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Abstract

The hazard ratio is commonly used for comparing survival distributions across groups. While
easily estimated in the presence of censored data, by itself it does not allow physicians, patients, and
regulatory agencies to easily judge the clinical relevance of any difference in survival across groups.
We consider an estimation approach for clinically meaningful functionals of a survivor distribution
(e.g., restricted mean, quantiles). In this approach we use different regression models to borrow
information across sparse data than to form statistical contrasts of an estimated functional of
interest.

In the context of three data models, each analyzed by three different statistical models, we ex-
amine the ability to form accurate estimates. Specifically, we compare a nonparametric predictive
model based on recursive partitioning of a multivariate predictor space to the two semi-parametric
approaches of Cox’s proportional hazards and Buckley-James’ linear regression with censored data.
First order linear contrasts across three estimated functionals of interest from each predictive model
approach are compared using root mean squared error. In the examples covered we demonstrate
that an adaptive nonparametric predictive model could prove markedly superior to the use of semi-
parametric predictive models.

Keywords: Nonparametric, Semi-parametric, Variable importance, Predictive model, Survival anal-
ysis, Distribution free

1 INTRODUCTION

In analysis of censored time to event data, the primary interest is often to detect differences

in survival across multiple groups. To this end, a parameter θ is usually identified as a function

of covariates for adjustment. When using common parametric statistical models, θ will typically

correspond to some summary measure, e.g., the mean, geometric mean, median, or hazard. In the
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absence of censoring, maximum likelihood estimates of θ will often have a corresponding nonpara-

metric interpretation. For example, linear regression estimates based on normal theory correspond

to the sample mean, and linear regression with log transformed data (as for a lognormal model)

corresponds to the sample geometric mean.

But with censored data, the efficient score function generally will depend more heavily on the

shape of the survivor function, and maximum likelihood estimates will not have a straightforward

nonparametric interpretation. Perhaps because of this sub-optimal robustness to distributional

assumptions, parametric methods are not as widely used for censored data. Broader adherence

to distributional assumptions was achieved with the introduction of semi-parametric models. For

example, the methods of Buckley and James (Buckley and James 1979) applied to log transformed

survival times can be viewed as an extension of linear regression models to the censored data setting

in such a way as to maintain a correspondence between parameter estimates and the geometric

means and/or quantiles of the distributions. Similarly, Cox’s semi-parametric proportional hazards

regression model (Cox 1972) can be viewed as an extension of the exponential or Weibull parametric

regression models in such a way as to maintain a correspondence between the parameter estimates

and the hazard ratio.

However, while semi-parametric models are more flexible than parametric ones, violations of

corresponding semi-parametric assumptions may still lead to poor performance. As one considers

different statistical models to use for an analysis and how the restrictions imposed by those models

may affect performance in different scenarios, one goal may be to avoid approaches that have strong

assumptions on the relationships and structure in the data. Indeed, when detecting differences in

survival is the goal, there is something to be gained from being able to distinguish different survival

curves with respect to one summary measure when other summary measures of those curves are not

different (e.g., when some average hazard ratio estimated between two curves is 1.0, but the mean

or median survival time is different). In this manuscript we explore the degree to which sensitivity

to distributional assumptions may lead to poor performance of semi-parametric statistical models

and include in comparison nonparametric methods where θ̂ is a nonparametric estimate of a chosen
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θ.

In addition to avoiding strong and restrictive parametric and semi-parametric assumptions,

a second motivation for the approach presented here is to facilitate the use of more meaningful

summary measures than are typically used to date. While the ease of estimating the hazard ratio

in the presence of censored data makes it attractive as a summary measure, it lacks an interpretation

useful to clinicians, patients, and regulatory agencies. More meaningful functionals of a survivor

distribution include various quantiles (e.g., median, 75th percentile), or restricted means (e.g.,

6 months, 3 years). As stated by Amna Ibrahim, M.D. of the Food and Drug Administration

Center for Drug Evaluation and Research at an Onocologic Drugs Advisory Committee meeting on

September 13, 2004:

Hazard ratios give only an incomplete picture. Hazard ratios may represent statistical

significance, however, clinical relevance as the benefit provided to the patient is not

captured. For example, hazard ratios will treat the improvement from three days to six

days the same as improvement from three years to six years.

Without censored observations, inference on more useful summary measures would be straightfor-

ward, but survival data commonly includes censoring.

2 BACKGROUND

When comparing differences in survival across multiple groups is the goal, we may have dif-

ferent functionals of interest depending on the scientific context, or if we are interested only in

demonstrating qualitative differences in survival, we might be comfortable with any of a variety of

choices for θ. In the case of the latter, the choice of statistical model will depend on the degree

to which we are willing to assume that the underlying structure of the data follows parametric

or semi-parametric relationships. If we would like to avoid presuming a particular distributional

structure, a nonparametric approach may be chosen. For example, if prior knowledge suggests a

constant hazard function, an exponential regression model may be selected, and the differences

between curves described by differences in the mean. Alternatively, the broader semiparametric
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proportional hazards model (which includes the exponential distribution as a special case) could be

used to provide inference on constant relationships between time varying hazards. A nonparametric

approach modeling the median could also be considered if imposing parametric or semi-parametric

structure is undesirable. As we posited no a priori preference in this hypothetical setting for the

mean, hazard, or median, the three approaches might be equally viable, and the choice of statisti-

cal model would likely be driven entirely by one’s belief in the underlying distribution of the data.

Furthermore, in the case of common parametric and semiparametric models, implicit stochastic

ordering of distributions across covariate groups argues that similar qualitative results are obtained

for several candidate summary measures, thereby allowing the focus to be on the canonical summary

measure that is most “natural” for the probability model.

Other times there is interest in estimating a quantitative difference in survival as measured by

a specific summary measure. Justification for a particular choice of summary measure (perhaps

formalized via a statistical loss function) may pertain to its scientific importance and ease of

interpretation, to the likelihood that it would be affected by the covariates of interest, to the

statistical precision with which it is estimated, or to the ease of estimation. For instance, the

proportion of patients exceeding some threshold might be selected because it is clinically most

relevant for a particular disease. Alternatively, if it were equally important to detect all departures

from equality, the mean might be selected due to its sensitivity to a greater variety of ways that

survival curves might differ. And despite its more difficult interpretation, the hazard ratio might be

selected due to the ease with which the hazard is estimated in the presence of censoring. Inference on

the selected summary measure can then proceed according to the available or presumed knowledge

about the true distribution of the data. If one knows the underlying distribution of the data, the

corresponding parametric statistical model may be used and the functional of interest evaluated

afterwards. For instance, if the scientific interest is in the median, but the data is known to be

lognormally distributed, an efficient analysis would be a parametric lognormal regression model of

the log geometric mean, with the parametric estimator for the median derived from the knowledge

that the median for lognormal data is also the geometric mean. Otherwise an approach can be
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chosen that corresponds to the functional of interest with a degree of robust performance over

a range of possible unknown underlying structure (e.g., using the sample median when primary

interest is in the population median).

Performance of the statistical model used will depend on adherence to the distributional as-

sumptions (e.g., parametric or semi-parametric assumptions), as well as any associated restrictions

of the approach (e.g., trees are generally implemented as step functions while most other regression

models consider effects that are on some scale linear in the modeled covariates). Models presuming

particular relationships will force those relationships on the estimated survival curves, whether or

not they hold for the real data. This means that, for instance, the true survival curves cannot be

estimated consistently when using the proportional hazards model to analyze data exhibiting time-

varying hazard ratios. Furthermore, the estimates obtained will be influenced by different patterns

of censoring. Similarly, for the Buckley-James approach with log-transformed survival times, it

may no longer be looking at the true geometric means if the true probability model does not have

the accelerated failure times property. Additionally, if the probability and statistical model do not

coincide, there is no guarantee for the results to indicate the desired ordering of survival curves.

We propose an approach to nonparametric inference for clinically meaningful functionals of a

survivor distribution (e.g., the restricted mean, quantiles) amenable to avoiding strong parametric

or semi-parametric assumptions on the true underlying structure. In this approach, two different

models are used: First a predictive model is used to borrow information across sparse data to

estimate survival curves for each combination of covariates. Then a second model is used to form

contrasts across these groups based on chosen functionals of interest. This general approach is

examined for three different predictive models each analyzed on three different data scenarios. The

first is nonparametric recursive partitioning (Breiman, Friedman, Olshen, and Stone 1984; Nobel

and Olshen 1996) of a multivariate predictor space to derive groups based on differences in their

survival distributions. These differences are evaluated using a variety of statistics from the Gρ,γ

family (Fleming and Harrington 1991), including the Wilcoxon and logrank statistics described

in section 2.2. Estimates of the survival distribution within leaves of the tree are then used to
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compute functionals, such as the restricted mean, and the 50th and 75th percentile of survival.

The second predictive model considered is a semi-parametric approach using Cox proportional

hazards models, and represents the current most common form of survival analysis. The third

model included in the illustration is a second semi-parametric approach using Buckley-James’

linear regression for censored data. In this approach, censored observations are replaced by their

conditional mean based on a Kaplan-Meier estimate of the ordered residuals. Since the estimate

is not finite whenever the largest residual is censored, the convention is to re-assign it as an event.

For both semi-parametric approaches, estimates of the three summary measures of interest are

computed from the corresponding adjusted subject-specific survival curves. Then first order linear

contrasts are formed to evaluate associations of survival with covariates of interest across groups.

The three approaches are compared on root mean squared error (RMSE) of the estimated contrasts.

In the examples covered, we demonstrate that an adaptive nonparametric predictive model could

prove markedly superior to the use of semi-parametric predictive models.

2.1 Notation

Let T be a continuous random variable, which denotes time to an event of interest. In analysis

of survival data, it is often the case that subjects are censored. That is, let the random variable

C denote the time to being censored, and Y = min(T, C). Let δ be an indicator if the observed

time is an event, i.e., δ = 1 for Y = T and δ = 0 otherwise. Hence a sample of survival data of

size n consists of the pairs {yi, δi} for i = 1, . . . , n. For the purposes of this paper, we will focus

on scenarios where the censoring mechanism does not depend on the survival time. A survivor

function will be denoted as S(t) = 1 − F (t). Other related quantities commonly used in analyses

are the hazard, λ(t), and cumulative hazard, Λ(t), function. It should be noted that knowing

any one of S(t), F (t), f(t), λ(t), or Λ(t) is sufficient. For example, the survivor, hazard, and

cumulative hazard functions can all be obtained from a known CDF. Hence they are all defined

for any random variable with a CDF whether that be one for time to an event or not, e.g., the

survivor, hazard and cumulative hazard functions are all defined for a random variable measuring

blood pressure. In this sense, the approaches examined here are not restricted to survival analyses
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and may be used in the general setting.

2.2 Two Sample Tests

In addition to estimating survival curves between groups, it is often of interest to formally test for

differences in survival. One approach is the nonparametric Gρ,γ family of weighted rank tests by

Fleming and Harrington (Fleming and Harrington 1991). These statistics take the following form:

Gρ,γ = K1/2
∑

t∈F
w(t)[λ̂1(t) − λ̂0(t)], (1)

where K = (M1 + M0)/(M1M0) with Mi denoting the number of subjects in group i initially at

risk, F denotes the set of unique failure times, w(t) = [(n1tn0t)/(n1t + n0t)]Ŝ(t−)ρ[1 − Ŝ(t−)]γ ,

with Ŝ(t−) denoting the pooled KM estimate of the survival curve (both groups 1 and 0) just prior

to time t, and λ̂i denoting the estimated hazard at time t for group i. The Gρ,γ statistics can

be converted to a Z score by dividing by a consistent estimate of the variance, σ2, under the null

hypothesis H0 : S1(t) = S0(t):

σ2 = K
∑

t∈F
w(t)2

(
1

n1t
+

1
n0t

) (
1 − (d1t + d0t − 1)

(n1t + n0t − 1)

) (
(d1t + d0t)
(n1t + n0t)

)
, (2)

where d1t and d0t are the number of events at time t for each of group 1 and 2 respectively.

This results in a consistent, asymptotically normal statistic to evaluate against a standard normal

distribution.

This family of statistics includes the logrank ((ρ, γ) = (0, 0)) and the Wilcoxon weighted form

of the logrank ((ρ, γ) = (1, 0)). The most common nonparametric two sample test of differences

in survival is the logrank test (score statistic in a Cox proportional hazards model). Note that

since the logrank statistic is a member of the Gρ,γ family, it corresponds to a particular weighting

of survival curves. If other weightings were used (e.g., ones that accentuate more heavily early

or late differences in survival), these will have more power for other alternatives. In fact, under

non-proportional hazards, the logrank test will not be the most efficient. As such, other tests in the
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Gρ,γ family, which weigh more heavily early or late differences in survival, may be more powerful.

Hence, better performance for detecting any differences in survival could be realized if we used a

combination of these test statistics, such as a maximum of four of them.

2.3 Overview

The remainder of this paper is organized as follows. Section 3 details the paradigm of separating

borrowing information from forming contrasts of interest. This may be viewed as a “two stage”

procedure where a predictive model of choice is used to first estimate conditional cumulative dis-

tribution functions. In the second stage, a second model is used to define contrasts of functionals

that are of scientific importance for a given context. We appeal to linear regression to illustrate

how these two concepts occur regularly in standard statistical techniques.

Section 4 describes the setting we use to examine and contrast the performance of three different

predictive models when making inference on the mean, median, and 75th percentile. The root mean

squared error of an estimated linear contrast is compared across predictive models for three distinct

survival settings. In two of the settings, the survival probability models are chosen such that the

proportional hazards assumption is violated, while the third satisfies proportional hazards. The

first two models are further chosen to examine the behavior of the three predictive models when

pairwise hazard ratios are nearly 1 and when pairwise differences in the median survival time are

0. Evaluations under 0%, 20% and 60% censoring are included.

Section 5 presents a summary of our results and offers some discussion of other contexts where

the general approach could prove useful.

3 BORROWING INFORMATION AND FORMING

CONTRASTS

Typically a dataset will not have information for every possible covariate combination. For this

situation of sparse data we typically “borrow information” from the other available sample units

to obtain a better estimate and greater understanding of the scientific context under consideration.
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While there is no formal definition of borrowing information, the following will serve as the working

definition for this paper. Suppose we have a sample of n subjects indexed by i = 1, . . . , n. Informa-

tion is borrowed for subject i from other sample units j 6= i if the estimate for subject i depends on

observations from subjects j 6= i, but subjects j do not directly estimate the same quantity as that

of subject i. For example, in the setting of linear regression, we borrow information by presuming a

linear trend in the means across groups defined by some modeled covariates. The familiar formula

to borrow information in linear regression takes the following form:

β̂ =
∑

(xi − x̄)yi∑
(xi − x̄)2

(3)

This same formula constitutes a contrast. A contrast, β, across groups j = 1, . . . , J is defined as

follows:

β =
J∑

j=1

ajµj where
J∑

j=1

aj = 0 (4)

and where µj denotes a parameter for group j (e.g., the mean). Estimating the contrast is straight

forward providing there is an estimate for µj : β̂ =
∑J

j=1 ajµ̂j . In the equation presented above, yi

can be thought of as being an individual specific estimate of µi:

β̃ =
∑

(xi − x̄)µ̃i∑
(xi − x̄)2

(5)

A similar approach is used in ANOVA, where the mean within each group serves as the estimate

in forming a contrast. For example, for groups 1, . . . , J , the estimate for µj is ȳj· =
∑

yji

nj
. In the

equations above, each individual represents their own group of size one. If a different parameter, θi

is of interest (e.g., restricted mean or quantile of survival), a contrast can still be formed providing

there is an estimate for it.
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3.1 The Separation of Borrowing Information and Forming Contrasts

In linear regression, borrowing information and forming contrasts occur simultaneously with the

equations presented above. This need not be the case. One method may be used to first borrow

information across sparse data and then another approach used to form contrasts across groups.

With time to event data, it is often the case to have censored observations where the event of

interest is not observed, but it is known not to have occurred up to a certain point in time. In

this setting, the survival curve for a given individual will typically depend on his/her covariates,

Si(t) = S(t|~xi). Estimation of the survival curve, Ŝ(t|~xi) = g(t, ~x), can be done parametrically (e.g.,

exponential or Weibull), semi-parametrically (e.g., proportional hazards or accelerated failure times

with estimated baseline survival), or nonparametrically (e.g., Kaplan-Meier (KM) curves for each

group). Then an estimate of an arbitrary functional θi can be obtained providing there is an

estimate of the survival curve, θ̃i = h(Ŝ(t|~xi)). For example, the p-th quantile can be estimated

directly from an estimate of the survival curve, θ̃i = Ŝ−1(p), and the mean (or restricted mean up

to time τ) can be estimated by the area under Ŝ(t), θ̃i =
∫ τ
0 Ŝ(t)dt.

3.2 Choices of Predictive Models

The first stage of the proposed approach is to use a predictive model of choice to estimate func-

tionals of interest for each individual. This is accomplished via functionals of estimated conditional

distribution functions (survival curves). We do this by ascribing to each individual the survival

curve estimated for the group having the same covariates as that individual. Examples of predictive

models include:

1. Parametric models: After fitting a regression curve with the canonical parameter, conditional

survival curves are then estimated along with functionals of interest.

2. Cox proportional hazards model: After fitting a regression curve with modeled covariates,

the baseline survival curve S0(t) is estimated using the Breslow cumulative hazard estimator. The

estimated survival curve for an individual having covariates x is then S0(t)exb
.

3. Buckley-James model: After fitting a regression curve with modeled covariates, the estimated
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survival curve for an individual having covariates x is then S0(texb).

4. Regression tree: A survival regression tree is grown as described by Leblanc and Crow-

ley (LeBlanc and Crowley 1993), and the survival curve estimate for each individual is taken from

the KM estimate for the leaf containing that individual’s covariates.

5. Multivariate kernel smoothing: A KM estimate incorporates weighted observations according

to the ‘distance’ of each observation from a particular individual.

6. Bagged or boosted estimates for any of the above.

3.3 Linear contrasts

Any standard regression model can be used to define a linear contrast of the functionals computed

from the individual survival curves. For greatest utility, the covariates included in the linear

contrast must be a subset of those used in the predictive model. One straightforward approach is

to use a linear regression model, although any weighted or unweighted GLM or GAM of choice may

be implemented. Inference for corresponding contrasts would need to account for the data driven

aspect of the predictive model; Bootstrapping the entire two stage procedure would be one possible

approach. This manuscript will restrict focus to accuracy of estimation, however, and thus does

not investigate the inferential procedures.

4 SIMULATIONS

In order to investigate potential improvements in accuracy, as well as potential loss of efficiency

across a variety of choices of predictive models for the two stage approach, we compare a nonpara-

metric tree approach to two analogous semi-parametric approaches: one based on the widely used

Cox proportional hazards model (Cox 1972) and a second based on linear regression for censored

data by Buckley and James as a representative of an accelerated failure time model (Buckley and

James 1979). To highlight situations where the methods might behave differently, we constructed

three scenarios in which survival curves differ across rectangular regions of a predictive space: one

where pairwise hazard ratios (as estimated by a proportional hazards model in the absence of cen-
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soring) are all near 1.0 (referred to as null hazard from now on), one where the median survival

is equal across all curves (referred to as null median from now on), and one under proportional

hazards. For the first two scenarios, the survival curves were specifically generated to not come

from any standard parametric or semi-parametric distribution.

4.1 Predictive Models

Tree formation is a natural nonparametric partitioning algorithm based on splitting criteria. Briefly,

at each partitioning step, all possible dichotomous splits are examined in deciding where to split

the data. This continues until stopping criteria are met, or there are no more possible splits.

After a tree is grown, it is pruned. This involves examining the strength of splits and possibly

removing some of them. Many splitting, pruning and tree growing methods have been developed

and suggested (Breiman, Friedman, Olshen, and Stone 1984; LeBlanc and Crowley 1992; LeBlanc

and Crowley 1993; Alexander and Grimshaw 1996; Breiman 2001; Molinaro, Dudoit, and van der

Laan 2004; Hothorn, Hornik, and Zeileis 2006).

For this illustration, the data were split based on comparisons of KM curves in similar fashion

to that of LeBlanc and Crowley (LeBlanc and Crowley 1993), but instead using a cocktail of

four different statistics from the Gργ family: (ρ, γ) equaling (0, 0) (the logrank statistic), (1, 0)

(Wilcoxon form of the logrank statistic), (0, 1), and (1, 1), with the goal of forming groups that are

homogeneous with respect to survival. The maximum of the four different statistics was used to

indicate differences in survival as done similarly by Lee (Lee 1996).

Upon termination of the splitting procedure, the tree is pruned according to the Z-statistics

for each split. Once groups have been identified through this data enhancement procedure, a KM

curve is estimated for each group, which can be regarded as homogeneous or kernel smoothing

across individuals in some neighborhood. Estimated functionals, θ̃i, from the KM curve for each

group defined by the partitioning represent an estimate for each individual in the group. Regression

models of these estimates can then be used to define contrasts across covariates of interest.

The Cox and Buckley-James approaches fit stepwise models to capture the flavor of the adaptive

tree approach. Inclusion of log transformations and interactions was designed to also capture the
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flavor of the tree approach since trees are invariant to monotonic transformations and fit interactions

immediately. For each set of 2,000 simulations, data were analyzed by the nonparametric tree based

approach and both semi-parametric approaches. In an effort to make comparisons between the three

on a ‘fair’ playing field, each approach was calibrated to 10% experimentwise type I error when the

entire sample was drawn from a single distribution (i.e., under a strong null hypothesis). Survival

estimates obtained for each individual were used to compute three individual specific functionals

for comparison: mean, median, and 75th percentile.

4.2 Underlying Structure

In order to use a realistic predictor distribution, the underlying structure for the simulations used

the covariate structure from a frequently used dataset of a clinical trial on primary biliary cirrhosis

among 416 patients (Fleming and Harrington 1991). Two moderately correlated prognostic vari-

ables were used: serum bilirubin and prothrombin time (time to blood coagulation). The covariate

space was partitioned into nine regions based on a survival tree grown on the original data, but

the actual survival time data was not otherwise used. For the null hazard and null median sce-

narios, nine distinct groups based on these two covariates were instead assigned distinct survival

curves. Curves were generated piecewise from a power family, with one curve representing uniform

survival. Under the null hazard scenario, the hazard ratio with respect to uniform survival was

1.0 for each of the groups, although each one had a different value for its mean, median, and 75th

percentile of survival (Figure 1 and 2). Since the hazard ratio (HR) is non-transitive (Gillen and

Emerson 2007), i.e., for groups Y , X , and Z, HRY X = 1.0 & HRXZ = 1.0 6⇒ HRY Z = 1.0, it is

impossible to have a hazard ratio of 1.0 for each pairwise comparison between nine distinct curves.

Hazard ratios between non-uniform survival curves (all but curve #5) ranged between 0.83 and

1.12. This results in a setting where survival times are simulated from curves where the truth is

nearly without signal in hazard ratios. By examining the nine curves in Figure 1, one can observe

the difficulty in interpreting the hazard ratio, the non-transitivity, and how failure to distinguish

between a weak null hypothesis (i.e., the hypothesis that the time averaged hazard ratio is 1) and
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strong null hypothesis (i.e., the hypothesis that two survival curves are exactly the same) can lead

to stark differences in statistical inference. In each of the nine plots, the survival curve is displayed

with a solid line, which is superimposed over a dotted line representing uniform survival. As such,

in each subplot the solid and dotted survival curves have a hazard ratio of 1.0 (by design). Clearly,

in each plot (save #5 where the solid and dotted curves are the same) the two survival curves dis-

played are quite different. They have different values of mean, median and 75th percentile as was

seen in Figure 2. This probability model for the data might be expected to illustrate advantages

for predictive models that do not assume proportional hazards.

For the null median scenario, all of the curves were designed to have an identical median survival

of 0.5. However, there are differences between curves for the other functionals, including hazard

ratios (Figure 3). The context of this simulation does not inherently favor one approach over the

other a priori.

For the proportional hazards scenario, curves were generated by a Cox proportional hazards

model with prothrombin time and the log of bilirubin modeled continuously. In this manner, a

separate survival curve was used to simulate failure times for each unique combination of bilirubin

and prothrombin time in the dataset, of which there are 330. A sample of these curves is shown in

Figure 4, where the proportional hazards property can be seen to dictate the relationship between

adjusted survival curves, resulting in curves that are stretched vertically from the baseline survival

curve. Features of these curves are displayed in Figure 5.

The two stepwise semi-parametric approaches were given seven possible covariates to be added

into or removed from the model: bilirubin, prothrombin time (protime), log(bilirubin), log(protime),

and interactions bilirubin x protime, log(bilirubin) x protime, and bilirubin x log(protime). After

fitting predictive models, contrasts of the estimated functionals were evaluated via an additive

first order linear regression model of linear continuous terms for bilirubin and prothrombin time:

E(θ̃j|bilij, protimej) = β0 +β1 bilij +β2 protimej . Accuracy and precision of the approaches were

evaluated using the root mean squared error (RMSE) of estimated contrasts β̃1 and β̃2.
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4.3 Results: Null Hazard

The context of this simulation does not favor a Cox model because it was specifically designed to

have similar hazard ratios between all of the curves. It is not completely without signal in hazard

ratios, however, which is reflected in a null stepwise model having been fit only 77.3% of the 2,000

simulations. This is in contrast to the 90% or more it would have had if all pairwise hazard ratios

were 1.0: The stepwise model fitting was calibrated to 10% error under the strong null hypothesis.

It should be noted that without any censoring, the Buckley-James approach reduces precisely

to linear regression with log-transformed survival times. Hence, that model was able to detect

differences in survival probabilities more often, and resulted in null models less frequently.

The tree based approach also regularly avoided null-fits (no splits). Trees with 2, 3, and 4

groups were identified 26.2%, 29.8%, and 23.1% of the time, respectively, and only rarely identified

9 distinct groups, the true number of underlying distinct survival curves. Figure 6 shows a graph-

ical representation of tree predictions using CARTscans (Nason, Emerson, and LeBlanc 2004) to

illustrate the underlying structure. Plot(a) depicts the nine true underlying groups, where each

distinct color represents one of the nine different groups with shading to indicate the magnitude of

the true mean. In addition, a sample of 8 tree fits are presented with shading to represent estimated

means for each group. None of the 8 tree fits shown here result in 9 groups being identified (groups

range from 3 in plot(b) to 7 in plot(i)), although there is a distinctive major separation in the true

structure (plot(a)) in log bilirubin just below 1, which appears in all of the eight sampled simulated

times.

Under the null hazard scenario, the tree approach (Tree) shows magnitudes of improvement in

RMSE compared to the proportional hazards approach (Cox) and accelerated failure times approach

(Buckley-James) for all three functionals (Table 1). When 20% censoring is included, the results are

similar with the tree procedure having the best RMSE between the three approaches. Compared

to the case of no censoring, the Tree estimates are not noticeably different, as expected since the

underlying approach using KM curves is point-wise consistent. This is not the case for the Cox

approach where the hazard ratio is not consistently estimated under varying levels or patterns of
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censoring in the setting of non-proportional hazards. This aspect is reflected in there being only

57.2% null stepwise fits as opposed to 77.3% without censoring. As a consequence, the Cox approach

will estimate differences across bilirubin and protime more often (non-null fits) and perform better

than it had without censoring. The Buckley-James approach performed much worse with estimates

that converged only 83.5% of the time. This undesirable feature of the Buckley-James procedure

has been documented and noted in the original manuscript and others (Buckley and James 1979;

Miller and Halpern 1982). In the absence of censoring, the Buckley-James approach can be viewed

as nonparametric estimation of geometric means. In the presence of censoring, the Buckley-James

approach uses a strong semi-parametric assumption, and in this data (and likely in general) that

assumption is invalid, resulting in a failure to converge relatively often in finite samples.

4.4 Results: Null Median

RMSE results for the protime contrast were similar to those observed under the null hazard scenario

with the tree approach performing as well as or much better than the other two across all three

functionals (Table 2). For the bilirubin contrast, the Cox approach did well for the median but not

as well for the other two functionals when compared to the two other approaches.

With the addition of 20% censoring, the tree approach held steady in estimated RMSE compared

to the two semi-parametric approaches. Compared to no censoring, the tree approach again did not

perform noticeably worse. This again is likely due to the fact that the tree approach is based on

KM estimates, which are point-wise consistent for the survival curve, and hence will be consistent

for the estimated functionals of the mean, median and 75th percentile. It will thus, in turn, also be

consistent for the contrasts of bilirubin and prothrombin time. The Cox approach had some results

with censoring that were better and some that were worse compared to no censoring. This arises

from a combination of having fit a null model more often (28.9% and 6.9% for with and without

censoring respectively) and not being consistent in the presence of censoring without proportional

hazards. The Buckley-James approach, as with the previous scenario, has trouble converging again

with only 72.0% convergence and worse RMSE for all functionals in the presence of censoring.
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4.5 Results: Proportional Hazards

In the third scenario of proportional hazards (Figure 4 and 5), the Cox model was expected to do the

best, perhaps by far, since the probability model used to generate the data satisfies assumptions of

proportional hazards. As displayed in Table 3, the approach using a Cox model does in fact perform

the best across all three functionals, although the nonparametric tree approach did surprisingly well

with only moderate loss of precision when compared to the Cox approach. The magnitude between

the Tree and Cox approaches is on the order of approximately 2 at most in favor of the Cox predictive

model for bilirubin, and essentially indistinguishable for prothrombin time. For the previous two

scenarios in which the Tree approach outperformed the Cox approach, the order of magnitude

ranged from 1.7-6.2 and 1.2-2.0 for the null hazard and null median scenarios respectively.

With the addition of censoring, the tree again did not change noticeably. The Cox approach did

not change much either, save the contrasts for the median functional, where the contrast for bilirubin

did more poorly with censoring and the contrast for prothrombin time improved slightly. Although

the Cox approach did not have any null stepwise fits under this scenario with censoring either, the

distribution of covariates included in the Cox stepwise models across simulations shifted downward

towards fewer covariates, reflecting expected lower power with the lower number of events. The

Buckley-James approach appears to perform comparably, however, the RMSE presented for this

approach does not include 28.9% of simulated sets with censoring where it failed to converge. As

such, the performance of the Buckley-James approach is characterized as much worse than the

other two predictive models where estimates are always obtained.

4.6 Heavier Censoring

Inclusion of censoring in the evaluation of performance between predictive models is important to

consider due to the potential extreme influence it may have. For a given predictive model, the

degree of influence will largely depend on assumptions being valid. A case in point is the Buckley-

James approach which may not give a solution at all for a given context when in the presence of

as little as 20% censoring. In real-life scenarios, it is not uncommon for heavier censoring to be
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observed, which may exaggerate the discouraging results observed previously.

Under heavier censoring of 60%, the tree approach continued to dominate in estimated RMSE

for the null hazard scenario. Compared to 20% censoring, the RMSE for the tree did not change

noticeably. For the Cox approach, on the other hand, RMSE dropped for both contrasts across all

three functionals. The explanation of this is the same as why improvement was seen going from

0% to 20% censoring, there are more non-null model fits – 98.2%. This might be expected due to

the influence of the censoring pattern on the hazard ratios estimated by the Cox model: With 60%

censoring, the estimated hazard ratios between pairs of curves ranged as high as 3.47. Again, while

the hazard ratio has changed for every pairwise comparison, the underlying true mean, median and

75th percentile functionals do not change at all.

For the null median scenario with 60% censoring, the Cox approach no longer has the best

RMSE performance for any of the functionals. The tree approach now dominates all of the RMSE

being compared, as was true in the null hazard scenario. Similar to the null hazard scenario with

more censoring, the Buckley-James approach has an increased proportion of non-convergence under

the null median scenario from 28.05% with 20% censoring to 58.55% with 60% censoring.

Lastly, examining the proportional hazards scenario with 60% censoring shows the RMSE com-

parison was similar to that with 20% censoring except that the tree approach now has better

performance for the bilirubin contrast of the 75th percentile. The RMSE results for the Buckley-

James approach appear comparable; however, that does not include 81.1% of the time which the

procedure was non-convergent.

5 SUMMARY

We explored one nonparametric and two semi-parametric approaches for time to event data

examining clinically relevant summary measures based on time. While this was in an unrealistic

setting, the nonparametric approach was found to have improved ability to find differences in

functionals of interest, particularly when such differences did not occur within the context of a

readily identified parametric or semi-parametric model.
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Parametric models specify the entire shape of the distribution, including areas well beyond the

support of the sample. One might imagine this to be analogous to extrapolation with polynomial

regression models. Hence, it is not very surprising that many statisticians have found these models

do not perform as well as they would like. Some semi-parametric models provide a greater level

of flexibility as compared to parametric ones, but are still restrictive with their corresponding as-

sumptions. For example, while the underlying or baseline survival distribution may be unrestricted,

everything is presumed to be completely specified with an estimate of the baseline survival and a

set of covariates. Also, semi-parametric methods in general are still restrictive in using the shape

of the estimated survival curve. In essence, the semi-parametric estimating equations will use the

baseline survival estimates to extrapolate the survival curves for groups with sparse data. When

the true survival does not follow the associated semi-parametric assumptions, resulting estimates

can be thrown off. This results in having the wrong size (type I error) under a weak null hypothesis.

As we would like an approach to mimic the decision that would have been made under no censoring,

this possibility is undesirable.

As noted, the tree approach considered here is also not without limitations. However, with the

nonparametric nature of the approach it avoids strong parametric or semi-parametric distributional

assumptions. It can adaptively identify the extent of heterogeneity of distributions over a range

of covariate values, and it is robust to non-linearities and interactions of covariate effects. In as

much as complex step functions are able to reasonably approximate the true underlying probability

distribution, the approach ought to perform well.

A general theme that has emerged from the results here is the problem of underfitting. This

was seen with the Cox semi-parametric model under the null hazard scenario where the inability to

fit a model at all greatly inhibited performance. In this sense, improvements in estimated contrasts

may be obtained by allowing more than the 10% “predictive model error” on the strong null that

was specified by design for this manuscript.

The two stage approach examined here that separates the two ideas of borrowing information

and forming contrasts can be used with parametric, semi-parametric, or nonparametric predictive

19

Hosted by The Berkeley Electronic Press



models. Ideally, an approach would borrow information across sampled units as much and as far as

to maximize accuracy and precision. Parametric and semi-parametric approaches inherently borrow

information across every individual according to the structure imposed by model assumptions. This

is particularly noticeable in Figure 4 where all of the estimated individual step-function curves are

not just allowed to change at each time an event was observed in a subset of the sample, but

indeed forced to change at every observed event time. The nonparametric approach shown here

is a flexible, data-adaptive procedure to borrow information only within each identified group in

the tree, with potential to allow for borrowing information as far as is appropriate, and not any

further. It also avoids strong semi-parametric assumptions, such as proportional hazards, and

will replace it with a less restrictive nonparametric assumption of local smoothness within each

group. Approaches incorporating flexibility to implement the full range between these two in how

information is borrowed warrant further investigation in the contexts presented here; two examples

of such approaches are kernel smoothing and bagged trees (Breiman 1996).

The results presented here show the RMSE performs well using a nonparametric, tree-based

approach. Future investigations include comparisons in other contexts such as smoothly varying

survival curves across underlying groups. Along with appropriate estimation of contrasts, we would

also like to have a method of inference with accurately estimated standard errors. To this end,

bootstrapping may be used to obtain reliable estimates of variability of the contrasts of interest.

Issues arise due to the discrete nature of estimated survival curves. To ameliorate this, bagging

may be used to decrease discreteness and bootstrapping residuals to decrease impact of influence

at extremes of the predictor distribution.
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Table 1: Root mean squared error comparison on the mean, median, and 75th percentile of survival
between the three approaches under the null hazard scenario with and without 20% censoring. True
values for the contrasts of the mean, median, and 75th percentile are -0.149, -0.277, and -0.296 for

bilirubin and 0.354, 0.593, and 0.795 for protime respectively.

No Censoring 20% Censoring
θ Approach Bilirubin Protime Bilirubin Protime

Mean Tree 0.052 0.191 0.045 0.194
Cox 0.154 0.358 0.124 0.353

Buckley-James∗ 0.180 0.466 0.190 0.484

Median Tree 0.118 0.355 0.101 0.353
Cox 0.280 0.595 0.242 0.585

Buckley-James∗ 0.188 0.807 0.571 3.802

75%ile Tree 0.049 0.381 0.051 0.394
Cox 0.303 0.793 0.256 0.784

Buckley-James∗ 0.065 0.216 0.266 1.583
∗With 20% censoring model fit did not converge in 16.5% of simulations.
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Figure 1: Survival curves used for a null hazard scenario. All curves have a hazard ratio of 1.0 with
respect to the uniform survival curve (#5), which is presented as the dotted line in each plot.
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Table 2: Root mean squared error comparison on the mean, median, and 75th percentile of survival
between the three approaches under the null median scenario with and without 20% censoring.
True values for the contrasts of the mean, median, and 75th percentile are -0.110, 0, and -0.254 for

bilirubin and 0.358, 0, and 0.273 for protime respectively.

No Censoring 20% Censoring
θ Approach Bilirubin Protime Bilirubin Protime

Mean Tree 0.071 0.145 0.064 0.188
Cox 0.096 0.181 0.093 0.238

Buckley-James∗ 0.192 0.283 0.198 0.376

Median Tree 0.118 0.317 0.124 0.300
Cox 0.050 0.502 0.059 0.492

Buckley-James∗ 0.379 0.698 0.761 2.656

75%ile Tree 0.118 0.210 0.100 0.225
Cox 0.231 0.250 0.229 0.218

Buckley-James∗ 0.056 0.251 0.413 1.550
∗With 20% censoring model fit did not converge in 28.05% of simulations.

Table 3: Root mean squared error comparison on the mean, median, and 75th percentile of survival
between the three approaches under the proportional hazards scenario with and without 20%
censoring. True values for the contrasts of the mean, median, and 75th percentile are -0.182,

-0.173, and -0.111 for bilirubin and 0.117, 0.123, and 0.077 for protime respectively.

No Censoring 20% Censoring
θ Approach Bilirubin Protime Bilirubin Protime

Mean Tree 0.036 0.144 0.037 0.145
Cox 0.019 0.141 0.021 0.153

Buckley-James∗ 0.024 0.141 0.030 0.163

Median Tree 0.034 0.152 0.037 0.153
Cox 0.021 0.151 0.062 0.130

Buckley-James∗ 0.026 0.158 0.030 0.177

75%ile Tree 0.028 0.093 0.029 0.094
Cox 0.016 0.093 0.021 0.090

Buckley-James∗ 0.016 0.101 0.019 0.112
∗With 20% censoring model fit did not converge in 28.85% of simulations.
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Features of Null Hazard Curves
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Figure 2: Features of survival curves used for the null hazard scenario: mean, median, and 75th

percentile as labeled; black diamonds across the top indicate hazard ratios with other curves.
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Figure 3: Features of survival curves used for the null median scenario: mean, median, and 75th

percentile as labeled; black diamonds indicate hazard ratios with other curves.
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Individual Survival Curves for Proportional Hazards Simulations
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Figure 4: Sample of 100 individual survival curves used for a proportional hazards scenario.
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Min 25% Median Mean 75% Max

Mean 0.172 0.324 0.409 0.398 0.478 0.625

Median 0.164 0.284 0.354 0.357 0.436 0.591

75th %ile 0.068 0.195 0.24 0.231 0.275 0.372

Figure 5: Features of survival curves used for the proportional hazards scenario: mean, median,
and 75th percentile as labeled; summary statistics of the three functionals displayed in upper left.
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(g) Simulated Times 6
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(h) Simulated Times 7
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(i) Simulated Times 8

Figure 6: Plot (a) shows the nine underlying groups defined by bilirubin (logbili) and prothrombin
time (protime). Plots (b)-(i) show 8 examples of estimated groups obtained with the tree approach

from simulated survival times.
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