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Survival Ensembles

Torsten Hothorn, Peter Buhlmann, Sandrine Dudoit, Annette M. Molinaro, and
Mark J. van der Laan

Abstract

We propose a unified and flexible framework for ensemble learning in the pres-
ence of censoring. For right-censored data, we introduce a random forest algo-
rithm and a generic gradient boosting algorithm for the construction of prognostic
models. The methodology is utilized for predicting the survival time of patients
suffering from acute myeloid leukemia based on clinical and genetic covariates.
Furthermore, we compare the diagnostic capabilities of the proposed censored
data random forest and boosting methods applied to the recurrence free survival
time of node positive breast cancer patients with previously published findings.



1 Introduction

In survival time studies, models regressing the time to event on a set of covariates, i.e.,

variables expected to be associated with the disease the patient suffers from, are the basis

of prognostic and diagnostic modeling. The specification and estimation of such models are

complicated by the fact that often only incomplete information about the response variable

is available due to censoring. The most widely used representative of regression methods

for censored data is the Cox model (Cox, 1972), which addresses the censoring problem by

maximizing the partial likelihood while leaving the baseline hazard unspecified under the

proportional hazards assumption. In order to motivate the methodology proposed in this

paper, it is helpful to classify existing approaches as addressing one of the following problems.

The establishment of a close connection between regression models for uncensored contin-

uous response variables and models designed for censored data was motivated by the problem

that the Cox model does not reduce to an ordinary linear regression model in the absence of

censoring. Accelerated failure time models (e.g. James, 1998) or the Buckley-James model

(Buckley and James, 1979) do have this desirable property.

Many authors proposed flexible alternatives to the Cox model without assuming propor-

tional hazards, such as (partially) nonlinear accelerated failure time models (Stute, 1999;

Orbe et al., 2003), spline based extensions (Gray, 1992; Kooperberg et al., 1996; LeBlanc and

Crowley, 1999), fractional polynomials (Sauerbrei and Royston, 1999) and neural networks

(Ripley et al., 2004).

Current research efforts have focused on data analysis problems with high-dimensional co-

variate spaces, mainly driven by the requirements of biological applications such as microarray

gene expression profiling. In high-dimensional situations, Hastie and Tibshirani (2004) sug-

gest a computationally efficient form of regularization applicable to a wide class of linear

models including the Cox model and Huang and Harrington (2005) investigate iterative par-
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tial least squares fitting in accelerated failure time models. In contrast, dimension reduction

techniques are studied by Li and Li (2004) and Bair and Tibshirani (2004) who advocate the

application of low-dimensional compound covariates obtained from an unsupervised clustering

of the covariates.

The last but at least equally important research problem is concerned with model selection

and evaluation. While classical techniques like residual analysis (e.g. Therneau and Grambsch,

2000) and the detection of influential observations (Bedrick et al., 2002) have been translated

into the context of survival analysis, specialized goodness of prediction measures, such as

the Brier score for censored data (Graf et al., 1999), are a matter of debate (Henderson,

1995; Altman and Royston, 2000; Schemper, 2003). Although censoring induces non-trivial

problems for the comparison of observed and predicted response, such measures are important

for cross-validation and other resampling-based model evaluation techniques (Sauerbrei, 1999;

Dudoit and van der Laan, 2003; Hothorn et al., 2005).

In this paper, we address the four aforementioned problems simultaneously, by applying

the general estimation framework described in van der Laan and Robins (2003) to general-

ize ensemble learning techniques to censored data problems. The framework allows for the

specification of regression models under complete information (‘full data world’) for arbitrary

loss functions. For the estimation of the models under incomplete information (‘observed

data world’) a special weighting scheme ensures that observations likely to be censored are

up-weighted compared to the observations of patients likely to suffer an event. As a conse-

quence, in the absence of censoring the models reduce to their counterparts known from the

uncensored situation. Most importantly, the goodness of prediction of such models is easily

evaluated using cross-validation techniques based on well known loss functions like quadratic,

or absolute loss (Keleş et al., 2004). The general estimation framework has recently been

applied to problems in longitudinal marginal structural models (Bryan et al., 2004), to the

construction of survival trees (Molinaro et al., 2004) and other estimation problems (see Sinisi
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and van der Laan, 2004; van der Laan et al., 2004).

Ensemble methods like bagging, random forest and boosting (for a general overview we

refer to Bühlmann, 2004a, and references therein) yield flexible predictors for nominal and

continuous responses and are known to remain stable in high-dimensional settings. Here,

we extend the area of application of ensemble methods to survival analysis. We incorporate

weights into random forest like algorithms and extend gradient boosting in order to minimize

a weighted form of the empirical risk. The published attempts to use ensemble techniques

for modeling censored data are rather limited due to the difficulties induced by censoring.

Ridgeway (1999) proposed a boosting algorithm minimizing the partial likelihood and Ben-

ner (2002) derived a boosting algorithm from the Brier score for censored data. A special

aggregation scheme for bagging survival trees was studied by Hothorn et al. (2004). Breiman

(2002) introduced a software implementation of a random forest variant for censored data,

however without a formal description of the methodology being available.

Following the road map of van der Laan and Robins (2003), Section 2 defines the re-

gression models and the corresponding risk optimization problems in the full data world and

sketches the general estimating framework in the observed data world. In Section 3 we pro-

pose both a random forest and a boosting algorithm for censored data. The advantages of our

approaches are studied with respect to the stability and flexibility of prognosis and predictions

for patients suffering from acute myeloid leukemia, based on high-dimensional covariates from

gene expression profiling experiments and clinical data. Moreover, we focus on the diagnostic

capabilities of flexible ensemble methods for data from node positive breast cancer patients.

2 Model

The estimation problems to be solved are first defined in the full data world and are then

mapped into the observed data world, i.e., in the presence of censoring, following van der

Laan and Robins (2003).
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2.1 Full Data World

In an ideal world, we are able to observe random variables Z = (Y = log(T ),X) from some

distribution function FY,X, where T ∈ R
+ denotes the survival time and Y its logarithm.

The p-dimensional covariate vector X = (X1, . . . , Xp) is taken from a sample space X =

X1×· · ·×Xp. We assume that the conditional distribution FY |X = FY |f(X) of the response Y

given the covariates X depends on the covariates X through a real-valued function f : X → R.

The regression function f , our parameter of interest, is an element of some parameter space

Ψ and has minimal risk

EY,XL(Y, f(X)) =
∫
L(Y, f(X))dFY,X = min

ψ∈Ψ

∫
L(Y, ψ(X))dFY,X

for a suitable full data loss function L : R × R → R
+. Our principle aim is to estimate the

regression function f . Usually, an estimate f̂ of f is computed via constrained minimization

of the empirical risk defined by the full data loss function L. However, this minimization

problem can only be solved when all quantities are observed. Naturally, this is not the case

in the presence of censoring.

2.2 Observed Data World

In realistic set-ups we only observe random variables O = (Ỹ = log(T̃ ),∆,X), with time to

event T̃ = min(T,C) and censoring indicator ∆ = I(T ≤ C) from some distribution FỸ ,∆,X.

We assume that the conditional censoring distribution P(C ≤ c|Z) only depends on the

covariates P(C ≤ c|Z) = P(C ≤ c|X). This assumption implies a coarsening at random (CAR)

censoring mechanism (for details we refer to van der Laan and Robins, 2003). Furthermore, for

the corresponding conditional censoring survivor function G(c|X) = P(C > c|X) we assume

that G(T |X) is strictly greater than zero almost everywhere with respect to the full data

distribution FY,X.

The parameter space Ψ is the function space of all candidate estimators ψ : X → R for
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the regression function f . For an observed learning sample of n independent and identically

distributed observations L = {Oi = (Ỹi = log(T̃i),∆i,Xi); i = 1, . . . , n}, we cannot evaluate

the full data loss function L(Y, ψ(X)) for the censored patients. Consequently, we cannot

minimize the corresponding empirical risk defined in terms of the full data loss function

L(Y, ψ(X)) directly. The methodology presented in van der Laan and Robins (2003) solves this

problem by replacing the full data loss function L(Y, ψ(X)) by an observed data loss function

L(Ỹ , ψ(X)|η) with nuisance parameter η where the risks of both loss functions coincide for

all candidate estimators ψ ∈ Ψ:

EY,XL(Y, ψ(X)) =
∫
L(Y, ψ(X))dFY,X =

∫
L(Ỹ , ψ(X)|η)dFỸ ,∆,X = EỸ ,∆,XL(Ỹ , ψ(X)|η).

A description of the role of η will be given in Section 2.3. The basic idea is to minimize

the empirical counterpart of EỸ ,∆,XL(Ỹ , ψ(X)|η) with respect to the candidate estimators

ψ ∈ Ψ, which is possible even in the imperfect observed data world.

2.3 Inverse Probability of Censoring Weights

One approach for defining the observed data loss function L(Ỹ , ψ(X)|η) is the application of

inverse probability of censoring weights (IPC weights, van der Laan and Robins, 2003), here

the nuisance parameter η is given by the conditional censoring survivor function G:

L(Ỹ , ψ(X)|G) = L(Ỹ , ψ(X))
∆

G(T̃ |X)
.

Basically, the full data loss function is weighted by the inverse probability of being cen-

sored after time T̃ given the covariates X. The inverse probability G(T̃ |X)−1 exists because

G(T̃ |X) ≥ G(T |X) > 0 by assumption. The corresponding empirical risk is the weighted

average

ÊỸ ,∆,XL(Ỹ , ψ(X)|G) = n−1
n∑
i=1

L(Ỹi, ψ(Xi)|Ĝ) = n−1
n∑
i=1

L(Ỹi, ψ(Xi))
∆i

Ĝ(T̃i|Xi)
(1)

and the regression function estimator f̂ is derived by (constrained) minimization of (1) with

respect to the candidate estimators ψ ∈ Ψ. Note that the conditional censoring survivor
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function G is typically unknown and needs to be replaced by an estimate Ĝ. A Kaplan-

Meier estimate Ĝ is the simplest choice but other procedures, for example a Cox model, are

appropriate. For convenience, let w = (w1, . . . , wn) with wi = ∆iĜ(T̃i|Xi)−1 denote the IPC

weights. Other choices of the observed data loss function are possible as well, such as that

based on doubly robust inverse probability of censoring weights (DR-IPC weights, van der

Laan and Robins, 2003).

3 Ensemble Learning

We present two algorithms pursuing some regularized minimization of (1): random forest

and gradient boosting for censored data. The random forest approach seeks to minimize the

empirical risk indirectly via a stabilization of randomized weak learners fitted on perturbed

instances of the learning sample L. In contrast, gradient boosting employs a functional

gradient descent algorithm for minimizing the empirical risk (1).

3.1 Random Forest

From the observed learning sample L = {(Ỹi,∆i,Xi); i = 1, . . . , n}, compute the weight vector

w. Note that the learning sample can be thought to include the censored observations as well,

however with wi = 0 iff ∆i = 0. The random forest algorithm with weights w basically works

by defining the resampling probability of observation i in terms of the corresponding weight

wi.

Algorithm: Random Forest for Censored Data

Step 1 (Initialization). Set m = 1 and fix M > 1.

Step 2 (Bootstrap). Draw a random vector of case counts vm = (vm1, . . . , vmn) from the

multinomial distribution with parameters n and (
∑n

i=1wi)
−1w.
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Step 3 (Base Learner). Construct a partition πm = (Rm1, . . . , RmK(m)) of the sample

space X into K(m) cells by means of a regression tree. The tree is build using the

learning sample L with case counts vm, i.e., is based on a perturbation of the learn-

ing sample L with observation i occurring vmi times. Computational details are given

below.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

Prognostic modeling is our main concern, i.e., we are interested in estimating the (log)-

survival time f̂(x) for a patient with covariate status x. The predicted status of the response

variable is computed based on prediction weights

ai(x) =
M∑
m=1

vmi

K(m)∑
k=1

I(Xi ∈ Rmk and x ∈ Rmk); i = 1, . . . , n.

The prediction weight ai(x) measures the ‘similarity’ of x to Xi (i = 1, . . . , n) by counting

how many times the value x falls into the same cell as the ith observation in the learning

sample. This is essentially an extension of the classical (unweighted) average of the predictions

extracted from each single partition (cf. Breiman, 1996) as used also in Hothorn et al. (2004).

The prediction f̂(x) can be computed as the solution of

Ŷ = f̂(x) = argmin
y∈R

n∑
i=1

L(Ỹi, y)ai(x).

For quadratic loss L(Y, ψ(X)) = (Y − ψ(X))2, the prediction is simply the weighted average

of the observed log-survival times

Ŷ = Ê(Y |X = x) = f̂(x) =

(
n∑
i=1

ai(x)

)−1 n∑
i=1

ai(x)Ỹi.

The full data loss function can be evaluated here because the weights wi and thus the case

counts vmi as well as the prediction weights ai(x) are zero for censored observations by

definition.

In step 3 of the algorithm the partitions are usually induced by some form of recursive

partitioning with additional randomization. This can be implemented by using only a small
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number of randomly selected covariates for further splitting of every node of the tree. Note

that random forest for censored data reduces to the original random forest procedure (Amit

and Geman, 1997; Breiman, 2001a) when all events have been observed. Conceptually, the

algorithm is not restricted to (randomized) trees as base learners, every other regression model

can be applied as well. However, survival times need to be estimated via unweighted averages

of the predictions extracted from all M base learners similar to the original bagging approach.

A drawback of the random forest algorithm for censored data is that out-of-bag predictions

and thus out-of-bag error rate estimates can’t be computed when some observations are given

a very large weight and are thus appearing in nearly every bootstrap sample.

3.2 Gradient Boosting - Full Data World

In the full data world, the generic boosting algorithm sketched in the sequel can be applied

to pursue minimization of
∑n

i=1 L(Yi, ψ(Xi)) via functional gradient descent (for the details

we refer to Friedman, 2001 and Bühlmann and Yu, 2003). Let U denote a pseudo response

variable. A base learner regressing the pseudo response U on the covariates X is denoted by

h(·|ϑU,X), where ϑU,X is a vector of parameters. Fitting the base learner can be performed

by minimizing any loss function, for example solving the least squares problem

ϑ̂U,X = argmin
ϑ

n∑
i=1

(Ui − h(Xi|ϑ))2. (2)

Algorithm: Generic Gradient Boosting

Step 1 (Initialization). Define Ui = Yi (i = 1, . . . , n), set m = 0 and f̂0(·) = h(·|ϑ̂U,X). Fix

M > 1.

Step 2 (Gradient). Compute the residuals

Ui = − ∂L(Yi, ψ)
∂ψ

∣∣∣∣
ψ=f̂m(Xi)

and fit the base learner h(·|ϑ̂U,X) to the new ‘responses’ Ui as in (2).
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Step 3 (Update). Update f̂m+1(·) = f̂m(·) + νh(·|ϑ̂U,X) with step size 0 < ν ≤ 1, for

example ν = 0.1.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

Note that, unlike for the random forest algorithm, the number of iterations M is a tuning pa-

rameter which needs to be determined via cross-validation. Internal stop criteria are available

for special cases, which we will discuss in Section 3.4.

3.3 Gradient Boosting - Observed Data World

In the observed data world, we cannot solve the least squares problem (2) for fitting the base

learner since we do not have access to Ui which is a function of Yi. But the right hand side of

(2) can be replaced by an empirical risk as in (1) and we then get the weighted least squares

problem

ϑ̂Ũ ,X = argmin
ϑ

n∑
i=1

wi(Ũi − h(Xi|ϑ))2 with Ũi = − ∂L(Ỹi, ψ)
∂ψ

∣∣∣∣∣
ψ=f̂m(Xi)

.

Thus, the following algorithm can be applied to minimize (1).

Algorithm: Generic Gradient Boosting for Censored Data

Step 1 (Initialization). Define Ũi = Ỹi (i = 1, . . . , n), set m = 0 and f̂0(·) = h(·|ϑ̂Ũ ,X).

Fix M > 1.

Step 2 (Gradient). Compute the residuals

Ũi = − ∂L(Ỹi, ψ)
∂ψ

∣∣∣∣∣
ψ=f̂m(Xi)

and fit the base learner h(·|ϑ̂Ũ ,X) to the new ‘responses’ Ũi by weighted least squares.

Step 3 (Update). Update f̂m+1(·) = f̂m(·) + νh(·|ϑ̂Ũ ,X) with step size 0 < ν ≤ 1.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

9
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The boosting estimator is f̂M (x) and the predicted log-survival time for an observation

with covariate status x is Ŷ = f̂M (x). The algorithm proposed here reduces to the original

form of gradient boosting in the absence of censoring. For quadratic loss L(Y, ψ(X)) =

(Y −ψ(X))2/2, the algorithm is obtained by residuals Ũi = Ỹi− f̂m(Xi) in the mth boosting

iteration and we call this method L2-boosting for censored data.

3.4 Choice of Base Learners and Stop Criterion

The base learner h needs to be able to take weights w into account. Recursive partitioning

procedures are popular choices of such base learners and the methodology of Molinaro et al.

(2004) can be applied directly. Bühlmann and Yu (2003) suggested univariate smoothing

splines: In each boosting iteration, one of the p covariates is selected and the relationship

between the residuals U and the selected covariate is modeled by a smoothing spline with low

degrees of freedom.

Another possibility which is studied here is the application of component-wise least squares

(Bühlmann, 2004b). This choice is computationally attractive and allows for the definition of

an AIC-based internal stop criterion. Let X(j) denote the design matrix associated with the

jth covariate. In case the jth covariate is a factor, the matrix X(j) is a dummy matrix. A

column for the intercept term could be included. W denotes the n× n diagonal matrix with

diagonal elements Wii =
√
wi, i = 1, . . . , n. Then

H(j) = X(j)

((
WX(j)

)� (
WX(j)

))−1 (
WX(j)

)�
W

is the usual hat matrix for computing predictions of a simple linear model with covariate j

alone. In the mth boosting iteration, we select the covariate with minimum empirical risk,

i.e.,

km = argmin
j=1,...,p

n∑
i=1

wi(Ũi − (H(j)Ũ)i)2

where Ũ = (Ũ1, . . . , Ũn)� is the vector of pseudo responses in the m step. The fit in the mth

10

http://biostats.bepress.com/ucbbiostat/paper174



step can be written in terms of the boosting hat operator
(
f̂m(X1), . . . , f̂m(Xn)

)�
= BỸ as

introduced by Bühlmann and Yu (2003), where Ỹ = (Ỹ1, . . . , Ỹn)� denotes the n-vector of

responses extracted from L. In the first boosting iteration, the boosting operator is B0 =

νH(k0) and the update step 3 can be written as Bm+1 = Bm + νH(km)(In − Bm) where

the n × n matrix In denotes the identity matrix. This formulation of boosting in terms of

a boosting operator opens up the way to an AIC-based internal stop criterion (Bühlmann,

2004b). The trace of the boosting operator Bm is interpreted as degrees of freedom and a

corrected version of AIC can be computed by

AIC(m) = log(σ̂2) +
1 + trace(Bm)/n

1 − (trace(Bm) + 2)/n
with σ̂2 = n−1

n∑
i=1

w′
i(Ỹi − (BmỸ)i)2

where the weights have been rescaled to w′
i = wi(

∑
iwi)

−1n. An estimate of the optimal

number of boosting iterations is M̂ = argminm=1,...,M AIC(m).

4 Illustrations and Applications

Predictive modeling is the primary domain of ensemble methods, especially in situations

where the number of covariates is large relative to the number of (uncensored) observations.

A typical application is the construction of novel tumor classification schemes based on gene

expression profiling data. One representative of such investigations is a study on acute myeliod

leukemia (AML) patients recently published by Bullinger et al. (2004). The main focus of this

study was on the differentiation of previously unknown tumor subclasses by means of genetic

information. Here, we try to construct ‘black box’ predictors for the survival time of AML

patients incorporating both clinical and genetic information. Although the random forest or

boosting estimate of the regression function f may be arbitrarily complex, some insight into

the nature of the regression relationship is necessary in order to compare the fitted model

with subject matter knowledge. In our second application, random forest and boosting are

applied to data of a well-analyzed study on node positive breast cancer, and we compare the
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estimated flexible regression functions with previously published findings. All analyses were

performed within the R system for statistical computing (R Development Core Team, 2004),

version 2.0.1. Until published on CRAN, implementations of the algorithms applied here are

available from the authors upon request.

4.1 Acute Myeloid Leukemia

The treatment of patients suffering from acute myeloid leukemia (AML) is determined by

a tumor classification scheme taking the status of various cytogenetic aberrations into ac-

count. Bullinger et al. (2004) investigate an extended tumor classification scheme incorporat-

ing molecular subgroups of the disease obtained by gene expression profiling. A combination

of unsupervised and supervised techniques is applied to define a binary outcome predictor

(good vs. poor prognosis) taking into account the expression measures of 133 selected genes

(which are represented by 149 cDNAs). This binary surrogate variable is shown to discrimi-

nate between patients with short and longer survival in an independent sample of patients.

Instead of using a binary variable summarizing expression levels of 149 cDNAs, random

forest and L2-boosting are applied to construct predictors based on both the clinical data and

the expression levels of the genes selected by Bullinger et al. (2004). The results reported here

are based on clinical and gene expression data published online at http://www.ncbi.nlm.

nih.gov/geo, accession number GSE425. The overall survival time and censoring indicator

as well as the clinical variables age, sex, lactic dehydrogenase level (LDH), white blood cell

count (WBC), and treatment group are taken from Supplementary Table 1. In addition,

two molecular markers, the fms-like tyrosine kinase 3 (FLT3) and the mixed-lineage leukemia

(MLL) gene, are available from this table as well as cytogenetic information helpful to define

a risk score (‘low’: karyotype t(8;21), t(15;17) and inv(16); ‘intermediate’: normal karyotype

and t(9;11); and ‘high’: all other forms). The Supplementary Table 6 gives a list of 149

cDNAs selected by Bullinger et al. (2004) for building a binary prognostic factor, 147 of them

12

http://biostats.bepress.com/ucbbiostat/paper174



have corresponding expression levels in Supplementary Table 3. Our analysis utilizes one

single learning sample of n = 116 patients, 68 patients died during the study period. The

IPC weights are derived from a simple Kaplan-Meier estimate Ĝ of the censoring survivor

function. For one patient a very late event was observed and we restrict the IPC weight for

this patient to a value of five. Missing values in the expression matrix of all 6283 cDNAs

and 116 patients are imputed using k = 10 nearest neighbor averaging (Troyanskaya et al.,

2001) as implemented in package pamr (Hastie et al., 2004). In total, 62 patients with IPC

weights greater than zero had complete observations for the clinical variables and are used in

the sequel.

Random forest for censored data (RF) with 10 covariates randomly selected in each node

of M = 250 trees and L2-boosting for censored data (L2B) with component-wise linear mod-

els and AIC-based stopping criterion (M̂ = 350) were trained using both the eight clinical

variables and the information covered by the expression levels (p = 155). The fit of both

learners is depicted in Figure 1 and indicates a reasonable agreement between observed and

predicted (log)-survival times for both algorithms.

Both candidate models are compared with the naive prediction by means of a benchmark

experiment following Hothorn et al. (2005). From the learning sample L, 100 bootstrap sam-

ples are drawn and the performance measures of all candidate models, i.e., the empirical risk

defined in terms of the IPC weights, are evaluated on the same sample of out-of-bootstrap

observations in an unreplicated complete block design. The benchmark experiments are per-

formed conditional on the IPC weights, since we are interested in a comparison between the

candidate models only. In order to investigate whether the molecular information of the ex-

pression levels helps to predict the survival time we study in addition the performance of both

algorithms when faced with a learning sample consisting of the clinical variables only (cRF

and cL2B with p = 8). The joint and marginal distributions of the performance measures

evaluated on the out-of-bootstrap observations are displayed in Figure 2, with median out-of-
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Figure 1: AML data: Mean-difference plots (top) and scatterplots (bottom) of observed and

predicted log-survival time of random forest and L2-boosting for censored data. The radius of

the circles is proportional to the IPC weights and the dashed horizontal line is the weighted

mean (with IPC weights) of the log-survival times, i.e., the prediction without any knowledge

of the covariates.
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bootstrap errors of 2.451 (mean), 2.382 (random forest) and 1.769 (L2-boosting). In general,

the performance distributions of the five candidate models show a global difference (asymp-

totic p-value < 0.0001, Friedman test). All pair-wise multiple comparisons based on Friedman

rank sums (Wilcoxon–Nemenyi–McDonald–Thompson, see Hollander and Wolfe, 1999, Chap-

ter 7.3) indicate that the naive prediction of the weighted mean is outperformed by AIC-based

L2-boosting (adjusted p-value < 0.0001). There is no evidence that the performance distri-

butions of random forest and the weighted mean differ (adjusted p-value = 0.4909).

However, the distribution of the empirical risk of both ensemble methods is lower when

only the eight clinical covariates are used (all adjusted p-values < 0.0001). This supports

the hypothesis that the raw gene expression levels do not help to improve the prediction of

survival time. Bullinger et al. (2004) argue that the ‘likelihood and the duration of survival

are likely to be fairly crude surrogates for the underlying biologic characteristics distinguish-

ing prognostically relevant tumor subclasses’ and therefore propose an alternative strategy

utilizing a prognostic variable obtained from a mix of cluster analysis and binary classification.

4.2 Node Positive Breast Cancer

A prospective, controlled clinical trial on the treatment of node positive breast cancer patients

was conducted by the German Breast Cancer Study Group (GBSG-2), a detailed description

of the study is given in Schumacher et al. (1994). Patients not older than 65 years with positive

regional lymph nodes but no distant metastases were included in the study. Complete data

on p = 7 prognostic factors for n = 686 women are used in Sauerbrei and Royston (1999)

for prognostic modeling by means of multivariate fractional polynomials, i.e., flexible linear

regression models based on transformed covariates. These findings will serve as the basis for

the assessment of the diagnostic capabilities of survival ensembles.

Observed hypothetical prognostic factors are age, menopausal status, tumor size, tumor

grade, number of positive lymph nodes, progesterone receptor, estrogen receptor, and the
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Figure 2: AML data: Parallel coordinate plot and boxplots of the joint and marginal distribu-

tion of the error evaluated on 100 out-of-bootstrap samples for the simple weighted mean (M),

random forest (RF), and L2-boosting for censored data with component-wise least squares

(L2B). In addition, the bootstrap errors for both ensemble methods based on the learning

sample of the eight clinical covariates only are given (cRF and cL2B).
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information of whether or not a hormonal therapy was applied. The recurrence free survival

time is the response variable of interest. The data are available in the R-package ipred (Peters

et al., 2002) and the IPC weights are derived from a simple Kaplan-Meier estimate Ĝ of the

censoring survivor function. The weights are restricted to a maximal value of five because

of three very late events. The performance of four candidate algorithms is investigated: an

ordinary linear model fitted via IPC-weighted least squares (LM), regression trees based on

the IPC weights (RP) as suggested by Molinaro et al. (2004) using the implementation in

package rpart (Therneau and Atkinson, 1997), random forest for censored data (RF, with

five covariates randomly selected in each node of 100 trees) and L2-boosting for censored data

(L2B) with component-wise linear models and AIC-based stopping criterion.

The AIC-criterion for L2-boosting suggests to stop after the 86th boosting iteration. Fig-

ure 3 depicts a mean-difference plot of observed and predicted logarithms of recurrence free

survival for all four models. The figure leads to the impression that the relationship between

the covariates and the recurrence free survival time is relatively weak, a finding supported by

an analysis with the Brier score in Hothorn et al. (2004).

The performance of the four candidate models is compared by means of a benchmark

experiment utilizing the framework given by Hothorn et al. (2005) as described above. In

order to study the stability of the models in high-dimensional situations, we choose a strat-

egy in-between an analysis of the original data and a simulation experiment. We add p+ =

(10, 50, 100) uncorrelated covariates drawn from a uniform distribution to the observed learn-

ing sample L and evaluate the performance using the out-of-bootstrap observations as de-

scribed earlier. The results are depicted in Figure 4. Many-to-one comparisons with the

weighted mean based on Friedman rank sums indicate that for the learning sample with

only the original covariates (p+ = 0) the linear model, boosting and random forest per-

form better than the weighted mean (all adjusted p-values < 0.0001). There is no evidence

that the performance distributions of regression trees and the weighted mean differ (adjusted
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Figure 3: GBSG-2 data: Mean-difference plots of observed and predicted log recurrence free

survival for all four candidate methods. The radius of the circles is proportional to the IPC

weights.
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p-value = 0.9653). Again, the relative improvement compared with the weighted mean is

relatively small. For an increasing number of random covariates the linear model is heavily

affected by overfitting but the ensemble methods are rather stable. For p+ = 50 additional

random covariates, the bootstrap test set error of random forest and boosting is smaller than

that for the weighted mean (both adjusted p-values = 0.0001). However, there is only weak

evidence that random forest performs better than the weighted mean for learning samples

with p+ = 100 additional random covariates added (adjusted p-value = 0.0303); boosting

cannot outperform the mean (adjusted p-value = 0.5830) in this situation. The relative sta-

bility of regression trees is caused by the fact that the trees are pruned back to stumps or the

root node most of the time.

M RP LM RF L2B

p+ = 0 0.311 0.311 0.291 0.293 0.289

p+ = 10 0.311 0.311 0.321 0.296 0.299

p+ = 50 0.311 0.311 0.423 0.305 0.303

p+ = 100 0.311 0.311 0.647 0.308 0.310

Table 1: Benchmark experiments for the GBSG-2 data: Median performance for 100 bootstrap

samples for the weighted mean (M), recursive partitioning (RP), a linear model (LM), random

forest (RF), and L2-boosting (L2B) for censored data with component-wise least squares.

Sauerbrei and Royston (1999) provide an in-depth analysis of the GBSG-2 data focusing

on fractional polynomials as interpretable but flexible regression models. We compare the

estimated regression function f represented by random forest and boosting with the findings

reported in their paper, where a non-linear influence of the number of positive nodes, age, and

progesterone receptor was identified by visualization of the covariates and the corresponding

(partial) linear predictors. With Figures 5 and 6 we proceed in a similar way by plotting the

covariates against the predictions (such strategies were also applied for classification problems
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Figure 4: GBSG-2 data: The marginal distribution of the error evaluated on 100 out-of-

bootstrap samples for the weighted mean (M), random forest (RF), L2-boosting for censored

data with component-wise least squares (L2B), recursive partitioning (RP) and a simple linear

model (LM) for a number of additional random covariates p+.
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by Breiman, 2001b and Garczarek and Weihs, 2003).

The predicted log recurrence free survival time decreases with increasing number of posi-

tive lymph nodes (up to about 15 positive lymph nodes) for both random forest and boosting

in a way nearly identical to the finding reported by Sauerbrei and Royston (1999). Both

boosting and random forest suggest a relationship between age and survival time, namely a

decreasing risk for women up to an age of 40 to 45 years and a nearly constant risk for older

women, as in Sauerbrei and Royston (1999). A strong influence of the estrogen receptor is

indicated by both ensemble methods, however, estrogen receptor measurements were not in-

cluded in any of the models studied by Sauerbrei and Royston (1999). Progesterone receptor

values (restricted to values less than 100 fmol/l) indicate a relationship to recurrence free

survival: Very small values (less than about 10, say) are associated with short recurrence free

survival times whereas higher values indicate longer recurrence free survival times. A similar

finding is reported by Sauerbrei and Royston (1999).

5 Discussion

The two algorithms presented in this paper extend ensemble prediction to censored data

problems. Ensemble techniques have been developed at the borderline between machine

learning and statistics in the past decade; previous attempts to apply the main ideas to

survival time data were bound to established key ingredients such as the partial likelihood

(Ridgeway, 1999), the Brier score for censored data (Benner, 2002), or survival trees (Hothorn

et al., 2004) and, consequently, inherited the associated difficulties.

The general estimation framework of van der Laan and Robins (2003) allows for a sound

theoretical formulation of the underlying risk optimization problems which can be solved with

the new algorithms. Moreover, the framework enables us to apply well-known cross-validation

techniques for model evaluation (Keleş et al., 2004). Both ensemble algorithms are generic

in the sense that arbitrary loss functions, for example absolute loss, and other base learners
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Ŷ

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

● ●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

20 30 40 50 60 70 80

6.
0

6.
5

7.
0

7.
5

Age

Ŷ

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●●●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

0 200 400 600 800 1000

6.
0

6.
5

7.
0

7.
5

Estrogen receptor

Ŷ
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Figure 5: GBSG-2 data: Scatterplots of selected covariates and predicted log recurrence free

survival time obtained from random forest for censored data. A smoothing spline with four

degrees of freedom is plotted. The radius of the circles is proportional to the IPC weights.
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Figure 6: GBSG-2 data: Scatterplots of selected covariates and predicted log recurrence

free survival time obtained from L2-boosting for censored data with component-wise least

squares. A smoothing spline with four degrees of freedom is plotted. The radius of the circles

is proportional to the IPC weights.
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can be implemented easily. It should be noted that our implementations do not require an

external choice of hyper parameters. Another important issue is the fact that the random

forest and the boosting algorithm reduce to their original complete data form in the absence

of censoring.

In this situation with uncensored data, the flexibility and stability of both the random

forest and the boosting approach have been demonstrated in many benchmark experiments;

we therefore restricted ourself to a semi-artificial benchmark experiment with varying number

of covariates based on the GBSG-2 data. The main focus of our analysis of the AML and

the GBSG-2 data is on the practical advantages of the methodology in terms of prediction

accuracy and diagnostic ability. The results of flexible diagnostic modeling with fractional

polynomials published by Sauerbrei and Royston (1999) could be reproduced for the GBSG-2

data. Thus, ensemble techniques are not just superb ‘black boxes’ in terms of prediction

accuracy but can be used to investigate the nature of the regression relationship inherent

in the data. We depicted simple partial relationships between one covariate and the pre-

dicted survival times, more advanced approaches for the visualization of complex regression

relationships (Nason et al., 2004) are applicable as well.

The definition of the observed data loss function is the basis of all subsequent calculations.

For the analysis of the AML and the GBSG-2 data we used inverse probability of censoring

weights obtained from a Kaplan-Meier estimate Ĝ of the censoring survivor function, i.e., an

estimate based on T̃i and 1−∆i for observations i = 1, . . . , n. Molinaro et al. (2004) applied a

Cox model to estimate the weights which allows for modeling the censoring survivor function

based on information covered by a subset of the covariates. Robustness properties are studied

theoretically in van der Laan and Robins (2003) and lead to double robust inverse probability

of censoring weights (DR-IPC weights) as an alternative scheme. However, the practical im-

plications of a misspecification of the weights, for example by omitting an important covariate

when estimating the censoring distribution, and advantages or disadvantages of parametric,
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semi-parametric, or non-parametric modeling strategies need to be investigated by means of

artificial simulation experiments. Another idea is to stabilize the estimate of the censoring

distribution, and thus to stabilize the weights, by some form of ensemble technique prior to

modeling or even simultaneously with the estimation of the regression function. Those issues

are to be addressed in future research.
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