple parametrisation SPM(0, 1/10, 1/3, 40) presented in section

2.3, ε is zero, which aside from the case where a toxicity would equal α leads necessarily to

an oscillation. This oscillation, giving an approximation of the two toxicities, allows for us to

construct convergent estimators in all of the scenarios β:

θ̃n = arg min
j∈D̂n

|α− β̂j,n| , (9)

where D̂n is the set of the last two selected doses: D̂n = {θ̂n, θ̂n′} , with n′ = max{j < n :

θ̂j 6= θ̂n} .

Corollary 3.1. Under the Assumptions 2.1 and 3.1, with ε = 0, the estimator θ̃n converges

almost surely to the MTD.

Proof. In the case where ε = 0, the SPM is ε-balanced, which amounts to saying that: D̂n →
D̃ = {a, b} . The law of large numbers (Lemma1.1) leads to an immediate result.
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Strong consistency of the estimator based on isotonic regression of the observations could be

obtained in the same way. According to the impossibility theorem of Azriel et al. (2011), the

estimators which possess the property of strong consistency can not be the current estimator

given by the method. The consistency of these estimators, regardless of the scenario, is

possible because the adjacent doses a and b will be chosen in�nitely often by the running

estimator: na →∞ and nb →∞. In the case of a �nite sample size, experimentation will be

spread over two doses and may give the impression of convergence if the observations on one

dose are close enough to the expected rate. The following corollary considers an asymptotic

characterization of the number of observations allocated to the dose a relative to the number

allocated to b. For this it is helpful to recall entropy and divergence. Two Bernoulli laws

P and Q, are denoted by their parameters p and q. The entropy of Q relative to P is:

H(q|p) = −p log(q) − (1 − p) log(1 − q) , with log 0 = −∞ et 0 × (−∞) = 0 ; we denote the

entropy of P : H(p) = H(p|p). The divergence of Kullbac-Leibler of P relative to Q is:

DKL(p||q) = H(q|p)−H(p) = p log(
p

q
) + (1− p) log(

1− p
1− q

) . (10)

For p ∈ [0, 1], the function DKL(p||.) is strictly decreasing on [0, p] and strictly increasing on

[p, 1] and its minimum in p is equal to 0.

Corollary 3.2. Under the Assumptions 2.1 and 3.1, when ε = 0 and when at least one of the

toxicities βa and βb is di�erent from α, we have:

na
nb
−→

n→+∞

DKL(βb||α)

DKL(βa||α)
, a.s.

Proof. The proof is given in the supplementary material.

In situations more general than those for well speci�ed models, the Kullback-Leibler diver-

gence is often used as an appropriate distance measure between two probability laws. This

pseudo-distance is the natural tool to use when showing consistency for Bayesian or maximum

likelihood estimators. In this way, the running estimate for SPM oscillates between doses a

and b according to an asymptotic ratio that is inversely proportional to the pseudo-distance

of Kullback-Leibler between βa and βb at the chosen target: the greater the pseudo-distance

between βa and α relative to that between βb and α the more SPM will recommend the dose b

(and vice versa). The purpose of the following section is to highlight the practical performance

of the usual SPM through a comparison with the CRM.

4 Simulations

The CRM demonstrates good performance with respect to the following criteria: (PCS),

the percentage of correct selection at the �nal recommendation and (TR), the percentage of

patients treated at the MTD. Here, we show that, if we so wish, the prior model of SPM can be
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calibrated in such a way as to reproduce this same performance across many scenarios. This

particular parametrisation is called SP-CRM. The simulations are carried out under a common

situation (α = 0.2, power model) where the CRM is considered as close to optimal under an

adaptative minimum-variance criterion (Tian, 2016, Theorem 1 and its interpretation).

Calibration

The target rate is �xed at 0.20. The goal is to locate the MTD as one of 6 available doses.

There are 25 patients in each study. We make use of two stage CRM (O'Quigley and Shen,

1996) based on some lead-in rule until we observe the �rst toxicity and then we use max-

imum likelihood. As proposed by Cheung (dfcrm documentation in the CRAN package),

the chosen skeleton is u = (0.05, 0.10, 0.20, 0.35, 0.50, 0.70) with Normal law for the prior

N (0, 1.342) together with the power model. Each cohort is of size one meaning that we es-

timate the dose after each patient. We include the classical restriction that no skipping is

allowed. For SP-CRM, the prior model veri�es 2.1 and Equation (7). It is summarized by

(ε = 0.015, (qθ)θ∈D, c = 48). The modes (qθ)θ∈D are chosen close to the model of the CRM,

as in Figure 2 a). They are given by Table 1. The law Π can be used as an alternative

Table 1: The modes of the prior model
qθj q1

. q2
. q3

. q4
. q5

. q6
.

q·1 0.20 0.12 0.02 0.01 0.00 0.00
q·2 0.29 0.20 0.07 0.05 0.00 0.00
q·3 0.42 0.36 0.20 0.08 0.02 0.00
q·4 0.57 0.48 0.35 0.20 0.09 0.01
q·5 0.69 0.62 0.50 0.34 0.20 0.04
q·6 0.82 0.78 0.70 0.58 0.44 0.20

way to reproduce any initial dose escalation and we are able to choose it so that the method

follows naturally a given increasing sequence of doses until we observe the �rst toxicity. An

increasing sequence is denoted s = (s1, . . . , sk) with sk ∈ D. The modes and the dispersion

being �xed, we de�ne B(s) the set of distributions Π that produce the sequence s until the

�rst observed toxicity: B(s) = {Π : Yj = 0, 1 6 j 6 k ⇒ Xj = sk, 1 6 j 6 k }. The law

Ps is the one minimizing the distance in the sense L2 between the uniform distribution U and

the closure of the convex set B(s): Ps = arg min||Π − U||2, for Π ∈ B(s). This law does not

belong to B(s), but there exist distributions in B(s) arbitrarily close to Ps. It is then possible

to �nd an approximation as accurate as we wish of the least informative distribution belonging

to the closure of the set of measure providing the sequence (R codes available on request).

Table 2 provides such distributions accurate to 10−3 for di�erent sequences. These laws are

not normalized but this does not impact the posterior Πn. In the following simulations, the

distribution corresponding to the sequence d is used. The CRM also produces this sequence

while awaiting to observe the �rst toxicity.
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Table 2: Prior Π, walk through the levels awaiting the �rst observed toxicity.

Sequences without toxicity Π(1) Π(2) Π(3) Π(4) Π(5) Π(6)

a: 111222333444555666 1 0.832 0.482 0.346 0.194 0.103
b: 112233445566****** 1 0.913 0.663 0.554 0.392 0.272
c: 123456************ 1 0.999 0.910 0.883 0.787 0.709
d: 1234556*********** 1 0.999 0.910 0.883 0.787 0.604

5 10 15 20 25

1
2

3
4

5

Patients

Do
se

s

Figure 3: An example of a sequence for SP-CRM, β = (0.01, 0.07, 0.10, 0.20, 0.40, 0.70); 4:
toxicity, ×: non-toxicity.

Model and prior model

Table 3 shows performance of SP-CRM when compared to the CRM according to the criteria

(PCS) and (TR) for 10 000 replications. The �ndings show very similar behavior for the �rst

4 scenarios. When the data are generated exactly by the model being used for CRM (scenario

3), rather surprisingly, that does not appear to grant any advantage to the method and the SP-

CRM appears to su�er no handicap as a price to pay for the extra-�exibility and adaptability

of its prior model. On the other hand, scenario 4 presents an interesting illustration in which

the CRM fails to satisfy the Assumption 1.3 and, as a result, does not possess the property

of convergence to the MTD. Despite this, for a trial of 25 patients, it is di�cult to observe

any theoretical advantage of SP-CRM over CRM. However, it is enough to slowly increase

sample size to observe this convergence di�culty manifesting itself in practice (see �gure 4).

Increasing the number of patients included in the study fails to lead to improvement for

CRM. In contrast, the SP-CRM is ε-sensitive and the portion of the curve that is traced out

corresponds to almost sure convergence. In a real practical sense, as sample size increases,

SP-CRM does better and better. In some ways, for CRM we were fortunate in that the best

performance was already obtained around 25 subjects and increasing this number was not

rewarded by increased accuracy. Beyond that sample size the handicap begins to show itself.

In other scenarios, for instance 5 and 6, where the model speci�cation is yet more severely
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Table 3: Some varied scenarios.
Doses 1 2 3 4 5 6

Scenario 1 0.20 0.26 0.28 0.3 0.35 0.50

PCS
SP-CRM 49.4 21.5 13.2 9.6 5.4 0.6
CRM 48.1 19.5 14.3 11.2 6.0 0.6

TR
SP-CRM 47.4 20.6 13.5 9.1 7.0 2.1
CRM 47.6 17.6 14.1 10.7 7.6 2.2

Scenario 2 0.05 0.10 0.20 0.35 0.50 0.70

PCS
SP-CRM 2.3 22.7 54.0 19.7 01.2 0.0
CRM 02.4 22.2 53.9 20.2 01.3 0.0

TR
SP-CRM 10.8 24.3 39.0 19.0 05.9 00.7
CRM 12.3 22.1 37.7 20.4 06.4 00.8

Scenario 3 0.01 0.02 0.05 0.09 0.18 0.40

PCS
SP-CRM 0.0 0.2 2.8 20.3 59.2 17.3
CRM 0.0 0.1 3.4 21.8 58.4 16.1

TR
SP-CRM 4.6 6.0 10.5 19.9 40.7 17.9
CRM 4.9 5.3 9.7 20.7 40.1 19.0

Scenario 4 0.01 0.02 0.05 0.11 0.14 0.21

PCS
SP-CRM 0.0 0.1 3.2 15.7 31.0 49.8
CRM 0.0 0.1 3.4 15.5 31.2 49.6

TR
SP-CRM 4.6 5.8 10.8 16.7 26.7 35.1
CRM 4.9 5.3 10.2 16.7 25.9 36.0

Scenario 5 0.0 0.0 0.16 0.3 0.35 0.4

PCS
SP-CRM 0.0 2.3 51.7 31.5 11.1 3.2
CRM 0.0 3.5 46.7 33.6 12.6 3.6

TR
SP-CRM 4.0 11.8 40.3 24.3 13.7 5.8
CRM 4.7 11.0 36.3 26.7 14.5 6.5

Scenario 6 0.0 0.0 0.0 0.23 0.3 0.35

PCS
SP-CRM 0.0 0.0 10.2 56.8 23.6 9.2
CRM 0.0 0.0 10.5 52.3 26.9 10.2

TR
SP-CRM 4.0 4.0 19 38.8 22.8 11.1
CRM 4.0 4.0 16.9 37.8 24.4 12.7

tested and struggles to accommodate a slope in the neighbourhood of the MTD that is a

strain to �t, SP-CRM shows clearly superior performance, both as measured by PCS and as

measured by TR. The SP-CRM gains its advantage from the �exibility of the prior model that

can readjust to each observation. The same argument underlies its asymptotic performance

and its adaptability to those situations that appear far removed from the model. In order to

con�rm this impression, we randomly generated scenarios by making use of order statistics

of �quasi-uniform� variates (see �gure 5). For this purpose the following algorithm, called the

pseudo-uniform scenario is used.

� The MTD is selected uniformly from a range of doses D: MTD ∼ UD ; resulting in the

value k.
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Figure 4: For scenario 6, (PCS) as a function of the number of included patients in the study.
�: SP-CRM ; ×: CRM.

� We randomly select an upper bound Bs = α + (1 − α) ×M ; M is a random variable

having a Beta law depending on the MTD and the number of dosesm: M ∼ B(max{m−
k; 0.5}, 1).

� The random scenario β has the law of an ordered sample of m uniform laws on [0, Bs]

conditioned by the event {MTD = k}.
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(a) Sample under the pseudo-uniform algorithm
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(b) Sample under Λ

Figure 5: Scenarios tested and scenarios generated by the prior.

The second point downweights the importance of the more extreme scenarios in which the

toxic probabilities following the MTD rise very sharply. Such scenarios can still be sampled

but less frequently. Sampling of the law M is natural; indeed when we have 6 doses and the

MTD is located at level 2, Bs is the maximum of 4 uniform laws on [α, 1]. Table 4 compares

the performance of the CRM and its semi-parameteric version over the set of 100 000 randomly

generated scenarios. Three additional criteria enabling comparison are introduced. (TR(a, b))
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is the percentage of patients treated at doses a and b (see the de�nition 3.2); (∆) is the mean

of the di�erence between the toxic rates at which patients are treated and the toxicity at the

MTD. The �fth criteria (R-∆) is an index based on the statistic (∆) relative to that value

obtained by the optimal design (O'Quigley et al., 2002). The optimal design is based on the

idea of complete and incomplete information. We can use it sequentially, in a theoretical

setting, to provide a running best estimate of the MTD, the level at which we would like

to treat the next included patient in the study. In order to maintain comparability, at least

early on, we constrain the optimal design to similar behaviour such as that imposed on the

CRM, i.e., only increases in level by one level at a time. This helps provide a reference for the

criterion (∆) : ∆(Opt) = 9.75. The base reference is calculated for the CRM.

R-∆(M) =
∆(M)−∆(OPT)

∆(CRM)−∆(OPT)
(11)

As R-∆ gets closer to 0, all the more the considered method gets close to the optimal design.

In all categories, the SP-CRM obtains the best results (Table 4). Regarding the criteria (∆),

Table 4: Comparison from a sample scenario (size=100 000).
Criterion PCS TR TR(a,b) ∆ R-∆

CRM 50.43 39.23 59.68 10.05 1.0

SP-CRM 51.45 39.56 60.22 9.93 0.6

SPM(0, 1/10, 1/3, 40) 51.16 39.19 59.80 10.12 1.23

the di�erence between the SP-CRM and the optimal method is 40% smaller than that which

obtains when comparing the CRM to the optimal. This signi�cant gain can be explained

in part by the fact that we are very close to the performance of the optimal method. The

parametrisation SPM(0, 1/10, 1/3, 40) from Section 2.2 obtains good results, even if its

distance to the optimal method looks slightly greater than that for the CRM. This leads us to

conclude that very simple parametrisations of SP-CRM can attain comparable performance

to those of the CRM, even in cases where the CRM is considered to be near optimal (Tian,

2016).

In these simulations, it is important to keep in mind that our goal was to emulate as best we

could the behaviour of the CRM. Since this can be accomplished we can conclude that we do no

worse than the CRM. However, the greater �exibility allows us to do better in those particular

cases that prove thorny for the CRM since the explanation for the awkward behaviour here

is the strong parametrisation of the CRM, a feature that is greatly relaxed in SP-CRM. It

remain to study the great range of SPM parametrisation under di�erent circumstances. The

posterior Πn on the doses suggests some avenues of exploration for estimating the MTD by

groups of doses which may show itself to be of value when we move beyond Phase I to the

Phase I/II setting. In Figure 6 , the target is α = 0.2 and the MTD is located between 3

and 4. At the end of the trial the posterior puts 81% of its mass over these two doses. In
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Figure 6: A balanced scenario: β = (0.04, 0.08, 0.16, 0.24, 0.35, 0.45).

this article we have not presented any results concerning SPM and methods other than the

CRM. Such comparisons can be readily carried out both in theory and in practice leading to

improvements on methods currently in use. We study this more deeply in a separate paper.

Conclusion and perspectives

The central feature of the SPM is the direct modelling of the key parameter of interest, the

dose itself, structured around a regression function that is not fully speci�ed. The approach

is expressed via a hierarchical Bayesian structure. So far, we have not tried to increase the

�exibility of the usual prior as a way to better deal with poor model speci�cation. Instead

we replace the model by a prior that we call the prior model. The topological support of this

is indexed by the parameter of main interest, the MTD. From the asymptotic standpoint, we

no longer seek to obtain convergence on the set of posterior laws, but only on the particular

law surrounding the parameter of interest, the MTD. This, albeit small, change in emphasis

leads to improved asymptotic behaviour. In particular we obtain the almost sure convergence

of the estimator of the MTD built on the observations obtained by the method.

As a by-product we obtain much more and we note that the generalization is su�ciently

�exible to allow it to include almost all of the currently used model-based designs as special

cases. Here we have applied the generalization to the speci�c case of the CRM which is a

strongly parametrized method. We are currently working on doing the same thing for the

CCD, the mTPI and the BOIN methods, all of which can be seen to be less parametric since

they do not explicitly model the relation Y ≈ f(X). All of these methods achieve good

performance both in the treatment of patients and in the accurate locating of the MTD.

Being able to put them under a single umbrella - semi-parametric dose �nding methods - will

enable us to better study the di�erences and the similarities between them and, ultimately,

to construct improvements. The SPM framework allows for theoretical study, the results of
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which will then apply to all of these special cases. Furthermore, the SPM can be used in its

own right as a method, as it stands, and our theoretical and simulation based investigations

suggest that it is at least as good, and in most cases better, than all the methods we have

already tested.
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