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Bayesian Model Averaging for Clustered Data:

Imputing Missing Daily Air Pollution Concentrations

Howard H. Chang1, Francesca Dominici1, and Roger D. Peng1

Abstract

The presence of missing observations is a challenge in statistical analysis espe-

cially when data are clustered. In this paper, we develop a Bayesian model averaging

(BMA) approach for imputing missing observations in clustered data. Our approach

extends BMA by allowing the weights of competing regression models for missing

data imputation to vary between clusters while borrowing information across clus-

ters in estimating model parameters. Through simulation and cross-validation studies,

we demonstrate that our approach outperforms the standard BMA imputation ap-

proach where model weights are assumed to be the same for all clusters. We then

apply our proposed method to a national dataset of daily ambient coarse particu-

late matter (PM10−2.5) concentration between 2003 and 2005. We impute missing

daily monitor-level PM10−2.5 measurements and estimate the posterior probability of

PM10−2.5 nonattainment status for 95 US counties based on the Environmental Pro-

tection Agency’s proposed 24-hour standard.
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1 INTRODUCTION

The presence of missing observations is a challenge in statistical analysis especially when

data are clustered. Examples of clustered data include repeated measurements of subject-

specific outcomes in longitudinal analysis, geographical locations in multi-site air pollution

studies, and strata in sample survey. Excluding clusters with incomplete data often results in

considerable loss in sample size. When the missing data do not arise completely at random

(Little and Rubin 1987), appropriate interpretations of analysis results also become difficult.

In this paper, we consider a missing data imputation problem for clustered data where the

observations are partially or completely missing in some clusters. After imputing the missing

data, standard complete-data techniques can be used in subsequent analysis and final pa-

rameter estimation can also reflect uncertainty in the imputation through data augmentation

(Tanner and Wong 1987) or multiple imputation techniques (Rubin 1996).

However, the success of any imputation method relies on specifying a model that best

describes the conditional distribution of the missing data given the observed data. Often

several plausible imputation models are available for prediction and missing data imputation.

Bayesian model averaging (BMA) (Raftery et al. 1997; Hoeting et al. 1999) can be used as a

powerful prediction tool that accounts for model uncertainty. BMA assigns different weights

to each competing model and prediction is obtained by taking a weighted average of predic-

tions from the competing models. Even though BMA leads to larger prediction variance, it

avoids the potential bias associated with choosing only a single model for prediction.

The typical application of BMA to clustered data determines model weights by com-

paring how data from all clusters fit each competing model. Therefore model uncertainty

reflects model fit “globally” across clusters and missing data occurring in different clusters

are imputed by averaging competing models using the same set of weights. However different
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clusters may favor different sets of models possibly due to some unmeasured cluster-specific

characteristics. Since the model optimal for imputation can differ between clusters, it may

be beneficial to impute missing data within a cluster using only models that are “locally”

optimal.

In this paper we develop a BMA-based approach for imputing missing data in a clustered

design. Our approach allows the weights of competing models for missing data imputation to

differ between clusters while borrowing information across clusters in estimating model pa-

rameters. To accomplish Bayesian predictive inference and posterior simulation we consider

implementations using Markov chain Monte Carlo (MCMC) and a more computationally

efficient approach.

The methodological development of this paper is motivated by the problem of imputing

missing daily concentration of ambient particulate matter (PM). Toxicological and epidemi-

ological studies have consistently found that increased level of ambient PM is associated with

increased risks of adverse health outcomes (Pope and Dockery 2006; Schwarze et al. 2006).

Ambient PM can be characterized into two size fractions, fine and coarse, that represent

distinct pollutant mixtures of different sources and properties (Wilson and Suh 1997). Pro-

tecting public health from exposure to inhalable coarse particles (PM10−2.5) of size between

2.5 and 10 µm aerodynamic diameter has endured considerable controversy and understand-

ing the toxicity of coarse PM remains a top PM research priority (Committee on Research

Priorities for Airborne Particulate Matter 2004).

Because of the lack of a national monitoring network for PM10−2.5, the Environmental

Protection Agency (EPA) measures PM10−2.5 by taking the difference between daily PM10 (10

µm or less in aerodynamic diameter) and daily PM2.5 (2.5 µm or less in aerodynamic diam-

eter) concentrations at monitors that are physically located in the same place (collocated

monitor pairs). This leads to a significant loss in sample size because we can only calculate
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PM10−2.5 (1) at collocated monitor pairs of PM10 and PM2.5 and (2) on days when both

PM10 and PM2.5 were measured at the collocated monitor pairs. Under this approach, daily

measurements of PM2.5 and PM10 at monitors that are not collocated are excluded.

In our application, we define a cluster as the time series of PM measurements at a

particular monitor. We apply the proposed method to impute the missing daily PM10 or

PM2.5 concentrations needed to calculate PM10−2.5 measurements whenever only one of

PM10 or PM2.5 value is available. Specifically we substantially increase the number of

PM10−2.5 measurements in two ways. First, we increase the number of collocated moni-

tor pairs by imputing the entire time series of PM2.5 when a daily time series of PM10 is

available at any given monitor that is not collocated with a PM2.5 monitor and vice versa.

Second, we increase the number of daily measurements at each collocated monitor pair by

imputing each missing daily PM10 measurement at a given day when PM2.5 is available and

vice versa.

While a national network for coarse PM is currently planned in 2011, the data are unlikely

to be available for large-scale scientific studies in the near future. Increasing the number

of days and locations having PM10−2.5 concentration has important implications. First,

the imputed concentrations can help us determine nonattainment status for PM10−2.5 in

counties without collocated monitor pairs. Also, the level of PM10−2.5 exhibits higher

spatial heterogeneity compared to PM2.5 and PM10. Therefore, population average expo-

sure to PM10−2.5 may not be well-characterized by distant monitors. A more extensive

PM10−2.5 monitoring network allow us to better estimate the health effects of PM10−2.5 with

smaller exposure measurement error (Zeger et al. 2000; Sheppard 2005).

The remainder of the article is organized as follows. Section 2 describes the proposed

method and in Section 3 we evaluate its performance by simulation studies. In Section 4 we

describe the PM data and create a national dataset of daily PM10−2.5 concentrations where
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the missing data are imputed accounting for all the sources of uncertainty. From the imputed

national data we estimate the nonattainment status of 95 US counties for the period 2003

to 2005. Finally, discussion and future work appear in Section 5.

2 METHODS

2.1 Bayesian Model Averaging for Clustered Data

Let ym be the vector of nm observations from cluster m for m = 1, . . . , N . For example,

ym may represent the vector of nm daily levels of PM at monitor m. Within each cluster,

assume we can predict ym using K competing linear regression models each having Xm
k as

the nm × pk design matrix, where k = 1, . . . , K. For example, Xm
k may include columns of

time series data of temperature or other pollutants that are potential predictors of ym.

In a standard BMA setting, we introduce global model indicators Mk where Mk = 1

denotes that model k is chosen for prediction in all clusters. Each model k has a corre-

sponding vector of parameters θk that contains both the vector of regression coefficients

βk and the residual variance σ2
k such that [ym |θk,Mk] ∼ MVN(Xm

k βk, σ
2
k Inm). Given

a prior distribution [θk |Mk] [Mk], the posterior is [θk |y] ∝
∏N

m=1[y
m |θk,Mk] × [θk |Mk]

where y = (ym=1, ..,ym=N). Hence for any given model Mk, we use data from all clus-

ters to estimate θk. To impute a missing observation on day t∗ in cluster m, we calculate

the posterior predictive distribution [ym
t∗ |y] =

∑K
k=1[y

m
t∗ |Mk,y] [Mk |y] where [ym

t∗ |Mk,y] =∫
[ym

t∗ |θk,Mk] [θk |Mk,y] dθk. Under this approach, we impute missing observations by as-

suming each model Mk has a posterior weight, [Mk|y], which is assumed to be the same

across all clusters.

Our main contribution is to introduce a local BMA-based approach that relaxes this

5

Hosted by The Berkeley Electronic Press



assumption by allowing the posterior model weights to differ among clusters. Let Mm
k be the

cluster-specific model indicator where Mm
k = 1 denotes that model k is chosen in cluster m.

For N clusters and K competing models, there are 1/NK different model combinations. To

facilitate notation, we introduce a reparameterization of the cluster-specific model indicators.

Let Sk denote the subset of cluster indices, {1, . . . , N}, that choose model k. If no cluster

chooses model k, then Sk is empty. Unlike the global BMA approach, here the posterior

distribution of θk can be defined as [θk |y] =
∫

[θk |Sk,y] [Sk |y] dSk. More specifically,

we estimate [θk |y] accounting for cluster-level model uncertainty by marginalizing over all

combinations of Sk. Therefore in estimating θk we borrow information only across clusters

that have a posterior probabilities for model k that is larger than zero.

Figure 1 illustrates our notation with 3 clusters and 3 competing models where clusters

1 and 2 choose Model 1 (S1 = {1, 2}), no cluster chooses Model 2 (S2 = ∅), and cluster

3 chooses Model 3 (S3 = {3}). Therefore data from clusters 1 and 2 contribute to the

estimation of θ1, no data will contribute to the estimation of θ2, and data from cluster 3

will contribute to the estimation of θ3.

Using the local BMA for missing data imputation, the posterior predictive distribu-

tion of ym
t∗ is given by [ym

t∗ |y] =
∑K

k=1 [ym
t∗ |Mm

k ,y] [Mm
k |y]. Imputation is carried out

by sampling repeatedly from the posterior predictive distribution. Given J samples from

[θ1, . . . ,θK , S1, . . . , SK |y], to obtain a particular jth sample of ym
t∗ , we first determine which

S
(j)
k does cluster m belong to. Since S

(j)
k specifies which imputation model and the corre-

sponding parameter vector to use, we can then draw a sample of ym
t∗ according to the data

likelihood specified by imputation model k.
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2.2 Markov Chain Monte Carlo Computation

The unknown parameters in our local BMA approach include θk, k = 1, . . . , K, and P (Mm
k =

1) = δm
k , k = 1, .., K, subject to

∑K
k=1 δ

m
k = 1 for all m. Parameter estimation is accom-

plished within a Bayesian framework and the complete-data likelihood is given by

L(θk,M
m
k ) ∝

N∏
m=1

[
ym |θk,M

m
k

]
×

K∏
k=1

[θk |Sk]× [S1, . . . , SK ]. (1)

More specifically, [S1, . . . , SK ] represents the joint prior distribution on the groups of clusters

that follow each model k. To reflect a lack of prior knowledge in model choice, we assume a

priori that P (Mm
k = 1) = δm

k = 1/K for all m and k.

The prior distribution [θk|Sk] represents the prior for the parameters in model k. We

assume that the model parameters are independent between models. Since θk may have

different lengths, we adopt the product-space method of Carlin and Chib (1995) to avoid the

change-of-dimension problem in posterior sampling. This “parameter saturation” approach

requires sample of θk for every k at every iteration. Then the fixed-length parameter vector

(θ1, . . . ,θK) can be used to update each cluster-specific model indicator. For each model k,

we specify a proper and non-informative prior for θk if Sk is not empty and an informative

“pseudo-prior” for θk if Sk is empty. Each θk given Sk requires a unique pseudo-prior

from which to sample whenever its posterior distribution cannot be learned from the data.

Since the sampled value will not be used for imputation at any particular Gibbs iteration,

the choice of pseudo-prior distribution is arbitrary. The pseudo-prior can be viewed as

a proposal distribution to fill (θ1, . . . ,θK) when no data is available for some θk’s given

Sk. In fact several connections between pseudo-priors and the dimension-matching proposal

distribution for reversible jump MCMC have been noted (Godsill 1997). However, pseudo-

priors should be dispersed enough such that all potential values in the parameter space are
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explored and should propose sensible values to ensure mobility between models.

For linear regression without clustering, Carlin and Chib (1995) suggest using Normal

distribution that mimics the marginal posterior distribution of θk as the pseudo-prior for θk.

Intuitively, this distribution describes the best potential values of θk based on the observed

data. Allowing model uncertainty for each cluster presents further complexity since the best

and the most likely combination of Sk to estimate θk is not known. In Section 2.3 we describe

a faster algorithm to sample from the approximate posterior distributions of all the unknown

parameters. We then construct pseudo-priors using samples from the approximate marginal

distribution of θk.

2.2.1 Computation Details

It follows from the complete-data likelihood in (1) that the full conditional distribution of

θk is

[θk |Sk,y] ∝


∏

m∈Sk
[ym |θk,M

m
k ] · [θk |Sk] if Sk is not empty

[θk |Sk] if Sk is empty.

(2)

The full conditional distributions for θk follow the standard form (Gelman et al. 1995)

when Sk is not empty. At each Gibbs iteration, when at least one cluster chooses model

k, we update θk using all data from clusters that choose model k and the non-informative

priors. When no cluster chooses model k (Sk empty), we draw θk from a proper pseudo-prior

distribution. Therefore the pseudo-priors ensure that every θk is updated at every Gibbs

iteration.

Next we update the model indicator of each cluster. For example, if cluster m chooses

model k = 1 at the jth iteration, the probability of cluster m being updated to model k is
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then

[Mm
k |θ1, . . . ,θK , S1 \ {m}, . . . , SK ] = Ak/

K∑
i=1

Ai,

where Ai is the complete data likelihood in (1) evaluated at the current values of θ1, . . . ,θK

with model indicators S1 = S
(j)
1 \ {m}, S2 = S

(j)
2 , . . . , Si = {S(j)

i ,m}, . . . , SK = S
(j)
K . Since

each conditional prior for θk depends on whether or not Sk is empty, the model indicators

must be updated sequentially at each iteration.

2.3 Approximate Posterior Inference

We can decompose the posterior distribution as

[θ1, . . . ,θK , S1, . . . , SK |y] =
K∏

k=1

[θk |Sk,y] [S1, . . . , SK |y].

In this section we describe a faster MCMC approach for sampling from the posterior dis-

tribution of all the unknown parameters. We assume that for any cluster, data from all

other clusters is negligible in determining its model preference. More specifically we assume

that [Mm
k |y] ≈ [Mm

k |ym]. For linear regression models with appropriate conjugate priors,

[Mm
k |ym] can be calculated directly (Raftery et al. 1997). Alternately, for clusters with large

sample size we can approximate [Mm
k |ym] using the Bayesian information criterion (BIC)

(Schwarz 1978).

Approximate posterior samples of [θk |Sk,y] are obtained as follows: (1) estimate the

marginal cluster-specific model posterior probabilities, δ̂m
1 , . . . , δ̂

m
K by using BIC or by cal-

culating the Bayes factors; (2) for each cluster m, draw J samples of the model indicator

from a multinomial distribution with the estimated model probabilities that are assumed to

be independent between clusters; (3) for each j and each k determine S
(j)
k ; (4) draw θ

(j)
k

from the conditional distribution [θk | {ym=1, . . . ,ym=N : m ∈ S(j)
k } ], using only data from
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clusters that choose model k.

Note that this procedure does not consider posterior dependence between model indica-

tors and does not borrow information across clusters in estimating the cluster-specific model

probabilities. Unlike a full MCMC approach, once these model probabilities are estimated,

they are assumed fixed and not updated.

3 SIMULATION STUDY

We performed simulation studies to assess the performance of the proposed method. Let

Xm
t = (Xm

1t , X
m
2t , X

m
3t ) denote the predictors for the t th missing observation in cluster m.

We generate the vector Xm
t from a multivariate Normal distribution with mean zero, vari-

ances 1, and pairwise correlations ρ. We assume that there are 50 clusters and n observations

within each cluster. We then generate ym from the following two models:

Model A: ym
t ∼ N

(
Xm

1t , 2
)

m = 1, . . . , 25 t = 1, . . . , n

Model B: ym
t ∼ N

(
Xm

2t , 2
)

m = 26, . . . , 50 t = 1, . . . , n

We considered four simulation scenarios: (1) n = 10, ρ = 0; (2) n = 25, ρ = 0.5; (3) n =

25, ρ = 0.8; and (4) n = 50, ρ = 0.8. Three datasets were generated under each scenario.

For each simulated dataset, we fitted the data under four competing models with different

predictors. We denote the four linear regression models by A, B, C, and D. Each model has

an intercept and model A has covariate X1; model B has covariate X2; model C has covariate

X3; and model D has covariates X1 and X2.

We compared the predictive power of the following three approaches: (1) using only one

model at a time (model A, B, C, or D); (2) model averaging using identical weights across
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clusters (global BMA) with competing model spaces: E={A, B}, F={A, B, C}, or G={A,

B, D} and (3) model averaging using cluster-specific weights (local BMA) with competing

model spaces: E={A, B}, F={A, B, C}, or G={A, B, D}.

For model k, let βk be the corresponding vector of regression coefficients and σ2
k be the

residual variance. Under the local BMA approach, we use the following prior:

[
βk |σ2

k, Sk

]
×
[
σ2

k |Sk

]
=


MVN

(
0 , σ2

kV0k

)
× IG

(
v0/2 , v0s20/2

)
if Sk is not empty

MVN
(
µk , Vk )× IG

(
vk/2 , vks

2
k/2

)
if Sk is empty

(3)

where V0k = diag (1002, . . . , 1002) and v0 = s2
0 = 2. For cluster m, we first estimate δm

k by

δ̂m
k = p(Mm

k |ym) = p(ym |Mm
k )/

K∑
i=1

p(ym |Mm
i ) where

p(ym |Mm
k ) =

Γ(v0+n
2 )(v0s20)

v0
2

π
n
2 Γ(v0

2 )|In +Xm
k V0kX

m,T
k |

1
2

(
v0s

2
0 + ym,T (In +Xm

k V0kX
m,T
k )−1ym

)−(v0+n)
2 (4)

Pseudo-prior parameters, µk, Vk, vk, s
2
k in equation (3), were estimated by maximum like-

lihood using 5,000 approximate posterior samples of θk obtained by first generating model

indicator independently across clusters as described in Section 2.3.

We considered two implementations of local BMA: (1) full MCMC implementation via

the product-space method; (2) approximate posterior sampling where the cluster-specific

marginal probabilities are assumed independent. Each chain was initialized with random

model indicators, and after 10,000 iterations burn-in, the chains were run for another 10,000

iterations. All Gibbs samplers were implemented in R 2.6.2. Gelman and Rubin convergence

diagnostic in the R package CODA was used to evaluate the convergence of our chains.

For each simulated dataset, we then generated a test dataset with identical sample size,

clustering, and simulation parameters. We calculated the prediction root mean square error

(RMSE) between the true outcome values and their posterior predictive mean using 500

11

Hosted by The Berkeley Electronic Press



posterior samples of the model parameters.

Figure 3 shows the percent increase in RMSE of different modelling approaches compared

to the RMSE if the correct model is used for each cluster. Each connected line represents

a replicate dataset and the x-axis indicates model spaces used to make predictions. When

considering one model at a time (model spaces A, B, C, D), model D performs the best under

all scenarios since it contains both predictors of the two data-generating models. When

considering multiple models at a time, overall we do not find the global BMA approach to

improve RMSE. When RMSE of individual models differ, the global BMA approach often

assigns weight close to 1 to the model with the lowest RMSE due to the large total sample

size (M × n).

The lowest relative RMSE was achieved when both true models were included (model

space E) using local BMA. The improvement in prediction using local BMA is particularly

large when the cluster-size is small (Panel 1) and when the competing models are easily

distinguished (Panel 2 where the correlation between covariates is low). Our simulation

results also show that including extra models with low predictive power (model space F) or

high predictive power (model space G) often slightly increases prediction error. This may be

attributed to an increase in model uncertainty and data thinning. Unlike the usual model

selection problem, we do not restrict all clusters to follow a particular model. Nonetheless,

model averaging at the cluster-level improves prediction considerable compared to using only

a single model. We also carried out approximate MCMC sampling algorithm as described

in Section 2.3. This approach performs well with only slight increases in prediction error

compared to the more computationally intensive MCMC approach.

Figure 4 shows the estimated cluster-specific posterior model probability of model A for

one replicate dataset under the four simulation scenarios. Each • denotes the posterior prob-

ability estimated via MCMC for a cluster when the competing model space is {A,B}. Each •
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denotes the same model probability obtained in the approximate MCMC using equation (4).

The correct model has higher posterior probability within each cluster when the correlation

between covariates is low and when the sample size is large. There is also evidence that the

full MCMC approach assigns more weight to the correct model for imputation compared to

the approximate MCMC approach, especially for small cluster size.

4 DATA ANALYSIS

4.1 DATA

Daily average concentrations of PM10 and PM2.5 for the period 2003 to 2005 were obtained

from the EPA’s National Air Pollution Monitoring Network. To build our imputation models,

we identified 156 collocated PM2.5 and PM10 monitor pairs in 64 US counties with population

greater than 200,000. We restricted our dataset to days with measurements of PM2.5 and

PM10 from at least two monitors in the same county. Table 1 summarizes the median

and IQR of PM2.5, PM10, and PM10−2.5 monitor-level daily concentration across the 156

collocated monitor pairs. We also identified 217 PM10 monitors and 226 PM2.5 monitors

that do not have a collocated monitor counterpart. Figure 2 shows three types of monitoring

locations: (1) collocated PM2.5 and PM10 monitor pair (•), (2) PM10 only monitor (◦), and

(3) PM2.5 only monitor (•) for San Bernardino (CA) and Cook County (IL).

In total, 117,620 PM10 and PM2.5 daily concentrations are imputed, resulting in an ap-

proximate 5-fold increase in the total number of daily monitor-specific PM10−2.5 measurements.

Table 2 summarizes the number of imputed daily PM measurements. We consider two types

of PM10−2.5 imputation. First, PM10 and PM2.5 were often measured on different schedule

despite being collocated (Row 2 and 3). Imputing PM2.5 values (or PM10 values) at a collo-
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cated monitor pair, where only PM10 (or PM2.5) measurement was available, constitutes 18%

(23%) of the total imputed values. Second, imputing the entire time-series of PM2.5 (PM10)

at monitors, where by design only measured PM10 (or PM2.5), constitutes 26% (33%) of the

totall number of PM values imputed (Row 4 and 5). This also provides 443 (217+226) addi-

tional imputed collocated monitor pairs to the PM10−2.5 network and increases the number

of counties with PM10−2.5 measurements from 64 to 126.

We modelled values of PM2.5 and PM10 on the logarithmic scale to account for the strictly

positive and right-skewed concentration measurements. Let PMm
2.5,t denote the 24-hour av-

erage log PM2.5 concentration on day t at the monitor m. Exploratory analyses suggest

two predictors for imputing PMm
2.5,t: (1) PMm

10,t, the log PM10 concentration on the same

day measured at the same location and (2) PM
m

2.5,t, the averaged log PM2.5 concentration

from other PM2.5 monitors within the same county on the same day. Similarly, for imputing

PMm
10, we considered PMm

2.5,t and PM
m

10,t as predictors. Pairwise correlations for the above

variables are summarized in Table 3. Daily measurements of PM10 and PM2.5 are highly

correlated when measured at collocated monitor pairs. The median correlation between log-

transformed daily PM10 and PM2.5 concentration at collocated monitors was 0.74. PM10 and

PM2.5 concentrations also showed considerable spatial homogeneity. The median correlation

between daily log PM concentration and the average concentration of other monitors in the

same county was 0.82 and 0.94 for PM10 and PM2.5, respectively.

4.2 Cross-validation Analysis

In this section we compare the prediction performance of local BMA using the PM data

from the 156 collocated monitor pairs by cross-validation. Three linear regression models
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were examined for predicting daily log PM2.5 concentration:

Model A: PMm
2.5,t ∼ N

(
β 01 + β 11PMm

10,t, σ
2
1

)
Model B: PMm

2.5,t ∼ N
(
β 02 + β 12PM

m

2.5,t, σ
2
2

)
(5)

Model C: PMm
2.5,t ∼ N

(
β 03 + β 13PMm

10,t + β 23PM
m

2.5,t, σ
2
3

)
Similarly, for predicting PM10 the three models using collocated PM2.5 and county-averaged

PM10 as predictors were examined.

We repeatedly partition the data into subsets such that analysis is only performed on

a single subset (training dataset) and the other subsets (testing datasets) are used to as-

sess prediction performance. We generated training and testing datasets as follows. First

we randomly selected 100 monitors from the 156 collocated monitor pairs and half of the

observations from each monitor were used to fit the missing data imputation models. The

remaining half from the 100 monitors is used to calculate RMSE for within-sample prediction

that resembles imputation at collocated monitor pairs. PM values from the 57 unselected

collocated monitors is used to calculate RMSE for out-of-sample prediction that resembles

imputation at monitors that only measured PM2.5 or PM10.

Prediction RMSE was calculated between the true log PM level and the posterior pre-

dictive mean based on 50,000 approximate posterior samples. To impute missing data at

an out-of-sample monitor, we need to define the relation between the new monitor and the

within-sample monitors. We assume that the new monitor is a random sample of the mon-

itors in the training dataset. At each iteration, we impute PM values at the new monitor

using Model k (k = A,B,C) with probability equals to the proportion of within-sample

monitors that choose model k.

Figure 5 shows the prediction RMSE for log PM2.5 and log PM10 at within-sample moni-
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tors and out-of-sample monitors using single or multiple prediction models. Using the average

measurements from other monitors within the same county on the same day (Model B) per-

forms better compared to using its collocated counterpart PM (Model A). However, having

both model A and B in the model space showed considerable improvement in prediction

at both within-sample monitors and out-of-sample monitors. While using both predictors

simultaneously (Model C) gives the lowest RMSE, enriching the model space further (eg

{A,B,C}) improves prediction for PM2.5 at within-sample monitors and does not increase

prediction error in out-of-sample monitors.

4.3 Analysis of PM10−2.5 Nonattainment Status

We applied our local BMA for imputing missing PM10 and PM2.5 concentrations. We ob-

tained a national networks of daily PM10−2.5 for 599 monitors located in 126 counties during

the period 2003 to 2005. We estimated PM10−2.5 nonattainment status for 95 US counties

based on the 24-hour standard proposed by the EPA. (Environmental Protection Agency

2006b). Posterior distribution of missing PM10−2.5 concentrations were imputed using the lo-

cal BMA approach with the three competing prediction models for PM10 and PM2.5 described

in Section 4.2. Marginal posterior model probabilities of the PM imputation models for the

156 collocated sites were first estimated and 50,000 approximate posterior samples were ob-

tained for each missing PM10 and PM2.5 concentration. Posterior nonattainment probability

for each county was defined as the proportion of time the county has any collocated monitor

pair with its annual 98th percentile of daily PM10−2.5 concentration averaged over 3 years

exceeding 70 µg/m3. We followed the EPA’s data completeness proposal for PM10−2.5 where

a monitor is eligible if it contains at least 24 measurements per year.

Posterior nonattainment probability for each county and its location are shown in Figure

6 on a gray scale. We use � to denote the 52 counties that had at least one collocated
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monitor pair before imputation. Among these 52, 6 counties (×) were in nonattainment

based on the observed PM10−2.5 values. We use ◦ to denote the 43 counties without eligible

collocated monitor pairs before imputation and among these counties, nonattainment status

for 36 counties are based only on imputed PM10−2.5 values.

We found evidence of nonattainment for the proposed 24-hour PM10−2.5 standards for

several counties, particularly in the southwest. Empirical evidence shows that PM10 levels

are higher in western US (Environmental Protection Agency 2006a). Since coarse particulates

arise mainly from mechanical process such as dust suspension, grinding and crushing, a larger

proportion of PM10 mass may be due to PM10−2.5 in western counties. Many of the counties

with high PM10−2.5 nonattainment posterior probability were also designated nonattainment

for PM10 by the EPA during same study period (Environmental Protection Agency 2007).

5 DISCUSSION

In this paper, we develop a BMA-based missing data imputation approach for clustered data

that accounts for differences in the best fitting models among clusters. There are several

advantages to carrying out model selection and Bayesian model averaging within each cluster.

Our approach classifies clusters according to their model preference to optimize prediction

while borrowing information across clusters in estimating model parameters. The traditional

BMA approach assumes that model weights are identical across clusters. Therefore clusters

with large sample size can dominate the model selection. While the coarse PM analysis

served as the motivating example, the proposed method is widely applicable in many settings

with clustered data and multiple prediction models. For example, in longitudinal analysis,

missing data can be imputed cross-sectionally, longitudinally, or by ad-hoc approaches (e.g.

last-value-carried-forward) (Kristman et al. 2005; Wood et al. 2005).
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Allowing model uncertainty at the cluster level requires careful choice of competing mod-

els. Particularly, parameter estimation variance may increase due to a loss of sample size

from thinning data between similar competing models. To avoid these problems, compet-

ing models should be chosen by the two heuristic criteria given by Draper (1995): (1) the

model should have high posterior probability given non-zero prior probability, and (2) the

model should have predictive consequences that differ substantially from other models being

considered.

The methodological development in this paper is easily extended to competing gener-

alized linear models by designing appropriate MCMC samplers for the model parameters

and pseudo-priors. Also extension to accommodate competing mixed-effect models is cur-

rently being investigated to allow cluster-specific coefficients. Specifically, the fixed-effect

coefficients and the mean and variance of the random effects can take similar prior and have

the same full conditionals as those in the linear regression models. Only when no cluster

chooses a particular model will these parameters be drawn from the pseudo-priors. How-

ever, at each Gibbs iteration, only a single model has its random effect updated within each

cluster and all cluster-specific random effects from other competing models are drawn from

the pseudo-priors.

Introducing a model indicator for each cluster increases the computation burden consid-

erably in posterior simulation. In cases with large number of clusters or competing models,

selecting pseudo-priors can also be cumbersome and updating each model indicator sequen-

tially requires significant computation. Our simulation studies demonstrated that approx-

imate posterior sampling approach described in Section 2.3 performs well. However a full

MCMC approach can be especially beneficial for clusters of small sample size. To more

accurately estimate the posterior predictive mean E[ym
t∗ |y], importance reweighting can be

used with the above approximate posterior distribution serving as the importance function.
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Often the outcome of interest is completely missing in some clusters. In our application

of imputing the complete time-series of PM levels at monitors that do not have a collocated

counterpart, we naively assume that the monitor with missing outcome represents a random

sample of all the collocated monitor pairs. A more sophisticated approach may examine

monitor-level variables and determine the most likely model choice for that monitor. For

example, when imputing PM10 at a monitor that only measured PM2.5, we may use the same

set of model weights from the nearest PM2.5 monitor with a collocated PM10 monitor. It is

also possible to utilize characteristics of the monitor’s location including landuse (residential,

commercial, industrial, agricultural) or economic development (urban, suburban, rural) to

determine the best imputation models.

In this paper, we choose linear models to impute log PM10 and log PM2.5 without mod-

elling the temporal trends and spatial correlation explicitly. A multivariate space-time pre-

diction model for PM10 and PM2.5 (Kibria et al. 2002; Fuentes et al. 2006) offers an alterna-

tive approach for imputing PM10−2.5. This approach is especially attractive in applications

such as estimating health effects when it is necessary to characterize the spatial gradient of

PM10−2.5 to minimize exposure measurement error. However, this increases model complexity

considerably when considering PM monitors of a national coverage and incorporating model

uncertainty for competing prediction models becomes challenging. PM10 and PM2.5 time

series exhibit complex missing data structure and temporal trends are likelily to be monitor-

specific. Moreover, most PM10−2.5 measured at collocated monitor pairs were only available

every sixth day and we currently do not plan to impute PM10 and PM2.5 on days without

any PM measurements. Therefore we expect the county-averaged PM10 and PM2.5 predictor

to capture most of the spatial variability of the pollutants for same-day prediction purpose.

However, predictive power of additional covariates including day of the week, weather vari-

ables, and monitor location characteristics should be explored further.
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Table 1: Median and IQR of PM10, PM2.5, and PM10−2.5 daily concentration (µg/m3) for
the period 2003 to 2005 across 156 collocated monitor pairs.

Median (IQR)

PM10 22.0 (18.0, 28.0)

PM2.5 11.0 (8.6, 13.6)

PM10−2.5 10.5 (7.4, 14.5)

Table 2: Number of daily PM levels (µg/m3) at (1) collocated PM2.5 and PM10 monitor
pair;(2) PM10 only monitor; and (3) PM2.5 only monitor between 2003 to 2005 (total of 1096
days).

Monitor type
Number of PM Measured Percentage of total

monitors PM10 PM2.5 imputed PM values†

1 PM10 and PM2.5

156
Yes Yes 0

2 collocated Yes No 18

3 monitor pair No Yes 23

4 PM10 only 217 Yes No 26

5 PM2.5 only 226 No Yes 33

†Total number of daily PM2.5 or PM10 values imputed is 117,620.
Row 2 and 3 denote situations where PM10 and PM2.5 were measured on different schedule
despite the monitor pairs being collocated.
Row 4 and 5 denote situations where by design all PM10 observations were measured
without a collocated PM2.5 measurement and vice versa.
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Table 3: Median and IQR of correlations between daily monitor-level and county-averaged
PM2.5 and PM10 concentrations across 156 collocated monitor pairs. The correla-
tions are calculated on the log-transformed PM concentration. PMm

10,t denotes the log

PM10 concentration on the day t measured at the monitor m and PM
m

10,t denotes the average
log PM10 concentration on day t from PM2.5 monitors within county, excluding monitor m.
Similar notations apply to PMm

2.5, and PM
m

2.5,t.

Median (IQR)

cor ( PMm
2.5, t, PMm

10, t) 0.74 (0.65, 0.81)

cor ( PMm
2.5, t, PM

m

2.5, t) 0.94 (0.87, 0.97)

cor ( PMm
10, t, PM

m

10, t) 0.82 (0.71, 0.89)
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Figure 1: Illustration of notation with N=3 clusters and K=3 competing models. ym denotes
the outcome data for cluster m. θk denotes the model parameter for model k. Mm

k is the
model indicator for cluster m and model k. Sk denotes the set of cluster indices for model
k. Each arrow denotes model choice by the cluster.
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Figure 2: Locations of PM monitors in (a) San Bernardino County, CA and (b) Cook
County, IL: (1) collocated PM10 and PM2.5 monitor pair (•), (2) PM10 only monitor (◦), and
(3) PM2.5 only monitor (•).
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Figure 3: Percent increase in root mean-squared error (RMSE) compared to the RMSE if the
true model for each cluster is used. Each connected line represents a replicate dataset. The
x-axis indicates model(s) used to make predictions: single model: A, B, C, D and multiple
models: E = {A, B}, F = {A, B, C}, G = {A, B, D}. Global BMA: model weights are
identical across clusters; Local BMA: cluster-specific model weights estimated via MCMC;
Approx. Local BMA: cluster-specific model weights approximated as in Section 2.3
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Figure 4: Posterior model probability for choosing model A under local BMA with model
space {A, B}. Legend: • = posterior model probability estimated via MCMC and • =
posterior model probability estimated by equation (4) for approximate MCMC. For each
scenario, data were generated under model A for the first 25 clusters and under model B for
the second set of 25 clusters.
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Figure 5: Boxplots of prediction root mean-squared error (RMSE) for log PM2.5 and log
PM10 concentrations at within-sample monitors and out-of-sample monitor for 100 cross-
validation simulation.
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Nonattainment Status for 2003−2005
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Figure 6: The grey scale represents the county-specific posterior probability of
PM10−2.5 nonattainment status for the period 2003-2005 for 95 US counties. � denotes
counties with at least one collocated monitor pair before imputation and ◦ denotes counties
without eligible collocated monitor pairs before imputation. × denotes that a county was in
nonattainment without imputed PM10−2.5 values.
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