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Causal Inference in Longitudinal Studies with
History-Restricted Marginal Structural Models

Romain Neugebauer, Mark J. van der Laan, and Ira B. Tager

Abstract

Causal Inference based on Marginal Structural Models (MSMs) is particularly at-
tractive to subject-matter investigators because MSM parameters provide explicit
representations of causal effects. We introduce History-Restricted Marginal Struc-
tural Models (HRMSMs) for longitudinal data for the purpose of defining causal
parameters which may often be better suited for Public Health research. This new
class of MSMs allows investigators to analyze the causal effect of a treatment
on an outcome based on a fixed, shorter and user-specified history of exposure
compared to MSMs. By default, the latter represents the treatment causal effect
of interest based on a treatment history defined by the treatments assigned be-
tween the study’s start and outcome collection. Beyond allowing a more flexible
causal analysis, the proposed HRMSMs also mitigate computing issues related
to MSMs as well as statistical power concerns when designing longitudinal stud-
ies. We develop three consistent estimators of HRMSM parameters under suffi-
cient model assumptions: the Inverse Probability of Treatment Weighted (IPTW),
G-computation and Double Robust (DR) estimators. In addition, we show that
the assumptions commonly adopted for identification and consistent estimation
of MSM parameters (existence of counterfactuals, consistency, time-ordering and
sequential randomization assumptions) also lead to identification and consistent
estimation of HRMSM parameters.



1 Introduction

Longitudinal epidemiological studies are increasingly becoming more interested in the
time-dependent effects of various exposure on human health outcomes. This is particularly
true for studies concerned with the effects of chronic exposure to ambient pollutants.
Cohort studies with multiple time-specific estimates of exposure have been emphasized
by the U.S. Environmental Protection Agency (EPA) as the preferred study design to
address these issues [1]. Examples of such concerns can be found for other health relevant
exposures, such as time-specific patterns of physical activity on cardiovascular outcomes
and obesity [8].

Typically, cohort studies collect data at regular time intervals for all members of the
cohort. In practice, each collection time represents a “window” of time over which data
are collected. Information on the exposure of interest, also referred to as “treatment of
interest”, and other relevant covariates are obtained for the interval between successive
data collection time points.

Currently, the principal tools used by epidemiologists for the analysis of cohort data
are conditional, association, analyses (e.g., logistic regression, pool logistic regression, Cox
proportional hazards). The time-dependence of exposure effects usually are addressed in
one of several ways; 1) ignored, in that only baseline exposure is considered; and 2) risk-
set sampling, in which exposure status is up-dated at specific time points and exposure
effects estimated based on probability of exposure-outcome in the time interval. It is rare
for cumulative exposures to be evaluated on their own or in conjunction with exposures
over the entire person-time of the cohort and within shorter sub-intervals of time. Thus,
the full complexity of the exposure history with respect to effects on a specific health
outcome often is lost.

Conditional, association models have several limitations with respect to cohort data:
they produce biased estimates in the face of time-dependent confounding and when factors
“on the causal pathway” are included in the analysis. Moreover, these analyses generally
are not well suited to adequate control of confounding, since confounders are evaluate
either one at a time or in the model that includes the exposure. Finally, these models
do not provide direct population estimates of exposure effects, which often are of most
relevance to public health.

Marginal structural models are models that allow for direct causal inference. Moreover,
these models can provide unbiased estimates in the presence of time-dependent confound-
ing and the inclusion of covariates on the causal pathway between the exposure of interest
and the health outcome. Of particular importance, these models address the history of
the exposures with respect to the outcomes. Thus, it is possible to capture cumulating
effects of exposure as well as exposures whose effects are observed over shorter time inter-
vals. This has particular importance for exposures, such as ambient air pollutants, whose
acute and chronic exposure effects lead to different health outcomes and/or contribute
together in the occurrence of serious health outcomes such as heart attacks and deaths
diseases of the heart and lung [1].

Current methods for the implementation of MSMs treat exposure histories over the
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entire interval that precedes the occurrence of a time-specific health outcome. In cases
where consideration of the entire time interval prior to an event occurrence may not be
relevant, based on subject matter, this omnibus treatment of time possess an important
limitation. This paper presents an extension of current MSM methodology to allow for
more flexible analysis of time effects of exposure based on a priori or ad hoc considerations
of specific periods of time antecedent to an event.

The present work was motivated by two specific research problems. First, we un-
dertook a study to determine the extent to which reductions in ambient air pollution
consequent to regulations propagated since 1980 by the California Air Resources Board
to reduce air pollution in the Los Angeles Basin are associated with measurable health
benefits. The basic time unit for the data was 3-monthly units, and we had 84 such time
units. Geographic area of interest was divided into 150 10 x 10 km grids, based on know
patterns of air pollutants and meteorology in the Basin. The exposures of interest were
quarterly concentrations of ambient air pollutants-ozone, oxides of nitrogen, particulates
with a median aerodynamic diameter # 10 m. A variety of health outcomes are being
considered: quarterly hospital discharges and mortality rates for various chronic lung and
cardiovascular diseases. Population denominators and demographic data are available on
a quarter-spatial unit-specific basis. Over the 20 years encompassed by the study there
have been large temporal trends in demography which has lead to changes in population
susceptibility to certain diseases or interest. For example, there has been a large in flux of
Mexicans into the study area. Mexicans are known to have decreased risks for asthma and
increased risks for diabetes mellitus, an important underlying risk factor for cardiovascu-
lar disease. Moreover, since many of these immigrants are of low socioeconomic status,
they may be more likely to live in closer proximity to sources of ambient pollutants (i.e.,
near Freeways). Thus, demography is an important temporal confounder. Changes in
medical care over the study period also has affected the occurrence of health outcomes.
In our descriptive analyses, important temporal trends for hospital discharges for asthma,
chronic obstructive lung disease and various cardiovascular disease were observed. Tem-
poral trends of disease-specific mortality are expected-i.e., there has been a decline in
deaths from specific heart disease due to improvements in medical care. Based on the
above, “time” becomes an important confounding variable to capture all of the unmea-
sured temporally-related factors that we have not measured and the residual temporal
confounding for those factors that we have measured. Since our initial analysis focused
on hospital discharges for asthma in children ages birth to 19 years, a central issue that
emerged was the relevant exposure time for quarter-spatial-specific outcome rates. Based
on available data on the effects of ambient air pollution on hospital discharges for asthma,
it did not seem reasonable to extend the exposure period much beyond the 12 months
prior to a given quarter. Consequently, there was a need to modify the how temporal
history is handled in existing MSM estimation.

Second, the HRMSM methodology also has application to panel data that are being
collected as part of as study of the relation between responses to short-term increases
in ambient air pollutants and the long-term changes in symptoms and disease severity
in children with asthma (Fresno Asthmatic Children’s Environment Study - FACES). In
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this study, subjects participate in up to 4 14-day panels during which time each subjects
provides daily data on lung function, respiratory symptoms and daily activities. Analyses
focus on the causal relation between daily symptoms and lung function and daily exposure
to one or another pollutant over one or more days prior to any given day. Confounders
for these analyses relate to meteorology and the effects of other pollutants not of primary
interest in a given analysis. Virtually all studies to date evaluate the temporal relation
between pollutants and symptoms/lung function through one of several methods: 1) tests
of specific lag days (e.g., 1 or more days prior to a given day) ; 2) averages over several days
before a given day ; or 3) polynomial distributed lag functions [3]. HRMSMs when coupled
with a recently developed data-adaptive method for model fitting [10] provide greater
flexibility in the evaluation of time lags. Once the investigator specifies a specific time
frame over which the effect of the pollutant exposure is of interest, the data-adaptive model
selection procedure for MSM can provide guidance on how each level of the pollutant
during the specified time frame should enter the model of the causal relationship between
the pollutant and asthma outcome.

2 History-Restricted Marginal Structural Model

2.1 Data structure and question of interest

For all experimental units in a random population sample of size n, we observe a treatment
regimen (A(0), . . . , A(K)) over time t = 0, . . . , K and a covariate process (L(0), . . . , L(K+
1)) measured at baseline and after a new treatment is assigned. The covariate L(t) is
measured after A(t − 1) and before A(t). Note that K + 1 represents the length of the
treatment regimen in the appropriate unit of time and n the sample size.

In the formal counterfactual framework for longitudinal study [10], the data are rep-
resented as n independent and identically distributed (i.i.d) realizations of:

O = (L(0), A(0), L(1), A(1), . . . , L(K), A(K), L(K + 1)) = (Ā(K), L̄(K + 1)) ∼ P,

where P represents the distribution of the stochastic process O, referred to as the observed
data, and the general notation ·̄(t) represents the history of the variable · between time
0 and t: a) ·̄(t) = (·(0), . . . , ·(t)) if t ≥ 0 and b) ·̄(t) is empty if t < 0. We extend this
notation with the notation ·̄(t−, t+) to represent the history of the variable · between time
points t− and t+: where a) ·̄(t−, t+) = (·(t−), . . . , ·(t+)) if t− ≤ t+, and b) ·̄(t−, t+) is
empty otherwise. We thus have ·̄(t) = ·̄(0, t).

We define V as a subset of the baseline covariates, V ⊂ L(0) and we denote the
time-dependent outcome with Y (t). In addition, we define V (t) as a subset of (Ā(t −
s), L̄(t− s + 1)), V (t) ⊂ (Ā(t− s), L̄(t− s + 1)). We have Y (t) ∈ L(t) for t ∈ T , where T
denotes the set of time points t such that the outcome, Y (t + 1), is of interest. We have
T ⊂ {0, . . . , K}. Typically T = {0, . . . , K} except when one is interested in the outcome
collected at the end of the study only, i.e. when T = {K}.
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The question of interest is to investigate the causal effect of the treatment on the
time-dependent outcomes of interest. In the literature, this problem has been addressed
with MSMs. In MSM-based Causal Inference, the investigation of the causal relationship
of interest relies on a representation of the effects of the treatment history Ā(t) on the
time-dependent outcome, Y (t + 1) ∈ L(t + 1), for all t ∈ T (see figure 1). We propose
in this paper to address the same problem with the proposed HRMSMs. In HRMSM-
based Causal Inference, the investigation of the causal relationship of interest relies on
a representation of different causal effects. The effect of the treatment is investigated
for a history of treatment that is restricted by the investigators based on considerations
discussed later in this manuscript (see figure 2). In other words, MSMs and HRMSMs can
be viewed as two different statistical strategies to investigate any given causal relationship,
each providing different information and description of the causal effect of interest. We
argue that an HRMSM-based causal inference strategy may often be more suitable than
an MSM-based causal inference strategy for Public Health research.

2.2 Assumptions

Existence of counterfactuals: we assume the existence of the following treatment-
specific processes, also referred to as a counterfactual processes, L̄ā(K)(K + 1) for every
treatment regimen ā(K) = (a(0), . . . , a(K)) ∈ A(K) where A(K) designates all possible
treatment regimens between time points 0 and K, i.e. the support of the conditional
distribution of A(K) given V , g(Ā(K) | V ). See Rubin (1976) [7] for details on the
concept of counterfactuals. We denote the so-called full data process with X = (L̄ā(K)(K+
1))ā(K)∈A(K) and its distribution with FX .

Note that the existence of the counterfactual process L̄ā(K)(K +1) for every treatment
regimen ā(K) ∈ A(K) implies the existence of the counterfactual processes L̄ā(t)(t +
1) ≡ L̄ā(t),Ā(t+1,K)(t + 1) ⊂ X for every t = 0, . . . , K − 1 and every treatment regimen
ā(t) = (a(0), . . . , a(t)) ∈ A(t) where A(t) designates all possible treatment regimens be-
tween time points 0 and t, i.e. the support of the conditional distribution of A(t) given
V , g(Ā(t) | V ).

Consistency assumption: at any time point t, we assume the following link between
the observed data and the counterfactuals: L(t) = LĀ(K)(t). Under this assumption, we
have: O = (Ā(K), L̄Ā(K)(K + 1)) ≡ φ(Ā(K), X), where φ is a specified function of the
full data process X. This notation indicates that the problem can be treated as a missing
data problem. Only the counterfactual associated with the observed treatment Ā(K) is
observed; the others are missing.

Temporal Ordering assumption: at any time point t, we assume that any treat-
ment specific variable can only be affected by past treatments: Lā(K)(t) = Lā(t−1)(t) for
t = 0, . . . , K + 1, where Lā(−1)(0) = L(0). This assumption is typically implied by the
data collection procedure: the covariate L(t) is measured after A(t− 1) and before A(t).
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Sequential Randomization Assumption (SRA): at any time point t, we assume that
the observed treatment is independent of the full data given the data observed up to time
point t: A(t) ⊥ X | Ā(t − 1), L̄(t). Under the SRA, the treatment mechanism, i.e. the
conditional density or probability of Ā(K) given X: g(Ā(K) | X), becomes:

g(Ā(K) | X) =
K∏

t=0

g(A(t) | Ā(t− 1), X)
SRA
=

K∏

t=0

g(A(t) | Ā(t− 1), L̄(t)).

The SRA implies coarsening at random [2] and thus the likelihood of the observed data
factorizes into two parts: a so-called FX and g part. The FX part of the likelihood only
depends on the full data process distribution, and the g part of the likelihood only depends
on the treatment mechanism. As a consequence of this factorization of the likelihood
under the SRA, we now denote the distribution of the observed data with PFX ,g and the
likelihood of O is:

L(O)
SRA
=

FX part︷ ︸︸ ︷

f(L(0))
K+1∏

t=1

f(L(t) | L̄(t− 1), Ā(t− 1))

︸ ︷︷ ︸
QFX

g part︷ ︸︸ ︷
g(Ā(K) | X) .

In addition, we denote the set of conditional densities or probabilities that define the FX

part of the likelihood, except for f(L(0)) with QFX
.

2.3 HRMSM and causal parameter of interest

We define an HRMSM as a model of a feature (e.g. expectation) of the marginal distrib-
ution of the following counterfactuals: YĀ(t−s),ā(t−s+1,t)(t + 1) possibly conditional on the
covariates V (t), for t ∈ Ts where 1) s > 0 is specified by the investigators and referred to
as the (treatment) history size of interest, and 2) Ts represents the set of time points t
such that the outcome Y (t + 1) is of interest and t ≥ s− 1, Ts = {t ∈ T : t ≥ s− 1}. We
have Ts ⊂ {s− 1, . . . , K}. Typically we will have Ts = {s− 1, . . . , K}.

In the next section, we discuss the interpretation of HRMSM parameters and how
they represent the causal relationship of interest for a given value for s compared to MSM
parameters. By convention in this paper, the random portion of the treatment history
defining counterfactuals is excluded from the counterfactual notation and thus we adopt
the following notations YĀ(t−s),ā(t−s+1,t)(t + 1) ≡ Yā(t−s+1,t)(t + 1).

Typically and specifically in this paper, one is interested in average causal effects per
stratum V (t) of the population which can be represented by causal parameters defined
by HRMSMs of EFX ,g(Yā(t−s+1,t)(t + 1) | V (t)) for t ∈ Ts. We denote a causal parameter
defined by an HRMSM with βt(FX , g | ·) to indicate that it is a mapping from the space
of distributions (FX , g) to the space of real numbers and that this mapping is a function
of modeling assumptions represented by ·.

Note that unlike the class of MSMs, HRMSMs are introduced as a class of mixed
full and observed data models since an HRMSM models the marginal distribution of
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counterfactuals where part of the treatment history is left random. The distribution of
the random portion of the treatment history is defined by the treatment mechanism, g,
and is thus identified with the observed data.

3 When and why prefer HRMSM-based versus MSM-

based causal inference in practice?

3.1 MSM parameters: interpretation and causal effect repre-
sentation

MSMs were introduced as a class of full data models which define parameters based on a
feature of the marginal distribution of the following counterfactual outcomes: Yā(t)(t + 1)
possibly conditional on the baseline covariates V . Typically and specifically in this paper,
one is interested in average causal effects per stratum V of the population which can be
represented by causal parameters defined by MSMs of EFX

(Yā(t)(t + 1) | V ) for t ∈ T .
We denote a causal parameter defined by an MSM with βt(FX | ·) to indicate that it is
a mapping from the space of full data distribution FX to the space of real numbers and
that this mapping is a function of modeling assumptions represented by ·.

Two approaches to causal inference based on MSM have been proposed. They pro-
vide different representations of causal effects with distinct causal parameters. Initially,
a parametric MSM approach to causal inference was developed and rely on correct spec-
ification of a parametric MSM while, recently, a new approach based on nonparametric
MSM was introduced [4] that does not require to assume a correctly specified MSM and
that generalizes the definition of causal parameters. This later approach is more realistic
if one believes that correct specification of a parametric MSM is unlikely in practice.

In addition, both MSM approaches can be based on either a stratified or a pooled
analysis, i.e. distinct models, mt(ā(t), V | βt), or a single model, m(t, ā(t), V | β), for
EFX

(Yā(t)(t + 1) | V ) for t ∈ T .
Independently of the MSM approach chosen (nonparametric versus parametric and

pooled versus stratified), MSM parameters represents the causal effects of the treatment
history, Ā(t), on the outcome, Y (t+1). Note that this implies that in MSM-based Causal
Inference, the causal effect of the treatment on the outcome collected at time point t is
always investigated for a treatment history of size t. As a result, the causal effect on
the outcome collected at time t, Y (t), is defined based on larger treatment histories as t
increases, i.e. as the outcome is collected later in the longitudinal study. This feature of
this causal analysis is illustrated in figure 1. The figure illustrates how causal effects are
investigated in practice based on a MSM approach for a study where K = 5, i.e. where
the observed data is:

O = (L(0), A(0), L(1), A(1), L(2), A(2), L(3), A(3), L(4), A(4), L(5), A(5), L(6)).

For instance, the causal effect of the treatment on the outcome collected at time point
t = 6 is investigated for a treatment history of size 6: (A(0), A(1), A(2), A(3), A(4), A(5))

6
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t = 0 1 2 3 4 5 6

Figure 1: Illustration of the MSM representation of causal effects in a longitudinal study
with time-dependent outcomes.

as represented on figure 1 by the ellipse that covers time point 0 to 5 and the arrow that
connects the ellipse to the outcome collected at time point 6 represented by a cross.

The investigation of causal effects with MSMs (see figure 1) raises three potential concerns
that are likely to become more significant for longitudinal studies with longer follow-ups:

• a computing obstacle when proceeding to MSM estimation with the G-computation
estimator

• a disbelief about the subject-matter relevance of the causal effects investigated

• a statistical power problem

The first issue is directly related to the implementation of the G-computation es-
timator. We illustrate it with the following example. Consider a longitudinal study
where data are collected over 20 time points: t = 0, . . . , 19 (K=18), where the out-
come of interest is collected at each time point. Assume that at each time point, the
treatment assigned can take on two values with a non-null probability, i.e. there are
Card(A(K)) = 219 = 524, 288 possible treatment regimens that can be assigned between
t = 0, . . . , 18, where Card(A(K)) represents the cardinal of A(K). For each of these
potential treatment regimens, implementation of the G-computation estimator requires
to draw by Monte Carlo simulation Ng realizations of the outcome Yā(18)(19) based on the
G-computation formula. In practice, Ng should be large enough, at least 1,000. Based
on this recommendation, the G-computation estimate of MSM parameters in a stratified
analysis would be obtained by performing a regression using the MSM and the simulated
data that consists of Card(A(K)) ∗ Ng = 524, 288, 000. Such a regression could not be
handled successfully in most standard statistical packages with the computing resources
available to most investigators. In addition, most investigators would also adopt a pooled
MSM approach, i.e. the number of observations in the final regression leading to the G-
computation estimator would be at least:

∑18
t=0 Card(A(t)) ∗ Ng = 1, 048, 574, 000. Such

7
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a pooled analysis is even more unlikely to be successfully handled by most investigators.
This example should clearly underline the computing limitation associated with analysis
based on MSMs in longitudinal studies with long follow-ups.

The second issue can easily be illustrated with the following hypothetical study. Con-
sider a longitudinal study during which individuals are treated or not every day over three
months (90 days) with a new medication for headache relief and monitored for headache
symptoms. Now consider the last outcome, Y (90), collected after a treatment history of
89 days, Ā(89). In MSM-based Causal Inference, the investigation of treatment effect on
the last outcome measured would be based on the estimation of a causal parameter repre-
senting the effect of the treatment history Ā(89) on Y (90). Most investigators would argue
that looking a the effect of such a medication taken 3-month prior outcome report is likely
to be of little interest for most Public Health questions of interest since 1) the relief effect
of such medication usually does not carry over such a long period of time and 2) because
the drug effect that is pursued, i.e. of interest, for such a treatment is a short-term relief.
In other words, investigating the effect of a headache reliever absorbed 3-month prior
outcome report is not of primary interest and it may often make no sense to look at such
a long lag effect in practice if the treatment is known to act over a short-term time scale
exclusively. Note however that the conventional approach still allows correct investigation
of such effects, for example a parametric MSM of Yā(89)(90) may only rely on the last two
treatments absorbed to explain the outcome, e.g. E(Yā(89)(90)) = β0 +β1a(88)+β2a(89) .
However, we argue in this manuscript that the MSM approach can be improved to better
identify causal effects that are truly of interest from a subject-matter point of view. The
HRMSM proposed in this manuscript addresses this issue and mitigates the other two
concerns discussed here.

The third issue is not illustrated with a concrete example but should be obvious to the
reader. If the causal relationship that is of interest for Public Health purposes provides
support for a statistical analysis based on MSMs, then the investigator may be faced
with a serious statistical power problem. The longer the treatment history, i.e. the study
follow-up, the more complex the effect of the treatment on the outcome may be. Thus, it
is likely that the information required to understand the exact impact of a treatment that
was assigned long before outcome report will be very important and beyond the reach
of most investigators. As a result, even when it is sensible to investigate causal effects
based on MSMs, the investigator may still wish to revise their study aims and lower their
research ambition for the sake of practicability.

3.2 HRMSM parameters: interpretation and causal effect rep-
resentation

Both the parametric and nonparametric MSM [4] approaches to Causal Inference that have
been proposed for MSM-based Causal Inference can be directly extended to HRMSM-
based Causal Inference. Similarly, the corresponding parametric and nonparametric
HRMSM approaches to Causal Inference provide different representations of causal ef-
fects with distinct causal parameters.
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t = 0 1 2 3 4 5 6

Figure 2: Illustration of the HRMSM representation of causal effects in a longitudinal
study with time-dependent outcomes.

In addition, both HRMSM approaches can be based on either a stratified or a pooled
analysis, i.e. distinct models, mt(ā(t − s + 1, t), V (t) | βt), or a single model, m(t, ā(t −
s + 1, t), V (t) | β), for EFX ,g(Yā(t−s+1,t) | V (t)) for t ∈ Ts.

Independently of the HRMSM approach chosen (nonparametric versus parametric
and pooled versus stratified), the causal effect of the treatment on the outcome is always
investigated for a treatment history of fixed size, s, in HRMSM-based Causal Inference.
As a result, the causal effect on the outcome collected at time t, Y (t), is defined based
on a fixed treatment history even as t increases, i.e. as the outcome is collected later in
the longitudinal study. This feature of this causal analysis is illustrated in figure 2. It
illustrates how causal effects are investigated in practice with HRMSMs for a study where
K = 5 and s = 2, i.e. where the data collected is:

(L(0), A(0), L(1), A(1), L(2), A(2), L(3), A(3), L(4), A(4), L(5), A(5), L(6)).

For instance, the causal effect of the treatment on the outcome collected at time point
t = 6 is investigated for a treatment history of size 2: (A(4), A(5)) as represented on figure
2 by the ellipse that covers time points 4 to 5 and the arrow that connects the ellipse to
the outcome collected at time point 6 represented by a cross.

The following three practical considerations may often lead Public Health investigators to
prefer a causal analysis based on HRMSMs above an analysis based on MSMs for causal
inference problems based on longitudinal data:

• HRMSM-based Causal Inference mitigates the computing limitations associated
with MSM estimation in longitudinal studies with long follow-ups based on the
G-computation estimator (and thus the Double Robust estimator).

• HRMSMs allows a different investigation of causal relationships and can thus be
more relevant to Public Health research in general.

9
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• HRMSM-based Causal Inference alleviates potential statistical power concerns.

Support for these claims can be found in section 1 and 3.1 where the limitations of MSM-
based Causal Inference are underlined.

4 HRMSM estimation: the time-specific counterfac-

tual framework

In this section, we introduce the time-specific (t-specific) counterfactual framework which
can be viewed as an extension of the conventional counterfactual framework on which
MSM-based Causal Inference is based (see sections 2.1 and 2.2). This latter mathemat-
ical construct provided the rigorous framework to define, identify and estimate MSM
parameters with the full and observed data based on a sufficient set of assumptions devel-
oped in section 2.2. We introduce the t-specific counterfactual framework as a statistical
artifice that allows us to generalize the estimation procedures that were developed for
MSM parameters to procedures for the estimation of HRMSM parameters with minimum
effort. In addition, we prove in this section that the assumptions sufficient for estimation
of MSM parameters are also sufficient for estimation of HRMSM parameters based on the
t-specific counterfactual framework.

4.1 Data structures

In this section, we adopt the notations introduced in the previous section to represent the
treatments, covariates and outcomes collected at each time point t = 0, . . . , K +1 on each
of the n experimental units: A(t), L(t), Y(t) respectively. We also adopt the notation
V (t) to designate a subset of (Ā(t− s), L̄(t− s + 1)), V (t) ⊂ (Ā(t− s), L̄(t− s + 1)).

In the t-specific counterfactual framework, the representation of the data collected
during a longitudinal study between time points 0 and K + 1 is based on a user-specified
choice of a fixed treatment history size s > 0. We already discussed the interpretation of
this parameter, s. In the discussion section of this paper, we discuss the decision making
about its value in practice.

In the t-specific counterfactual framework and for a given treatment history size s, the
data are represented as n i.i.d realizations of K − s data structures:

Ot = (Lt(t− s + 1), At(t− s + 1), Lt(t− s + 2), At(t− s + 2), . . . , Lt(t), At(t),

Lt(t + 1))

= (Āt(t− s + 1, t), L̄t(t− s + 1, t + 1)) ∼ P t, for all t such that s− 1 ≤ t ≤ K,

where

• P t represents the distribution of the stochastic process Ot referred to as one of the
t-specific observed data,
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• Āt(t− s + 1, t) represents the t-specific treatment process defined as

At(j) = A(j) for all j such that t− s + 1 ≤ j ≤ t, (1)

• L̄t(t− s + 1, t + 1) represents the t-specific covariate process defined by:

a) Lt(j) = L(j) for all j such that t− s + 1 < j ≤ t + 1 (2)

b) Lt(t− s + 1) = (Ā(0, t− s), L̄(0, t− s + 1)) (3)

In other words, we have L̄t(t− s + 1, t + 1) = (Ā(t− s), L̄(t + 1))

We define V t as a subset of the baseline covariates in the t-specific observed data, Ot,
V t ⊂ Lt(t− s + 1), such that:

V t ≡ V (t). (4)

We define Y t as the t-specific outcome of interest, Y t ∈ Lt(t + 1), such that:

Y t ≡ Y (t + 1). (5)

In addition, we denote with Ts the set of time points t such that the outcome in the
t-specific observed data, Y t, is of interest. We have Ts ⊂ {s − 1, . . . , K}. Typically we
will have Ts = {s− 1, . . . , K}.

Like in the conventional counterfactual framework, the question of interest is to in-
vestigate the causal effect of treatment A on the time-dependent outcome, Y ∈ L. In the
t-specific counterfactual framework, this problem is addressed through the investigation of
the causal effects of the treatment histories Āt(t− s+1, t) on the outcomes Y t ∈ Lt(t+1)
for all t ∈ Ts.

Note that in this approach and for a given t ∈ Ts, the outcome Y t is not defined as
a time-dependent variable in the sense that it corresponds with a variable measured at a
unique time-point, specifically the last time-point t+1 associated with the corresponding
t-specific observed data, Ot. That is why, although Y t = Y (t), we adopt a separate nota-
tion Y t to designate the outcome. It is not to be confused with the notation Y introduced
for the conventional counterfactual framework and which designates a time-dependent
variable. Indeed, Y (j) can be regarded in the t-specific counterfactual framework both
as any covariate Y (j) ∈ Lt(j) and the outcome Y t when j = t + 1. Similarly, note that
we adopt a distinct notation, At, to unambiguously represent the treatment of interest in
the t-specific observed data O(t). This notation is not to be confused with A which refer
to a variable that can be regarded both as a covariate Lt and a treatment variable At in
the t-specific counterfactual framework.
Note that if s = 2 for example, then Y (1) cannot be of interest since at time point 1 each
unit has been treated with a treatment history of size 1 and it is thus not possible to look
at the effect of a treatment history of size 2 on Y (1). That is why we use the notation
Ts to indicate that the set of outcomes of interest depends on the investigator’s choice for s.

11
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4.2 Assumptions

In the t-specific counterfactual framework, we adopt the same set of assumptions as
described for the conventional counterfactual framework with the exception that each as-
sumption is made relative to each t-specific observed data of interest, Ot for t ∈ Ts. In
other words, we make the following t-specific assumptions for all t ∈ Ts.

Existence of counterfactuals: we assume the existence of the following t-specific
treatment specific processes, L̄t

āt(t−s+1,t)(t−s+1, t+1), also referred to as t-specific coun-

terfactual processes, for every treatment regimen āt(t−s+1, t) = (a(t−s+1), . . . , a(t)) ∈
A(t−s+1, t) where A(t−s+1, t) designates all possible treatment regimens between time
points t−s+1 and t, i.e. the support of the conditional distribution of Ā(t−s+1, t) given
Ā(t − s) and V t, g(Ā(t − s + 1, t) | Ā(t − s), V t). We denote the so-called t-specific full
data process associated with Ot with X t = (L̄t

āt(t−s+1,t)(t− s+1, t+1))āt(t−s+1,t)∈A(t−s+1,t)

and its distribution with FXt .
Note that the existence of the t-specific counterfactual process L̄t

āt(t−s+1,t)(t−s+1, t+1)

for every treatment regimen āt(t− s + 1, t) ∈ A(t− s + 1, t) implies the existence of the
t-specific counterfactual processes L̄t

āt(t−s+1,j)(t−s+1, j+1) ≡ L̄t
āt(t−s+1,j),At(j+1),...,At(t)(t−

s + 1, j + 1) ⊂ X t for every j = t − s + 1, . . . , t − 1 and every treatment regimen
āt(t−s+1, j) = (a(t−s+1), . . . , a(j)) ∈ A(t−s+1, j) where A(t−s+1, j) designates all
possible treatment regimens between time points t-s+1 and j, i.e. the support of the con-
ditional distribution of A(t−s+1, j) given Ā(t−s) and V t, g(Ā(t−s+1, j) | Ā(t−s), V t).

Consistency assumption: at any time point j such that t − s + 1 ≤ j ≤ t + 1, we
assume the following link between the t-specific observed data and the t-specific coun-
terfactuals: Lt(j) = Lt

Āt(t−s+1,t)(j). Under this assumption, we have: Ot = (Āt(t − s +

1, t), L̄t
Āt(t−s+1,t)(t− s+1, t+1)) ≡ φt(Āt(t− s+1, t), X t), where φt is a specified function

of the t-specific full data process X t. This notation indicates that the problem can be
treated as multiple (for each t ∈ Ts) missing data problems. Indeed, for each t ∈ Ts,
only the t-specific counterfactual associated with the observed treatment Āt(t− s + 1, t)
is observed; the others are missing.

Temporal Ordering assumption: at any time point j such that t− s + 1 ≤ j ≤ t + 1,
we assume that any treatment specific variable can only be affected by past treatments:
Lt

āt(t−s+1,t)(j) = Lt
āt(t−s+1,j−1)(j) for j = t−s+1, . . . , t+1, where Lt

āt(t−s+1,t−s)(t−s+1) =

Lt(t− s + 1). This assumption is typically implied by the data collection procedure: the
covariate Lt(t) is measured after At(t− 1) and before At(t).

Sequential Randomization Assumption (SRA): at any time point j such that t −
s + 1 ≤ j ≤ t + 1, we assume that the t-specific observed treatment is independent of
the t-specific full data given the t-specific data observed up to time point j: At(j) ⊥ X t |
Āt(t−s+1, j−1), L̄t(t−s+1, j). Under the SRA, the t-specific treatment mechanism, i.e.
the conditional density or probability of Āt(t− s + 1, t) given X t: g(Āt(t− s + 1, t) | X t),
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becomes:

g(Āt(t− s + 1, t) | X t) =
t∏

j=t−s+1

g(At(j) | Āt(t− s + 1, j − 1), X t)

SRA
=

t∏

j=t−s+1

g(At(j) | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)).

The SRA implies coarsening at random [2] and thus the t-specific likelihood of the t-
specific observed data factorizes into two parts: a so-called FXt and gt part. The FXt

part of the likelihood only depends on the t-specific full data process distribution, and
the gt part of the likelihood only depends on the t-specific treatment mechanism. As a
consequence of this factorization of the t-specific likelihood under the SRA, we now denote
the distribution of the t-specific observed data with PFXt ,gt and the likelihood of Ot is:

L(Ot)
SRA
=

F
Xt part

︷ ︸︸ ︷
f(Lt(t−s+1))

∏t+1

j=t−s+2
f(Lt(j)|L̄t(t−s+1,j−1),Āt(t−s+1,j−1))

︸ ︷︷ ︸
QF

Xt

gt part︷ ︸︸ ︷
g(Āt(t−s+1,t)|Xt) .

In addition, we denote the set of conditional densities or probabilities that define the FXt

part of the likelihood, except for f(Lt(t− s + 1)) with QFXt .

4.3 Equivalence between MSM parameters in the t-specific coun-
terfactual framework and HRMSM parameters in the con-
ventional counterfactual framework

Like in the conventional counterfactual framework, causal effects can be represented based
on parameters defined by MSMs in the t-specific counterfactual framework. Indeed MSM
approach can be applied to all t-specific observed data, Ot. We refer to an MSM associated
with a given t-specific full data as a t-specific MSM. These t-specific MSMs are t-specific
full data models, i.e. model of FXt , which define parameters based on a feature of the dis-
tribution of the following counterfactual outcomes: Y t

āt(t−s+1,t). Typically and specifically

in this paper, one is interested in average causal effects per stratum V t of the population
which can be represented by causal parameters defined by MSMs of EFXt (Y

t
āt(t−s+1,t) | V t)

for t ∈ Ts. We denote a causal parameter defined by an MSM with βt(FXt | ·) to indicate
that it is a mapping from the space of t-specific full data distribution FXt to the space
of real numbers and that this mapping is a function of modeling assumptions represented
by ·.

We have by definition from (4): V t ≡ V (t) and we can show as follows that Y t
āt(t−s+1,t) =

Yā(t−s+1,t)(t + 1) for t ∈ Ts:

Y t
āt(t−s+1,t) = Y t

ā(t−s+1,t) from (1)

= Yā(t−s+1,t) from (5)
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Thus we have EFXt (Y
t
āt(t−s+1,t) | V t) = EFX ,g(Yā(t−s+1,t)(t + 1) | V (t)) and FXt = ψ(FX , g)

for some specified function ψ.
In general, one can show that HRMSM parameters defined in the conventional counter-

factual framework, βt(FX , g | ·), corresponds to MSM parameters defined in the t-specific
counterfactual framework, βt(FXt | ·):

βt(FX , g | ·) = βt(FXt | ·) (6)

4.4 Link between the conventional and t-specific counterfactual
frameworks

Figure 3 illustrates based on an example of a longitudinal study with short follow-up
the link between the longitudinal data representation in the conventional counterfactual
framework and its representation in the time-specific counterfactual framework. Note
that in the conventional counterfactual framework the data are approached as a single
entity, O, in the sense that the treatment is defined once and for all as a history Ā(K)
and the outcome is time-dependent, Y (t) ∈ L(t). On the other hand, in the t-specific
counterfactual framework the data are viewed as layers of separate entities, Ot. For
each entity, the treatment and outcome of interest are redefined along with the baseline
covariates (highlighted in yellow on figure 3). Note that for a given entity, the outcome is
no longer time-dependent but correspond with the last outcome collected, Y t ∈ Lt(t+1),
(highlighted in orange on figure 3) and the treatment history size is fixed to a user-specified
value s. In the conventional counterfactual framework, the investigator examines the
effect of Ā(K) on Y (t) for all t ∈ T based on MSMs of the full data associated with O
whereas in the t-specific counterfactual framework, the investigator examines the effect of
Āt(t−s+1, t) on Y t for t ∈ Ts based on MSMs of the t-specific full data associated with Ot.
We have shown earlier the equivalence between t-specific MSM parameters and HRMSM
parameters. Thus both the t-specific and conventional counterfactual approaches lead
to a different representation of the causal effect of A on Y , we argued that the t-specific
counterfactual framework (i.e. HRMSM-based Causal Inference) leads to a representation
of causal effects that may often be more relevant to Public Health research.

In short, figure 3 illustrates how the t-specific counterfactual framework can be viewed
as a collection of conventional counterfactual sub-frameworks with distinct definition of
the outcome, treatment and baseline covariates. These conventional counterfactual sub-
frameworks differ from the conventional counterfactual framework in the sense that the
treatment history is of size s 6= K + 1 and the outcome of interest is no longer time-
dependent. The MSM approach developed for the conventional counterfactual framework
can now, under the appropriate assumptions, be directly applied to all the conventional
counterfactual sub-frameworks.
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terfactual frameworks illustrated with data from a longitudinal study with short follow-up.
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4.5 HRMSM estimators

Under the assumptions presented earlier in section 4.2 and from equality (6), the HRMSM
parameters, βt(FX , g | ·), can be identified and consistently estimated with the t-specific
observed data and three estimators of the t-specific MSM parameters: the Inverse Prob-
ability of Treatment Weighted, the G-computation, and Double Robust estimators. The
implementation procedures for these three estimators of HRMSM parameters correspond
with the procedures developed for MSM-based Causal Inference except that they are ap-
plied not to the observed data, O, with treatment, A, and time-dependent outcomes of
interest, Y (t) for t ∈ T , but to all t-specific observed data, Ot, of interest, i.e. for t ∈ Ts,
with treatment At and outcome Y t.

The consistency and efficiency properties of these three estimators along with their
implementation procedures have been thoroughly studied in the literature [10, 6, 11, 5].

5 Sufficient assumptions for consistent HRMSM es-

timation

We now formally establish that the seemingly larger set of t-specific assumptions (see
section 4.2) required to investigate causal effects in the t-specific counterfactual framework
is implied by the set of assumptions (see section 2.2) required to investigate causal effects
in the conventional counterfactual framework. The important practical consequence of
both of these results is that successful investigation of causal effects based on HRMSM
parameters can be achieved based on the same model assumptions leading to successful
investigation of causal effects based on MSMs. Thus, the choice of HRMSM-based causal
analysis over MSM-based causal analysis is only a matter of practical considerations
(statistical power and computing issues) and above all subject-matter considerations,
e.g. the relevance of the causal effect representation to Public Health research.

Theorem 5.1 We adopt the notations introduced previously for the conventional and
t-specific counterfactual frameworks. Based on these notations we have:

i. the assumption of existence of counterfactuals defined in the conventional counter-
factual framework implies the t-specific assumptions of existence of counterfactuals
defined in the t-specific counterfactual framework:

∀ ā(K) ∈ A(K) L̄ā(K)(K + 1) =⇒ ∀ t ∈ {s− 1, . . . , K} ∀ āt(t− s + 1, t) ∈
A(t− s + 1, t) L̄t

āt(t−s+1,t)(t− s + 1, t + 1)

ii. the consistency assumption in the conventional counterfactual framework implies the
t-specific consistency assumptions in the t-specific counterfactual framework:

∀ t ∈ {0, . . . , K + 1} L(t) = LĀ(K)(t) =⇒ ∀ t ∈ {s− 1, . . . , K} ∀ j ∈
{t− s + 1, . . . , t + 1} Lt(j) = Lt

Āt(t−s+1,t)(j)
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iii. the temporal ordering assumption in the conventional counterfactual framework im-
plies the t-specific temporal ordering assumptions in the t-specific counterfactual
framework:

∀ t ∈ {0, . . . , K + 1} Lā(K)(t) = Lā(t−1)(t) =⇒ ∀ t ∈ {s− 1, . . . , K}
∀ j ∈ {t− s + 1, . . . , t + 1} Lt

āt(t−s+1,t)(j) = Lt
āt(t−s+1,j−1)(j)

iv. the SRA in the conventional counterfactual framework implies the t-specific SRAs
in the t-specific counterfactual framework:

∀ t ∈ {0, . . . , K} A(t) ⊥ X | Ā(t− 1), L̄(t) =⇒ ∀ t ∈ {s− 1, . . . , K} ∀ j ∈
{t− s + 1, . . . , t} At(j) ⊥ X t | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)

Proof. For t ∈ {s− 1, . . . , K} and j ∈ {t− s + 1, . . . , t + 1} we have:

iv.

X t =
(
L̄t

āt(t−s+1,t)(t− s + 1, t + 1)
)

āt(t−s+1,t)∈A(t−s+1,t)

=
(
L̄t

ā(t−s+1,t)(t− s + 1, t + 1)
)

ā(t−s+1,t)∈A(t−s+1,t)
from (1)

=
(
Lt

ā(t−s+1,t)(t− s + 1), L̄t
ā(t−s+1,t)(t− s + 2, t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

=
(
Ā(t− s), L̄ā(t−s+1,t)(t− s + 1), L̄ā(t−s+1,t)(t− s + 2, t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

from (2) and (3)

=
(
Ā(t− s), L̄ā(t−s+1,t)(t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

=
(
Ā(t− s),

(
L̄ā(t−s+1,t)(t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

)

X t = (Ā(t− s), X t
L) where X t

L =
(
L̄ā(t−s+1,t)(t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)
(7)

In addition, we have:

X t
L =

(
L̄ā(t−s+1,t)(t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

=
(
L̄Ā(t−s),ā(t−s+1,t),Ā(t+1,K)(t + 1)

)

ā(t−s+1,t)∈A(t−s+1,t)

⊂ X =
(
L̄ā(K)(K + 1)

)

ā(K)∈A(K)

X t
L ⊂ X (8)
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Based on these previous two results, we obtain:

g
(
At(j), X t | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)

)

= g
(
A(j), X t | Ā(t− s + 1, j − 1), Lt(t− s + 1), L̄t(t− s + 2, j)

)
from (1)

= g
(
A(j), X t | Ā(t− s + 1, j − 1), Ā(t− s), L̄(t− s + 1)L̄(t− s + 2, j)

)
from (2) and (3)

= g
(
A(j), X t | Ā(j − 1), L̄(j)

)

= g
(
A(j), Ā(t− s), X t

L | Ā(j − 1), L̄(j)
)

from (7)

= g
(
A(j), X t

L | Ā(j − 1), L̄(j)
)

since Ā(t− s) ⊂ Ā(j − 1)

= g
(
A(j) | Ā(j − 1), L̄(j)

)
from the SRA and (8)

= g
(
At(j) | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)

)
from (1), (2) and (3)

This last equality is equivalent to At(j) ⊥ X t | Āt(t − s + 1, j − 1), L̄t(t − s + 1, j). We
also have:

• if j 6= t− s + 1:

i.

Lt
āt(t−s+1,t)(j) = Lt

ā(t−s+1,t)(j) from (1)

= Lā(t−s+1,t)(j) from (2)

= LA(0),...,A(t−s),ā(t−s+1,t),A(t+1),...,A(K)(j)

ii.

Lt(j) = L(j) from (2)

= LĀ(K)(j) from the consistency assumption

= LĀ(t−s),Ā(t−s+1,t),Ā(t+1,K)(j)

= LĀ(t−s+1,t)(j)

= LĀt(t−s+1,t)(j) from (1)

= Lt
Āt(t−s+1,t)(j) from (2)

iii.

Lt
āt(t−s+1,t)(j) = Lā(t−s+1,t)(j) from (1) and (2)

= LĀ(t−s),ā(t−s+1,t),Ā(t+1,K)(j)

= LĀ(t−s),ā(t−s+1,j−1)(j) from the temporal ordering assumption

= Lā(t−s+1,j−1)(j)

= Lt
āt(t−s+1,j−1)(j) from (1) and (2)
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• if j = t− s + 1:

i.

Lt
āt(t−s+1,t)(j) = Lt

ā(t−s+1,t)(j) from (1)

=
(
Ā(0, t− s), L̄(0, t− s + 1)

)

ā(t−s+1,t)
from (3)

=
(
Ā(t− s), L̄ā(t−s+1,t)(t− s + 1)

)

=
(
Ā(t− s), L̄A(0),...,A(t−s),ā(t−s+1,t),A(t+1),...,A(K)(t− s + 1)

)

ii.

Lt(j) =
(
Ā(0, t− s), L̄(0, t− s + 1)

)
from (3)

=
(
Ā(0, t− s), L̄Ā(K)(0, t− s + 1)

)
from the consistency assumption

=
(
Ā(0, t− s), L̄Ā(t−s),Ā(t−s+1,t),Ā(t+1,K)(0, t− s + 1)

)

=
(
Ā(0, t− s), L̄Ā(t−s+1,t)(0, t− s + 1)

)

=
(
Ā(0, t− s), L̄(0, t− s + 1)

)

Ā(t−s+1,t)

= Lt
Ā(t−s+1,t)(j) from (3)

= Lt
Āt(t−s+1,t)(j) from (1)

iii.

Lt
āt(t−s+1,t)(j) =

(
Ā(0, t− s), L̄(0, t− s + 1)

)

ā(t−s+1,t)
from (1) and (3)

=
(
Ā(0, t− s), L̄ā(t−s+1,t)(0, t− s + 1)

)

=
(
Ā(0, t− s), L̄Ā(t−s),ā(t−s+1,t),Ā(t+1,K)(0, t− s + 1)

)

=
(
Ā(0, t− s), L̄Ā(t−s)(0, t− s + 1)

)
from the temporal

ordering assumption

=
(
Ā(0, t− s), L̄(0, t− s + 1)

)

= Lt(j) from (3)

= Lt
āt(t−s+1,j−1)(j) since āt(t− s + 1, t− s) is empty by

definition2
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Theorem 5.2 We adopt the notations introduced previously for the conventional and
t-specific counterfactual frameworks. Based on these notations we have:

i. ∀ t ∈ {s− 1, . . . , K} ∀ j ∈ {t− s + 2, . . . , t + 1}
f(Lt(j) | L̄t(t− s + 1, j − 1), Āt(t− s + 1, j − 1)) = f(L(j) | L̄(j − 1), Ā(j − 1))

ii. ∀ t ∈ {s− 1, . . . , K} ∀ j ∈ {t− s + 1, . . . , t}
g(At(j) | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)) = g(A(j) | Ā(j − 1), L̄(j))

Proof.
For t ∈ {s− 1, . . . , K} we have

i. for j ∈ {t− s + 2, . . . , t + 1}:

f
(
Lt(j) | L̄t(t− s + 1, j − 1), Āt(t− s + 1, j − 1)

)

= f
(
Lt(j) | Lt(t− s + 1), L̄t(t− s + 2, j − 1), Ā(t− s + 1, j − 1)

)
from (1)

= f
(
L(j) | Lt(t− s + 1), L̄(t− s + 2, j − 1), Ā(t− s + 1, j − 1)

)
from (2)

= f
(
L(j) | Ā(t− s), L̄(t− s + 1), L̄(t− s + 2, j − 1), Ā(t− s + 1, j − 1)

)
from (3)

= f
(
L(j) | L̄(j − 1), Ā(j − 1)

)

ii. for j ∈ {t− s + 1, . . . , t}:

g
(
At(j) | Āt(t− s + 1, j − 1), L̄t(t− s + 1, j)

)

= g
(
A(j) | Ā(t− s + 1, j − 1), Lt(t− s + 1), L̄t(t− s + 2, j)

)
from (1)

= g
(
A(j) | Ā(t− s + 1, j − 1), Lt(t− s + 1), L̄(t− s + 2, j)

)
from (2)

= g
(
A(j) | Ā(t− s + 1, j − 1), Ā(t− s), L̄(t− s + 1), L̄(t− s + 2, j)

)
from (3)

= g
(
A(j) | Ā(j − 1), L̄(j)

)

6 Discussion

In this manuscript, we introduced HRMSMs as a new class of MSMs to investigate
the causal effects of exposure to a treatment over time on time-dependent outcomes.
HRMSMs can be viewed as alternative Causal Inference tools to MSMs. We argued based
on practical considerations that an HRMSM-based Causal Inference strategy may often be
more suitable than an MSM-based Causal Inference strategy for Public Health research.
We believe these considerations should motivate the use of this methodology in many
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practical applications. We developed an extension of the conventional counterfactual
framework that we called the t-specific counterfactual framework. This framework was
solely introduced as a statistical artifice to provide the rigorous mathematical framework
to develop consistent estimators of HRMSM parameters with minimal effort: the IPTW,
G-computation and DR estimators. We have shown that these estimators of HRMSM
parameters are consistent under the same model assumptions commonly adopted in the
conventional counterfactual framework: existence of counterfactuals, consistency, time-
ordering and sequential randomization assumptions. We now discuss the decision making
about the history size, s, to consider in practice when applying the proposed HRMSM-
based causal analysis.

Decision about the value for the history size, s, should be based on the combination of
considerations about the analysis aims and a priori knowledge about the problem studied.
This decision however cannot ignore practical considerations like implementation issues
and statistical power concerns.

For instance, if the longitudinal study aims at investigating the causal effect of a new
medication for headache relief whose action is likely not to carry over time beyond a few
hours then it will not make sense to choose a history size that extends well beyond the
known lag effect of similar medication. Even when the treatment effect of interest is likely
to carry over long periods of time, the subject-matter focus may be the investigation of
short-term effects in which case the investigators should consider small values for s. In
addition, note that the larger s is, the more complex may the causal effect of interest
be. As a result, the statistical power to investigate the causal effect of interest will
likely decrease when considering larger history sizes s. Moreover, the larger s is, the
more challenging may HRMSM estimation based on the G-computation (and thus DR)
estimator be.

Nevertheless, choosing a suitable value for s based on these guidelines remain sub-
jective and may lead to two situations: 1) the chosen history size, s, is larger than the
maximum time interval over which the treatment of interest has an effect on the outcome,
and 2) the chosen history size, s, is smaller than the maximum time interval over which
the treatment of interest has an effect on the outcome. In the first case scenario, the
model selection procedure for MSMs proposed by van der Laan and Dudoit (2003) [9] can
be used to identify the smaller component of the treatment history that is causally rele-
vant. The second case scenario is most likely to occur in practice since statistical power
and implementation considerations will often prevent investigators to study causal effects
of treatment histories that are too long. In that case, an HRMSM-based causal analysis
will still provide valuable answers to the Public Health questions of interest based on the
available data even if the causal effect of the treatment over time will not be completely
described (e.g. the maximum lag effect will remain unknown). The HRMSM approach is
to be compared to the MSM approach which will consider the effect of longer treatment
histories even when the statistical power may not allow identification of significant results.
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