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A unification of mediation and interaction: a
four-way decomposition

Tyler J. VanderWeele

Abstract

It is shown that the overall effect of an exposure on an outcome, in the pres-
ence of a mediator with which the exposure may interact, can be decomposed into
four components: (i) the effect of the exposure in the absence of the mediator,
(ii) the interactive effect when the mediator is left to what it would be in the ab-
sence of exposure, (iii) a mediated interaction, and (iv) a pure mediated effect.
These four components, respectively, correspond to the portion of the effect that
is due to neither mediation nor interaction, to just interaction (but not mediation),
to both mediation and interaction, and to just mediation (but not interaction). This
four-way decomposition unites methods that attribute effects to interactions and
methods that assess mediation. Certain combinations of these four components
correspond to measures for mediation, while other combinations correspond to
measures of interaction previously proposed in the literature. Prior decomposi-
tions in the literature are in essence special cases of this four-way decomposition.
The four-way decomposition can be carried out using standard statistical models,
and software is provided to estimate each of the four components. The four-way
decomposition provides maximum insight into how much of an effect is mediated,
how much is due to interaction, how much is due to both mediation and interaction
together, and how much is due to neither.



Introduction

Methodology for mediation and interaction has developed rapidly over the past decade. Methods
for e¤ect decomposition to assess direct and indirect e¤ects have shed light on mechanisms and
pathways.1�19 Other methods and measures have been useful in assessing how much of the e¤ect
of one exposure is due to its interaction with another.20�24 In this paper we provide theory and
methods to unite these e¤ect decomposition and attribution methods for mediation and interaction.
The paper�s central result is that the total e¤ect of an exposure on an outcome, in the presence
of a mediator with which the exposure may interact, can be decomposed into four components:
components due to just mediation, to just interaction, to both mediation and interaction, and to
neither mediation nor interaction.

After presenting this four-way decomposition, we will discuss assumptions for identifying these
four components from data and we will relate this four-way decomposition approach to various
statistical models. We then discuss the relations between existing measures of mediation and
interaction and each of the four components, and show how existing measures of mediation and
interaction consist of di¤erent combinations of these four components. We show how di¤erent e¤ect
decomposition and attribution approaches for mediation and interaction can in fact be united within
this four-fold framework; when some of the components are combined, the framework presented in
this paper essentially collapses to approaches that have been used previously. The greatest insight,
however, is arguably gained when the four-fold approach is employed and we illustrate this with an
example from genetic epidemiology.

Notation

Let A denote the exposure of interest, Y the outcome, and M a potential mediator, and let
C denote a set of baseline covariates. We will suppose we want to compare two levels of the
exposure, a and a�; for binary exposure we would have a = 1 and a� = 0. For simplicity we will
consider the setting of a binary exposure and binary mediator; however more general results that
are applicable to arbitrary exposures and mediators are given in the Appendix. We let Ya and Ma

denote respectively the potentially counterfactual values of the outcome and mediator that would
have been observed had the exposure A been set to level a. The total e¤ect (TE) of the exposure
A on the outcome Y is de�ned as Y1 � Y0; the total e¤ect of the exposure A on the mediator M is
de�ned as M1�M0. We will not in general ever know what these e¤ects are at the individual level
but we might hope to be able to estimate them on average for a population. For the �rst part of
this paper, however, we will be concerned with concepts and only later will we turn to what can
be identi�ed with data and under what assumptions.

We will also need counterfactuals of another form. Let Yam denote the value of the outcome
that would have been observed had A been set to level a, andM to m. The controlled direct e¤ect,
comparing exposure level A = 1 to A = 0 and �xing the mediator to level m is de�ned by Y1m�Y0m
and captures the e¤ect of exposure A on outcome Y , intervening to �x M to m; it may be di¤erent
for di¤erent levels of m.1;2 It may also be di¤erent for persons. Finally we will also later consider
counterfactuals of the form YaMa� which is the outcome Y that would have occurred if we �xed A
to a and we �xed M to the level it would have taken if A had been a�. We will also make some
technical assumptions referred to as consistency and composition that are also needed to relate
the observed data to counterfactual quantities. The consistency assumption in this context is that
when A = a, the counterfactual outcomes Ya and Ma are equal to the observed outcomes Y and
M , respectively, and that when A = a and M = m, the counterfactual outcome Yam is equal to Y .
The composition assumption is that Ya = YaMa . Further discussion of these assumptions is given
elsewhere.4;18;25
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A Four-Fold Decomposition

We show in the Appendix that we can decompose the total e¤ect (TE) of A on Y into the
following four components:

Y1 � Y0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0) (1)

+(Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0):

The �rst component, (Y10�Y00), is the direct e¤ect of the exposure A if the mediator were removed,
i.e. �xed toM = 0. This e¤ect is sometimes referred to as a �controlled direct e¤ect�(CDE).1;2 The
second component, (Y11�Y10�Y01+Y00)(M0), we will call a �reference interaction�(INTref ). The
term (Y11�Y10�Y01+Y00) is an additive interaction. It can be rewritten as (Y11�Y00)�f(Y10�Y00)+
(Y01�Y00)g and will be non-zero for a person if the e¤ect on the outcome of setting both the exposure
and the mediator to present di¤ers from the sum of the e¤ect of having only the exposure present and
the e¤ect of having only the mediator present; additive interaction is generally considered of greatest
public health importance20�22. The second component in the decomposition in (1) is the product
of this additive interaction and M0. Thus this second component, (Y11 � Y10 � Y01 + Y00)(M0),
is an additive interaction that only operates if the mediator is present in the absence of exposure
i.e. when M0 = 1. The third component, (Y11 � Y10 � Y01 + Y00)(M1 �M0), will be referred to as
a �mediated interaction�(INTmed). It is the same additive interaction contrast times (M1 �M0).
In other words it is an additive interaction that only operates if the exposure has an e¤ect on the
mediator so that M1 �M0 6= 0. The �nal component, (Y01 � Y00)(M1 �M0), is the e¤ect of the
mediator in the absence of the exposure, Y01 � Y00, multiplied by the the e¤ect of the exposure on
the mediator itself, M1 �M0. It will be non-zero only if the mediator a¤ects the outcome when
the exposure is absent, and the exposure itself a¤ects the mediator. We might refer to this �nal
component as a �mediated main e¤ect�or, as will be explained below, as a �pure indirect e¤ect�
(PIE).1;2

The intuition behind this decomposition is that if the exposure a¤ects the outcome for a par-
ticular individual, then at least one of four things must be the case. Either the exposure might
a¤ect the outcome through pathways which do not require the mediator (i.e. the exposure a¤ects
the outcome even when the mediator is absent); in other words the �rst component is non-zero.
Or alternatively, the exposure e¤ect might operate only in the presence of the mediator (i.e. there
is an interaction) and it might also be the case that the exposure itself is not necessary for the
mediator to be present (i.e. the mediator itself would be present in the absence of the exposure,
though the mediator is itself necessary for the exposure to have an e¤ect on the outcome); in other
words, the second component is non-zero. Or alternatively, the exposure e¤ect might operate only
in the presence of the mediator (i.e. there is an interaction) and it might also be the case that
the exposure itself is in fact needed for the mediator to be present (i.e. the exposure causes the
mediator, and the presence of the mediator is itself necessary for the exposure to have an e¤ect on
the outcome); in other words, the third component in non-zero. Or �nally, it might alternatively be
the case that the mediator can cause the outcome in the absence of the exposure, but the exposure
is necessary for the mediator itself to be present; in other words, the fourth component is non-zero.
The decomposition above, proved in the Appendix, provides a mathematical formalization of this
intuition. We could thus rewrite our decomposition as:

TE = CDE + INTref + INTmed + PIE:

As with the total e¤ect of the exposure on the outcome, Y1 � Y0, we cannot in general hope
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to know the value of each of the four components for a particular individual, but below we will
discuss assumptions under which we could estimate measures of these four components on average
for a particular population. We will see below that under certain assumptions about confounding
the average value of each of four components is given by the following empirical expressions:

E[CDE] = (p10 � p00)
E[INTref ] = (p11 � p10 � p01 + p00)P (M = 1jA = 0)
E[INTmed] = (p11 � p10 � p01 + p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g
E[PIE] = (p01 � p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g:

where pam = E(Y jA = a;M = m). If we let pa = E(Y jA = a) we will have following empirical
decomposition:

pa=1 � pa=0 = (p10 � p00) + (p11 � p10 � p01 + p00)P (M = 1jA = 0)
+ (p11 � p10 � p01 + p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g
+ (p01 � p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g (1b)

With such average measures we would be able to assess how much of the total e¤ect is due to
(i) neither mediation nor interaction (the �rst component); how much is due to interaction but
not mediation (the second component), how much is due to both mediation and interaction (the
third component); and how much of the e¤ect is due to mediation but not interaction (the fourth
component). The four components of the total e¤ect are summarized in Table 1.

Table 1. The Four Basic Components of the Total E¤ect (the following four components sum to
the total e¤ect TE = Y1 � Y0)
E¤ect Counterfactual De�nition Empirica l Analogue
Controlled D irect E¤ect (CDE) (Y10 � Y00) (p10 � p00)
Reference Interaction (INTref ) (Y11 � Y10 � Y01 + Y00)(M0) (p11 � p10 � p01 + p00)P (M = 1jA = 0)

Mediated Interaction (INTmed) (Y11 � Y10 � Y01 + Y00)(M1 �M0) (p11 � p10 � p01 + p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g
Pure Ind irect E¤ect (PIE) (Y01 � Y00)(M1 �M0) = (Y0M1

� Y0M0
) (p01 � p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g:

If we let E[TE] denote the average total e¤ect for the population (equal to pa=1 � pa=0 =
E(Y jA = 1)�E(Y jA = 0) in the absence of confounding), then we could also consider the propor-
tion of the total e¤ect that is due to each of these four components using the ratios E[CDE]E[TE] ,

E[INTref ]
E[TE] ,

E[INTmed]
E[TE] , and E[PIE]

E[TE] . We could also assess the overall proportion due to mediation by summing the

proportions due to the mediated interaction and to the pure indirect e¤ect, i.e. E[INTmed]+E[PIE]
E[TE] .

We could likewise assess the overall proportion due to interaction by summing the proportions
due to the reference interaction and to the mediated interaction, i.e. E[INTref ]+E[INTmed]

E[TE] . Such
proportion measures, however, generally only make sense reporting if all of the components are in
the same direction (e.g. all positive or all negative). The statistical properties of such proportion
measures can also be highly variable, and hence problematic, if the total e¤ect is close to zero as
might be the case if some of the components were positive and others negative. Similar comments
pertain to other proportion measures described below.

We will �rst consider the no-confounding assumptions that allow us to estimate these four
components on average, and statistical methods to carry out such estimation. We will later consider
the relationships between this four-fold decomposition and other concepts from the literatures on
mediation and interaction that involve e¤ect decomposition and attribution.
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Identi�cation of the E¤ects

Our discussion thus far has been primarily conceptual. As we have noted, the individual level
e¤ects in the four-way decomposition cannot be identi�ed from the data, but under certain no-
confounding assumptions the four components can be identi�ed from the data on average for a pop-
ulation. As discussed further in the Appendix, for a causal diagram interpreted as non-parametric
structural equation models of Pearl,18 the following four assumptions su¢ ce to identify each of the
four components from the data: (i) the e¤ect the exposure A on the outcome Y is unconfounded
conditional on C; (ii) the e¤ect the mediator M on the outcome Y is unconfounded conditional on
(C;A); (iii) the e¤ect the exposure A on the mediator M is unconfounded conditional on C; and
(iv) none of the mediator-outcome confounders are themselves a¤ected by the exposure. These are
the same four assumptions that are often used in the literature on mediation.2;4;5 If we let X ?? Y jZ
denote that X is independent of Y conditional on Z, then these four assumptions stated formally in
terms of counterfactual independence are: (i) Yam ?? AjC, (ii) Yam ??M jfA;Cg, (iii) Ma ?? AjC,
and (iv) Yam ?? Ma� jC. Note that assumption (iv) requires that none of the mediator-outcome
confounders are themselves a¤ected by the exposure. This assumption would hold in Figure 1 but
would be violated in Figure 2.

Figure 1: Mediation with exposure A, outcome Y , mediator M , and confounders C.

Figure 2: Mediation with a mediator-outcome confounder L that is a¤ected by the exposure.

If these four assumptions held without covariates then we would have the empirical formulae given
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above:

E[CDE] = (p10 � p00)
E[INTref ] = (p11 � p10 � p01 + p00)P (M = 1jA = 0)
E[INTmed] = (p11 � p10 � p01 + p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g
E[PIE] = (p01 � p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g:

More general formulae involving covariates and with arbitrary exposures and mediator (rather than
binary) are given in the Appendix.

The counterfactual statement of assumption (iv), Yam ?? Ma� jC, is somewhat controversial
as it involves what are sometimes called �cross-world� independencies. It would hold in Figure
1 interpreted as a non-parametric structural equation model,18 but may not hold under other
interpretations of causal diagrams.19 We noted above that the empirical equivalent of our four-
way decomposition was (1b). As shown in the Appendix, this decomposition holds without any
assumptions at all about confounding. However, to interpret each of the components causally does
require assumptions about confounding. Assumptions (i)-(iv) above allow for interpreting each of
the components as population average causal e¤ects of each of the four components in the four-way
individual level counterfactual decomposition: CDE, INTref , INTmed, and PIE. In the Appendix
we also discuss how a slightly weaker interpretation is also valid essentially under just assumptions
(i)-(iii) alone, without requiring the more controversial assumptions (iv).

Also of interest is the fact that the controlled direct e¤ect, CDE, only requires assumption (i)
and (ii) to be identi�ed.1;2 This does not require the more controversial cross-world independence
assumptions. The average controlled direct e¤ect is sometimes subtracted from the average total
e¤ect to get a proportion eliminated measure E[PE] := E[TE]�E[CDE]. Whenever we can iden-
tify the total e¤ect and the controlled direct e¤ect we can calculate this portion eliminated measure.
Interestingly, as described further below, the four-way decomposition gives a more mechanistic in-
terpretation of this portion eliminated measure: the portion eliminated is the sum of the reference
interaction, the mediated interaction, and the pure indirect e¤ect (PE = INTref+INTmed+PIE)
i.e. it is the portion due to either mediation or interaction or both. We cannot empirically separate
apart these three components without using stronger assumptions such as (i)-(iv) above. However,
whenever we can identify the total e¤ect and the controlled direct e¤ect (which we can do under
much weaker assumptions) we can obtain also the sum of the three other components since they
are simply the di¤erence between the total e¤ect and the controlled direct e¤ect.

Relation to Statistical Models

Suppose that assumptions (i)-(iv) hold, that Y and M are continuous and that the following
regression models for Y and M are correctly speci�ed:

E[Y ja;m; c] = �0 + �1a+ �2m+ �3am+ �
0
4c

E[M ja; c] = �0 + �1a+ �
0
2c:

It is shown in the eAppendix that for exposure levels a and a�, and for setting the mediator to 0
in the controlled direct e¤ect (see Online Appendix for other settings of mediator for the CDE),
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the four components are given by:

E[CDEjc] = �1(a� a�)
E[INTref jc] = �3(�0 + �1a

� + �02c)(a� a�)
E[INTmedjc] = �3�1(a� a�)(a� a�)
E[PIEjc] = (�2�1 + �3�1a

�)(a� a�)

If the exposure were binary, the pure direct, reference interaction, mediated interaction, and pure
indirect e¤ects would, respectively, simply be: �1, �3(�0 + �

0
2c)g, �3�1, and �2�1. Standard errors

for estimators of these quantities could be derived using the delta method along the lines of Van-
derWeele and Vansteelandt4 or by using bootstrapping. SAS code to implement this approach to
obtain estimates and con�dence intervals is provided in the eAppendix. The eAppendix likewise
provides a straightforward modeling approach, and SAS code, when the mediator is binary rather
continuous.

Binary Outcomes and the Ratio Scale

Thus far we have been considering the de�nition of these four components on a di¤erence scale.
Often in epidemiology risk ratios or odds ratios are used for convenience, or ease of interpretation,
or to account for study design. By dividing the decomposition in (1b) by pa=0 we can rewrite this
decomposition on the ratio scale as

RRa=1 � 1 = �(RR10 � 1) + �(RR11 �RR10 �RR01 + 1)P (M = 1jA = 0) (2)

+ �(RR11 �RR10 �RR01 + 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g
+ �(RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g

where RRa=1 =
pa=1
pa=0

is the relative risk for exposure A comparing A = 1 to the reference category
A = 0, and RRam =

pam
p00

is the relative risk for comparing categories A = a;M = m to the reference
category A = 0;M = 0, and where � is a scaling factor which is given by � = p00

pa=0
. Note also

here that the term, (RR11�RR10�RR01+1), is Rothman�s excess relative risk due to interaction
(RERI), and is a measure of additive interaction using ratios.20

The decomposition in (2) involves decomposing the excess relative risk for the exposure A,
RRa=1 � 1, into four components on the excess relative risk scale involving, as before, (i) the
controlled direct e¤ect of A when M = 0, (ii) a reference interaction, (iii) a mediated interaction,
and (iv) a mediated main e¤ect. Note that although the right hand side of the decomposition
involves a scaling factor �, if what we are interested in is the proportion of the e¤ect attributable
to each of the components, then if we take any particular component and divide it by the sum of
all the components, then the scaling drops out. The proportion of the e¤ect attributable to each
of the four components is thus given by the expressions in Table 2.
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Table 2. Proportion attributable to the controlled direct e¤ect (PACDE), the reference interaction
(PAINTref ), the mediated interaction (PAINTmed) and the pure indirect e¤ect (PAPIE) when
using a ratio scale.

PACDE =
(RR10 � 1)

(RR10 � 1) + (RERI)P (M = 1jA = 1) + (RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g

PAINTref =
(RERI)P (M = 1jA = 0)

(RR10 � 1) + (RERI)P (M = 1jA = 1) + (RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g

PAINTmed =
(RERI)fP (M = 1jA = 1)� P (M = 1jA = 0)g

(RR10 � 1) + (RERI)P (M = 1jA = 1) + (RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g

PAPIE =
(RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g

(RR10 � 1) + (RERI)P (M = 1jA = 1) + (RR01 � 1)fP (M = 1jA = 1)� P (M = 1jA = 0)g :

The four-fold proportion attributable measures given in Table 2 allow us to estimate the propor-
tion of the total e¤ect attributable just to mediation (PAPIE), just due to interaction (PAINTref ),
due to both mediation and interaction (PAINTmed), or due to neither mediation nor interaction
(PACDE). Further technical details concerning the four-way decomposition on the ratio scale and
for obtaining estimates and con�dence intervals using logistic regression for the outcome along with
linear regression for a continuous mediator or a second logistic regression for a binary mediator is
given in the eAppendix. SAS code to implement this approach is also given in the eAppendix.

Illustration

We will consider a data example from genetic epidemiology to illustrate the four-way decompo-
sition. Speci�cally, we consider the extent to which the e¤ect of chromosome 15q25.1 rs8034191 C
alleles on lung cancer risk is mediated by cigarettes smoked per day and/or due to interaction with
this smoking measure. rs8034191 C alleles had been found to be associated with both smoking26;27

and lung cancer28�30 but there had been debate as to whether the e¤ects on lung cancer were direct
or mediated by smoking. VanderWeele et al.31 used methods from the causal mediation analysis
literature to assess whether the e¤ect was direct or indirect and found that most of the e¤ect was
not mediated by cigarettes per day (the total indirect e¤ect was very small and the pure direct
e¤ect was large). In large meta-analyses, Truong et al.32 found no association between the genetic
variants amongst never smokers suggesting strong interaction between the variants and smoking
behavior; VanderWeele et al.31 likewise reported statistical evidence of interaction. Here we will
use the four-way decomposition to assess how much of the e¤ect is due to each of the components.

We use data on 1836 cases and 1452 controls from a lung cancer case-control study at Massa-
chusetts General Hospital; see Miller et al.33 or VanderWeele et al.31 for further details on the
study. As the exposure we compare 2 versus 0 C alleles, and use cigarettes per day as the mediator
(the square root of this measure is used so that the measure is more normally distributed). Covari-
ates adjusted for in the analysis include sex, age, education, and smoking duration. Analyses are
restricted to Caucasians. Because the outcome, lung cancer, is rare, odds ratios approximate risk
ratios. We �t a logistic regression model for lung cancer on the variants, smoking, their interac-
tion, and the covariates; and a linear regression model for smoking on the variants and covariates.
Con�dence intervals are obtained using the delta method. Details of this modeling approach in
the context of the four-way decomposition are given in the eAppendix; SAS code is also provided.
Results are summarized in Table 3.
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Table 3. Proportions of the e¤ect of genetic variants on lung cancer due to mediation and interaction
with smoking (cigarettes per day)
Component Excess Relative Risk Proportion Attributable Other Proportions
CDE 0:30 (95% CI: �0:19; 0:79) 39% (95% CI: �11%; 89%) Overall Proportion to Interaction:
INTref 0:42 (95% CI: 0:11; 0:73) 55% (95% CI: 8%; 101%) 59% (95% CI: 9%; 109%)
INTmed 0:034 (95% CI: �0:02; 0:09) 4% (95% CI: �3%; 11%) Overall Proportion to Mediation:
PIE 0:014 (95% CI: �0:01; 0:04) 2% (95% CI: �1%; 5%) 6% (95% CI: �3%; 15%)
Total 0:77 (95% CI: 0:33; 1:21) 100%

The overall risk ratio comparing 2 versus 0 C alleles was 1:77 (95% CI: 1:33; 2:21) for an excess
relative risk of 1:77 � 1 = 0:77 (95% con�dence interval = 0:33; 1:21). We decompose this excess
relative risk into the four components. The component due to the pure indirect e¤ect is 0:014 (95%
CI: �0:01; 0:04); the component due to the mediated interaction is 0:034 (95% CI: �0:02; 0:09);
the component due to the reference interaction is 0:42 (95% CI: 0:11; 0:73); and the component
due to the controlled direct e¤ect (if smoking were �xed to 0) is 0:30 (95% CI: �0:19; 0:79). The
four components sum to the excess relative risk: 0:014 + 0:034 + 0:42 + 0:30 � 0:77. Of the
four components, the reference interaction is most substantial, highlighting the important role of
interaction in this context. The overall proportion mediated (the sum of the pure indirect e¤ect
and the mediated interaction, divided by the excess relative risk) is quite small 6:2% (95% CI:
�2:7%; 15:1%), as had been indicated in the analyses of VanderWeele et al.31 The overall proportion
attributable to interaction (the reference interaction plus the mediated interaction, divided by the
excess relative risk) is relatively substantial 59:2% (95% CI: 9:2%; 109:3%). Mediation may play a
role here (and probably does as the variants do a¤ect smoking and smoking a¤ects lung cancer)
but interaction, between the variants and smoking, is clearly much more important in this context.

Relation to Mediation Decompositions

We will �rst discuss the relations between the four components above and concepts from the me-
diation analysis literature, and we will then discuss relations with the interaction analysis literature.
As above, our four-fold decomposition is:

Y1 � Y0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0)

+(Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0):

The �rst component, (Y10 � Y00), is referred to in the mediation analysis literature as a �controlled
direct e¤ect�(CDE) of the exposure when �xing the mediator to levelM = 0. We can also consider
controlled direct e¤ects which setM to a level other than 0 and in the Discussion section and further
in the Appendix we consider four-way decompositions involving these alternative controlled direct
e¤ects. The fourth component in the four-way decomposition, (Y01 � Y00)(M1 �M0), what we
referred to above as a �mediated main e¤ect�is in fact equivalent to what in the mediation analysis
literature is sometimes referred to as a �pure indirect e¤ect�(PIE). It is shown in the Appendix
that:

PIE := Y0M1 � Y0M0 = (Y01 � Y00)(M1 �M0):

The counterfactual contrast, Y0M1 � Y0M0 , in the mediation analysis literature is referred to as a
�pure indirect e¤ect�1 or as a type of �natural direct e¤ect�.2 This contrast Y0M1 � Y0M0 compares
what would happen to the outcome if the mediator were changed from the level M0 (the level it
would be in the absence of the exposure) to M1 (the level it would be in the presence of exposure)
while in both counterfactual scenarios �xing the exposure itself to be absent. It will be non-zero if
and only if the exposure changes the mediator (so that M0 and M1 are di¤erent) and the mediator
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itself has an e¤ect on the outcome even in the absence of the exposure. However, this is, in fact, the
same quantity as what we had in our decomposition above, namely (Y01�Y00)(M1�M0). Note that
writing the pure indirect e¤ect as (Y01 � Y00)(M1 �M0) gives a representation of the pure indirect
e¤ect that does not require nested counterfactuals of the form Y0M1 . This may be of interest as
sometimes objections are made to the pure indirect e¤ect on the grounds that nested counterfactuals
of the form Y0M1 are di¢ cult to interpret. The third component, (Y11�Y10�Y01+Y00)(M1�M0),
was recently considered in the mediation analysis literature and called a �mediated interaction�
(INTmed).34 As discussed in the Appendix and elsewhere34, this mediated interaction can also be
written as (Y1M1 � Y0M1 � Y1M0 + Y0M0). The component we have not yet considered, the second
component, (Y11 � Y10 � Y01 + Y00)(M0), what we referred to above as a �reference interaction�
(INTref ) has no analogue in the current literature. However, it is shown in the Appendix that the
sum of the �rst and second component does have an analogue in the mediation analysis literature
and it is equal to what is sometimes called in the mediation analysis literature the �pure direct
e¤ect�(PDE) de�ned as Y1M0 � Y0M0 which compares what would happen to the outcome in the
presence versus the absence of the exposure if, in both cases, the mediator were set to whatever it
would be for that individual in the absence of exposure. In other words we have that

PDE := Y1M0 � Y0M0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0)

= CDE + INTref :

The pure direct e¤ect is the sum of a controlled direct e¤ect and, our second component, the
reference interaction. If in our four-way decomposition above we replace the �rst two components
with the pure direct e¤ect and write the fourth component as the pure indirect e¤ect we obtain:

Y1 � Y0 = PDE + INTmed + PIE: (3)

In other words, we can decompose the total e¤ect into a pure direct e¤ect, a pure indirect e¤ect,
and a mediated interaction. This decomposition in (3) was the three-way decomposition provided
by VanderWeele34 in 2013. However, even this three-way decomposition is relatively new and
prior to this, a two-way decomposition was the norm in the mediation analysis literature. As
discussed in the Appendix and in VanderWeele,34 the sum of the mediated interaction and the
pure indirect e¤ect is equal to what in the mediation analysis literature is sometimes called a �total
indirect e¤ect� (TIE), de�ned as Y1M1 � Y1M0 . Whereas, the pure indirect e¤ect, Y0M1 � Y0M0 ,
compares changing the mediator from M0 to M1 while �xing the exposure itself to be absent,
the total indirect e¤ect, Y1M1 � Y1M0 , compares changing the mediator from M0 to M1 �xing
the exposure to present. With the total indirect so de�ned we have TIE = PIE + INTmed i.e.
(Y1M1 � Y1M0) = (Y0M1 � Y0M0) + (Y11 � Y10 � Y01 + Y00)(M1 �M0). We can then combine the
mediated interaction and the pure indirect e¤ect in the decomposition in (3), into a total indirect
e¤ect to obtain the more standard 2-way decomposition in the mediation analysis literature:

Y1 � Y0 = PDE + TIE: (4)

This is the decomposition that has been used most often in the causal inference literature when
assessing direct and indirect e¤ects; this two-way decomposition was �rst proposed in 1992 by
Robins and Greenland1; and it is the decomposition that most of the existing software packages for
causal mediation analysis have focused on.8;16 This two-way decomposition also provides the coun-
terfactual formalization for the decompositions typically employed in the social science literature
on mediation.35 However, as we have seen above, the pure direct e¤ect is itself a combination of
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two components: a controlled direct e¤ect and the reference interaction (PDE = CDE+ INTref ).
And the total indirect e¤ect is a combination of two components, the pure indirect e¤ect and
the mediated interaction (TIE = PIE + INTmed). When these e¤ects are estimated on aver-
age, a proportion mediated measure, E[TIE]E[TE] , is sometimes used which can also be re-written as
E[TIE]
E[TE] =

E[INTmed]+E[PIE]
E[TE] .

Yet another decomposition is worth noting in the mediation analysis literature. Sometimes
the mediated interaction in the decomposition in (3) is combined with pure direct e¤ect, rather
than with the pure indirect e¤ect, for an alternative two-way decomposition. As discussed in the
Appendix and in VanderWeele34, the sum of the mediated interaction and the pure direct e¤ect is
equal to what in the mediation analysis literature is sometimes called a �total direct e¤ect�(TDE),1

de�ned as Y1M1 � Y0M1 . The total and the pure direct e¤ects are sometimes also called �natural
direct e¤ects�2 and the total and the pure indirect e¤ects are sometimes called �natural indirect
e¤ects�2. A summary of the various composite e¤ects is given in Table 4.

Table 4. Composite E¤ects
E¤ect Counterfactual De�nition Composite Relationship
Total Indirect E¤ect (TIE) (Y1M1 � Y1M0) TIE = PIE + INTmed
Pure Direct E¤ect (PDE) (Y1M0 � Y0M0) PDE = CDE + INTref
Total Direct E¤ect (TDE) (Y1M1 � Y0M1) TDE = CDE + INTref + INTmed
Portion Eliminated (PE) (Y1 � Y0)� (Y10 � Y00) PE = PIE + INTref + INTmed
Portion Attributable to Interaction (PAI) (Y11 � Y10 � Y01 + Y00)(M1) PAI = INTref + INTmed

Of interest here is that the total direct e¤ect contains three components: the controlled direct
e¤ect, the reference interaction, and the mediated interaction. As we move from the �rst to third
of these components, we see they increasing involve the mediator in more substantial ways. The
controlled direct e¤ect, (Y10 � Y00), operates completely independent of the mediator; for this to
be non-zero the direct e¤ect must be present even when the mediator is absent. The reference
interaction, (Y11 � Y10 � Y01 + Y00)(M0), requires the mediator to operate but the e¤ect does not
come about by the exposure changing the mediator - it simply requires that the mediator itself
is present even when the exposure is absent; the e¤ect is �unmediated� in the sense that it does
not operate by the exposure changing the mediator, but it requires the presence of the mediator
nonetheless. The third component, the mediated interaction, (Y11 � Y10 � Y01 + Y00)(M1 �M0),
is a type of mediated e¤ect; it requires that the exposure change the mediator; but it is also a
direct e¤ect insofar as an interaction must also be present (the e¤ect of the exposure is di¤erent for
di¤erent levels of the mediator); the third component thus not only involves the mediator but it is
a mediated e¤ect, and a direct e¤ect as well. It is for this reason that it is sometimes combined
with the pure indirect e¤ect to obtain the total indirect e¤ect, and sometimes combined with the
pure direct e¤ect to obtain the total direct e¤ect.

When we combine the pure direct e¤ect and mediated interaction to get the total direct e¤ect,
TDE := Y1M1 �Y0M1 = PDE+ INTmed, we have the alternative 2-way decomposition of the total
e¤ect into the sum of the total direct e¤ect and the pure indirect e¤ect:

Y1 � Y0 = TDE + PIE: (5)

This decomposition was likewise proposed by Robins and Greenland1 in 1992. Relatively easy-to-
use software is currently available to estimate the components of the two-way decompositions in (4)
and (5) on average for a population, under the assumptions described later in the paper. Note that
in the decomposition in (5), the total direct e¤ect consists of three of the four basic components
(the controlled direct e¤ect, the reference interaction, and the mediated interaction), whereas the
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pure indirect e¤ect constitutes a single component. The mediated interaction is, however, arguably
part of the e¤ect that is mediated and thus, when questions of mediation are of interest, it is
arguably (4), rather than (5), that is to be preferred when assessing the extent of mediation.9;10;34

However, whether the pure indirect e¤ect or the total indirect e¤ect is of interest may depend upon
the context.6

A �nal measure that is used in the mediation analysis literature is sometimes referred to as the
"portion eliminated" (PE).1;12 As noted above, this is generally de�ned as the di¤erence between
the total e¤ect and the controlled direct e¤ect: PE := (Y1 � Y0) � CDE. It is the portion of the
e¤ect of the exposure that would remain if the mediator were �xed to 0. The portion eliminated
may be of interest insofar as it allows one to assess how much of the e¤ect of the exposure can
be eliminated or prevented by intervening on the mediator; for this reason it is sometimes argued
to be of policy interest.1;6;12 The four-way decomposition above in fact shows that this portion
eliminated measure is equal to the sum of the other three components: the reference interaction,
the mediated interaction, and the pure indirect e¤ect i.e. PE = INTref + INTmed + PIE and
we can write the total e¤ect as TE = CDE + PE. The four-way decomposition provides a causal
interpretation for the di¤erence between the total e¤ect and the controlled direct e¤ect: it is the
portion of the e¤ect attributable to mediation, or interaction, or both. When the portion eliminated
is estimated at the population level, sometimes a proportion eliminated measure is also calculated as
E[TE]�E[CDE]

E[TE] which we could also rewrite as E[INTref ]+E[INTmed]+E[PIE]E[TE] ; note that this is di¤erent

from the proportion mediated measure considered earlier which was E[NIE]
E[TE] =

E[INTmed]+E[PIE]
E[TE] .

The proportion eliminated includes in the numerator the reference interaction (since this part of
the e¤ect is eliminated if the mediator is removed); the proportion mediated does not include the
reference interaction in the numerator (since this is not part of the mediated e¤ect).12

We have seen then a number of di¤erent decompositions. However, when we are interested in
questions of mediation, we need not choose between the two-way decompositions, or even the three-
way decomposition, but can in fact use the decomposition into four components above so as to assess
the portion of the total e¤ect that is attributable just to mediation, just to interaction, to both
mediation and interaction, or to neither mediation nor interaction. The four-way decomposition
allows us to accomplish this. The various decompositions within the context of mediation are
summarized in Table 5, but the four-way decomposition here essentially provides a framework
which encompasses them all.

Table 5. Mediation Decompositions
Number of Components Decomposition
2-Way Decompositiona TE = TIE + PDE

2-Way Decompositionb TE = TDE + PIE

2-Way Decompositionc TE = CDE + PE

3-Way Decompositiond TE = PDE + PIE + INTmed
4-Way Decompositione TE = CDE + INTref + INTmed + PIE
a (Y1 � Y0) = (Y1M1 � Y1M0) + (Y1M0 � Y0M0)
b (Y1 � Y0) = (Y1M1 � Y0M1) + (Y0M1 � Y0M0)
c (Y1 � Y0) = (Y10 � Y00) + [(Y1 � Y0)� (Y10 � Y00)]
d (Y1 � Y0) = (Y0M1 � Y0M0) + (Y1M0 � Y0M0) + (Y11 � Y10 � Y01 + Y00)(M1 �M0)

e Y1 � Y0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0) + (Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0)
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Relation to Interaction Decompositions

VanderWeele and Tchetgen Tchetgen24 recently considered attributing a portion of the total
e¤ect of one exposure on an outcome that is due to an interaction with a second exposure. Here
we will relate this to the four-way decomposition above. Our four-way decomposition above was
expressed as:

Y1 � Y0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0) (1)

+(Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0):

which we also wrote as: TE = CDE + INTref + INTmed + PIE. Suppose now that instead of
considering how much of the total e¤ect is mediated versus direct, as in the previous section, we
were interested in the portion due to interaction. In our four-way decomposition, two of the four
components (the second and the third involve) an interaction. We could thus de�ne the portion
due to interaction as their sum: PAI := INTref + INTmed = (Y11� Y10� Y01+ Y00)(M0) + (Y11�
Y10 � Y01 + Y00)(M1 � M0) = (Y11 � Y10 � Y01 + Y00)(M1) and we would then have the 3-way
decomposition:

TE = CDE + PAI + PIE (6)

= (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M1) + (Y01 � Y00)(M1 �M0):

The total e¤ect can be decomposed into the e¤ect of A with M absent (CDE), a pure indirect
e¤ect (PIE), and a portion due to interaction (PAI). Consider now the empirical analogue of
this decomposition using the expressions in (1b). We let pam = E[Y jA = a;M = m] and, pa =
E[Y jA = a], and pm = E[Y jM = m] and we have from (1b): (pa=1 � pa=0) =

(p10�p00)+(p11�p10�p01+p00)P (M = 1jA = 1)+(p01�p00)fP (M = 1jA = 1)�P (M = 1jA = 0)g:
(7)

We again have the decomposition of the average total e¤ect of A, into what is essentially the average
controlled direct e¤ect, the average portion attributable to interaction, and the average pure indirect
e¤ect. The middle component is the component due to interaction and the proportion of the e¤ect
due to interaction could then be assessed by: (p11�p10�p01+p00)P (M = 1jA = 1)=(pa=1�pa=0).

In fact, the decomposition given above in (7) is that which VanderWeele and Tchetgen24 used
when attributing e¤ects to interactions. Several points are worth noting. First, the decomposition
in (6) and (7) for the portion attributable to interaction follows quite clearly from the four-way
decomposition. The decomposition in (6) is the decomposition at the individual counterfactual level
analogous to the empirical decomposition in (7) given by VanderWeele and Tchetgen Tchetgen.24

Second, VanderWeele and Tchetgen Tchetgen considered two cases, one in which A and M were
independent and one in which they are not. The decomposition in (7) was that which was proposed
when A a¤ected M . When A and M are independent, the decomposition in (7) reduces to (pa=1�
pa=0) = (p10�p00)+(p11�p10�p01+p00)P (M = 1) and we likewise have a similar decomposition for
the total e¤ect ofM on Y : (pm=1�pm=0) = (p01�p00)+(p11�p10�p01+p00)P (A = 1). Likewise,
on a ratio scale, when A does not a¤ect M , the third and fourth components in Table 2 become
0 and we are left with PACDE =

(RR10�1)
(RR10�1)+(RERI)P (M=1) and PAINTref =

(RERI)P (M=1)
(RR10�1)+(RERI)P (M=1)

which are also the expressions given by VanderWeele and Tchetgen Tchetgen24 for attributing
e¤ects to interactions on a ratio scale. When A a¤ects M , the decomposition for the total e¤ect of
A on Y is altered and we must use the decomposition in (7). Finally, when A does not a¤ect Y ,
we have an analogous individual counterfactual level decomposition as (6) then reduces to: TE =
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(Y10�Y00)+(Y11�Y10�Y01+Y00)(M) since when A does not a¤ectM ,M1 =M0 =M . All of this
also follows from our four-way decomposition which encompasses all of the prior decompositions.
These decompositions are all summarized in Table 6.

Table 6. Interaction Decompositions
Number of Components Decomposition
2-Way Decomposition (No Mediation)a TE = CDE + PAI

3-Way Decompositionb TE = CDE + PAI + PIE

4-Way Decompositionc TE = CDE + INTref + INTmed + PIE
a (Y1 � Y0) = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M)
b (Y1 � Y0) = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M1) + (Y01 � Y00)(M1 �M0)

c (Y1 � Y0) = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0) + (Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0)

Although in the more general setting when A a¤ects M , we can estimate the portion due to
interaction on the average level using the three-way decomposition in (7), there is no need to use
only a three-way decomposition; we can instead use the four-way decomposition in (1) and the
empirical expressions in (1b) to further divide the portion due to interaction into that which is
due to interaction but not mediation (the reference interaction, E[INTref ]) and the portion due to
interaction and mediation (the mediated interaction E[INTmed]). Such a four-way decomposition,
in which the portion attributed to interaction is itself further divided may shed additional insight.

Perhaps most importantly, this four-way decomposition, which helps better understand the
portions of a total e¤ect due to interaction, is exactly the same decomposition that was used above
to shed insight into what portions of the total e¤ect were mediated and which portions were direct.
The same four-way decomposition was useful in assessing both mediation and interaction. The same
four components are used in assessing mediation and interaction, but the components are combined
in di¤erent ways to assess these di¤erent phenomena. However, the four-way decomposition itself
essentially provides a uni�cation of these phenomena of mediation and interaction. The four-fold
decomposition underlies the various more speci�c decompositions in assessing both mediation and
interaction.
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Figure 3: The four-fold decomposition encompasses both decompositions for mediation and
interaction. For interaction, the reference interaction (INTref ) and the mediated interaction

(INTmed) combine to the portion attributable to interaction (PAI). The portion attributable to
interaction (PAI) combine with the controlled direct e¤ect (CDE) and the pure indirect e¤ect
(PIE) to give the total e¤ect (TE). For mediation, the controlled direct e¤ect and the reference
interaction (INTref ) combine to give the pure direct e¤ect (PDE); the pure indirect e¤ect (PIE)
combines with the mediated interaction (INTmed) to give the total indirect e¤ect (TIE); and the
pure direct e¤ect (PDE) combines with total indirect e¤ect (TIE) to give the total e¤ect (TE).

As illustrated in Figure 3, the four components form the backbone of both the various mediation
decompositions (Figures 3-5) and the interaction decomposition (Figure 3).

Figure 4: As an alternative mediation decomposition, the controlled direct e¤ect and the reference
interaction (INTref ) combine to give the pure direct e¤ect (PDE); the pure direct e¤ect (PDE)
and the mediated interaction (INTmed) combine to give the total direct e¤ect (TDE); and the
total direct e¤ect (TDE) and the pure indirect e¤ect (PIE) combine to give the total e¤ect (TE).
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Figure 5: As an alternative mediation decomposition, the di¤erence between the total e¤ect (TE)
and the controlled direct e¤ect (PE) is sometimes called the portion elimianted (PE) and it is
equal to the sum of the reference interaction (INTref ), the mediated interaction (INTmed), and

the pure indirect e¤ect (PIE).

Once, again, however, the greatest insight is arguably gained when the four-fold approach is used
to assess simultaneously the portions of the total e¤ect that are due just to mediation, just to
interaction, to both mediation and interaction, and to neither mediation nor interaction.

Discussion

The four-way decomposition here encompasses and unites previous decompositions in the liter-
ature, both concerning mediation and concerning interaction. The results here have also provided
a mechanistic interpretation to the di¤erence between a total e¤ect and a controlled direct e¤ect;
this contrast has been used to assess policy implications and it is more easily identi�ed than many
other causal quantities concerning mediation; the results here show that it also has a mechanistic
interpretation as well. We have also shown how the four-way decomposition in this paper can be
carried out on a di¤erence scale and on a ratio scale, we have related the various components to
standard statistical models, and in the eAppendix we have provided software code to carry out the
estimation of the various components of the decomposition using such regression models. We have
seen that in addition to reporting the four components, an investigator can also easily report, along
with these, the overall proportion attributable to interaction, the overall proportion mediated, and
the proportion of the e¤ect that would be eliminated if the mediator were removed. As seen in
the empirical example in genetic epidemiology, the approach described here can shed considerable
insight into the relationships between an exposure and a mediator with an outcome, and into the
role of both mediation and interaction in these relationships.

In the text here we have focused on a binary exposure and binary mediator, and the controlled
direct e¤ect we have been considering is that in which the mediator is �xed to being absent.
Much more general results are given in the Appendix and the approach in fact applies to arbitrary
exposures and mediators. Moreover, instead of focusing on a controlled direct e¤ect that �xes the
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mediator to be absent, one can consider controlled direct e¤ects that �x the mediator to some
other level, m�. Similar four-way decompositions can be carried out wherein the �rst component
is the controlled direct e¤ect with the mediator �xed to level m�. When this is done, the reference
interaction term changes because, with the mediator �xed to m� (rather than 0), the controlled
direct e¤ect then picks up some of the e¤ect of the interaction between the exposure and the
mediator. With the controlled direct e¤ect in which the mediator is �xed to m�, the interpretation
of the reference interaction is then the portion of the e¤ect due to the interaction between the
exposure and the mediator that is not mediated, and also not captured by the controlled direct
e¤ect. Again, the results in the Appendix cover very general settings and will thus likely be of
use in a variety of contexts. The code in the eAppendix likewise provides practical and relatively
easy-to-use software tools to implement the approaches here in a wide range of settings. The
central limitations of the approach developed here is the strong assumptions being made about
confounding; these are, however, similar assumptions to those made in the literature on mediation
that only focuses on simpler decompositions. Future research could examine the robustness of
each of the four components to confounding and measurement error. For example, recent work
indicates that interaction terms may be more robust to confounding,36 but that interaction terms
when the two exposures are correlated may be particularly sensitive to measurement error;37;38

di¤erent components may be robust to di¤erent forms of bias. Future work could also extend
existing sensitivity analysis techniques for mediation and interaction7;8;36�38 to each of the four
components.

Prior work on mediation within the counterfactual framework has accommodated potential
interaction. The approach here makes the role of interaction, and its separate contribution be-
yond mediation, clearer, and unites, within a single framework, the phenomena of mediation and
interaction.
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Appendix

In the Appendix we will no longer restrict attention to binary exposure and mediator and will
consider an arbitrary exposure and mediator. We will assume we are comparing two exposure levels
a and a�. We give the general four-way decomposition result in Proposition 1.

Proposition 1. For any level m� of M we have Ya � Ya�

= (Yam� � Ya�m�) +
X

m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)

+
X

m
(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)g+ (Ya�Ma � Ya�Ma� )

Proof. We have that Ya � Ya�

= YaMa � Ya�Ma�

= (YaMa � Ya�Ma) + (Ya�Ma � Ya�Ma� )

= (YaMa� � Ya�Ma� ) + (Ya�Ma � Ya�Ma� ) + (YaMa � Ya�Ma � YaMa� + Ya�Ma� )

= (Yam� � Ya�m�) + f(YaMa� � Ya�Ma� )� (Yam� � Ya�m�)g
+(YaMa � Ya�Ma � YaMa� + Ya�Ma� ) + (Ya�Ma � Ya�Ma� )

= (Yam� � Ya�m�) +
X

m
f(Yam � Ya�m)� (Yam� � Ya�m�)g1(Ma� = m)

+
X

m
f(Yam � Ya�m)1(Ma = m)� (Yam � Ya�m)1(Ma� = m)g+ (Ya�Ma � Ya�Ma� )

= (Yam� � Ya�m�) +
X

m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)

+
X

m
(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)g+ (Ya�Ma � Ya�Ma� ):�

The four components of the decomposition in general form are thus

CDE(m�) : = (Yam� � Ya�m�)

INTref (m
�) : =

X
m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)

INTmed : =
X

m
(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)g

PIE : = (Ya�Ma � Ya�Ma� ):

Note we can also rewrite INTmed =
X

m
(Yam�Ya�m�Yam� +Ya�m�)f1(Ma = m)� 1(Ma� = m)g

and we can rewrite PIE =
X

m
(Ya�m�Ya�m�)f1(Ma = m)� 1(Ma� = m)g. Doing so with binary

A and M and setting a = 1; a� = 0;m� = 0 gives us the decomposition in (1) in the text:

Y1 � Y0 = (Y10 � Y00) + (Y11 � Y10 � Y01 + Y00)(M0) (1)

+(Y11 � Y10 � Y01 + Y00)(M1 �M0) + (Y01 � Y00)(M1 �M0):

The decomposition also has an empirical analogue given in the next Proposition.
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Proposition 2. For any level m� of M we have E[Y ja; c]� E[Y ja�; c] =

= fE[Y ja;m�; c]� E[Y ja�;m�; c]g

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]� E[Y ja;m�; c] + E[Y ja�;m�; c]gdP (mja�; c)

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]gfdP (mja; c)� dP (mja�; c)g

+

Z
E[Y ja�;m; c]fdP (mja; c)� dP (mja�; c)g:

Proof. We have that E[Y ja; c]� E[Y ja�; c]

= E[Y ja;m�; c]� E[Y ja�;m�; c] + fE[Y ja; c]� E[Y ja;m�; c]g � fE[Y ja�; c]� E[Y ja�;m�; c]g

= E[Y ja;m�; c]� E[Y ja�;m�; c] +

Z
fE[Y ja;m; c]� E[Y ja;m�; c]gdP (mja; c)

�
Z
fE[Y ja�;m; c]� E[Y ja�;m�; c]gdP (mja�; c)

= fE[Y ja;m�; c]� E[Y ja�;m�; c]g

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]g � fE[Y ja;m�; c]� E[Y ja�;m�; c]gdP (mja; c)

+

Z
fE[Y ja�;m; c]� E[Y ja�;m�; c]gfdP (mja; c)� dP (mja�; c)g

= fE[Y ja;m�; c]� E[Y ja�;m�; c]g

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]g � fE[Y ja;m�; c]� E[Y ja�;m�; c]gdP (mja�; c)

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]g � fE[Y ja;m�; c]� E[Y ja�;m�; c]gfdP (mja; c)� dP (mja�; c)g

+

Z
fE[Y ja�;m; c]� E[Y ja�;m�; c]gfdP (mja; c)� dP (mja�; c)g:

= fE[Y ja;m�; c]� E[Y ja�;m�; c]g

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]� E[Y ja;m�; c] + E[Y ja�;m�; c]gdP (mja�; c)

+

Z
fE[Y ja;m; c]� E[Y ja�;m; c]gfdP (mja; c)� dP (mja�; c)g

+

Z
E[Y ja�;m; c]fdP (mja; c)� dP (mja�; c)g:�

Note we can also rewrite the third term as
Z
fE[Y ja;m; c]� E[Y ja�;m; c]g � fE[Y ja;m�; c]�

E[Y ja�;m�; c]gfdP (mja; c) � dP (mja�; c)g and the fourth term asZ
fE[Y ja�;m; c] � E[Y ja�;m�; c]gfdP (mja; c) � dP (mja�; c)g. Doing so with binary A and M ,
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and setting a = 1; a� = 0;m� = 0 gives decomposition (1b) in the text:

pa=1 � pa=0 = (p10 � p00) + (p11 � p10 � p01 + p00)P (M = 1jA = 0)
+ (p11 � p10 � p01 + p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g
+ (p01 � p00)fP (M = 1jA = 1)� P (M = 1jA = 0)g (1b)

Note the decomposition in Proposition 2 is a property of the expectations and probabilities.
It does not require confounding assumptions. However, to interpret the components as causal
e¤ects, confounding assumptions are required. We will begin our discussion of confounding by
�rst considering non-parametric structural equations.18 Consider the following four confounding
assumptions: (i) the e¤ect the exposure A on the outcome Y is unconfounded conditional on C;
(ii) the e¤ect the mediator M on the outcome Y is unconfounded conditional on (C;A); (iii) the
e¤ect the exposure A on the mediator M is unconfounded conditional on C; and (iv) none of the
mediator-outcome confounders are themselves a¤ected by the exposure. If we let X ?? Y jZ denote
that X is independent of Y conditional on Z, then these four assumptions stated formally in terms
of counterfactual independence are: (i) Yam ?? AjC, (ii) Yam ?? M jfA;Cg, (iii) Ma ?? AjC, and
(iv) Yam ??Ma� jC.

Proposition 3. Under assumptions (i)-(iv) we have:

E[CDE(m�)jc] = fE[Y ja;m�; c]� E[Y ja�;m�; c]g

E[INTref (m
�)jc] =

Z
fE[Y ja;m; c]� E[Y ja�;m; c]� E[Y ja;m�; c] + E[Y ja�;m�; c]dP (mja�; c)

E[INTmedjc] =

Z
fE[Y ja;m; c]� E[Y ja�;m; c]gfdP (mja; c)� dP (mja�; c)g

E[PIEjc] =

Z
E[Y ja�;m; c]fdP (mja; c)� dP (mja�; c)g:

Proof. The �rst equality is established by Robins39, the fourth by Pearl2, the third by VanderWeele34.
For the second equality we have E[INTref (m�)jc]

= E
hX

m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)jc

i
=

Z
m
E[Yam � Ya�m � Yam� + Ya�m� jc]dP (Ma� = mjc)

=

Z
m
fE[Yamjc]� E[Ya�mjc]� E[Yam� jc] + E[Ya�m� jc]gdP (Ma� = mjc)

=

Z
m
fE[Yamja;m; c]� E[Ya�mja�;m; c]� E[Yam� ja;m�; c] + E[Ya�m� ja�;m�; c]gdP (Ma� = mja�; c)

=

Z
m
fE[Y ja;m; c]� E[Y ja�;m; c]� E[Y ja;m�; c] + E[Y ja�;m�; c]gdP (M = mja�; c)

where the second equality follows by assumption (iv) and the fourth by assumptions (i)-(iii). In
fact, the other three equalities in Proposition 3 can be established in much the same way.�

We can also interpret the terms in the decomposition in Proposition 2 causally under assump-
tions (i)-(iii) alone, though the causal interpretation is slightly weaker.
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Proposition 4. Under assumptions (i)-(iii) we have:

fE[Y ja;m�; c]� E[Y ja�;m�; c]g = E[Yam� � Ya�m� jc]Z
fE[Y ja;m; c]� E[Y ja�;m; c]� E[Y ja;m�; c] + E[Y ja�;m�; c]gdP (mja�; c)

=

Z
E[Yam � Ya�m � Yam� + Ya�m� jc]dP (Ma� jc)Z

fE[Y ja;m; c]� E[Y ja�;m; c]gfdP (mja; c)� dP (mja�; c)g

=

Z
E[Yam � Ya�mjc]fdP (Majc)� dP (Ma� jc)Z

E[Y ja�;m; c]fdP (mja; c)� dP (mja�; c)g =
Z
E[Ya�mjc]fdP (Majc)� dP (Ma� jc)g:

:
Proof. The �rst equality is established by Robins39, the second in the �nal four lines of the

proof of Proportion 3 above, the third in VanderWeele34 and the fourth, using slightly di¤erent
notation by Didelez et al.40�

Note we can also rewrite the right hand side of the third equality as
Z
fE[Yam � Ya�mjc] �

E[Yam� � Ya�m� jc]gfdP (Majc) � dP (Ma� jc) and the right hand side of the fourth equality asZ
fE[Ya�m�Ya�m� jc]gfdP (Majc)�dP (Ma� jc)g. The right hand side of the equalities in Proposition

4 are causal quantities but rather than directly taking population averages of the four components
of the decomposition, the e¤ects of A and M on Y are integrated over the distribution of M
under di¤erent exposure settings. As discussed further in the eAppendix, these e¤ects can be inter-
preted as randomized interventional analogues of the four components of the decomposition. They
only require assumptions (i)-(iii) for identi�cation (i.e. they do not require the more controver-
sial cross-world independence assumption (iv)) but the causal interpretation of these randomized
interventional analogues is somewhat weaker.

Finally, we note that some earlier literature on interaction with binary exposures made use
of di¤erent response types where individuals were classi�ed according to their joint counterfactual
outcomes (Y00; Y01; Y10; Y11). Under the response type classi�cation for mediation given by Hafeman
and VanderWeele41 in which it is assumed that the monotonicity assumption that Yam is non-
decreasing in a and in m holds, the four components of the four-decomposition could be written
as CDE(0) = Y(2)+ Y(4), INTref (0) =M(1)(Y(8) � Y(2)), INTmed =M(2)(Y(8) � Y(2)), and PIE =
M(2)(Y(2)+Y(6)) where M(1) is a binary indicator such thatM(1) = 1 if M0 =M1 = 1 and M(1) = 0
otherwise; M(2) is a binary indicator such thatM(2) = 1 ifM0 = 0;M1 = 1 andM(2) = 0 otherwise;
Y(2) is a binary indicator such that Y(2) = 1 if (Y00 = 0; Y01 = 1; Y10 = 1; Y11 = 1) and Y(2) = 0
otherwise; Y(4) is a binary indicator such that Y(4) = 1 if (Y00 = 0; Y01 = 0; Y10 = 1; Y11 = 1) and
Y(4) = 0 otherwise; Y(6) is a binary indicator such that Y(6) = 1 if (Y00 = 0; Y01 = 1; Y10 = 0; Y11 = 1)
and Y(6) = 0 otherwise; and Y(8) is a binary indicator such that Y(8) = 1 if (Y00 = 0; Y01 = 1; Y10 =
1; Y11 = 1) and Y(8) = 0 otherwise.
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eAppendix for "A uni�cation of mediation and interaction: a four-way decomposition"
by Tyler J. VanderWeele

1. Continuous Outcomes and Linear Regression Models

1.1 Continuous Outcome, Continuous Mediator

For Y and M continuous, under assumptions (i)-(iv) and correct speci�cation of the regression
models for Y and M :

E[Y ja;m; c] = �0 + �1a+ �2m+ �3am+ �
0
4c

E[M ja; c] = �0 + �1a+ �
0
2c;

VanderWeele and Vansteelandt4 and VanderWeele34 showed that the average controlled direct ef-
fect, the pure indirect e¤ect, and the mediated interaction conditional on covariates C = c were
given by:

E[CDE(m�)jc] = (�1 + �3m
�)(a� a�)

E[PIEjc] = (�2�1 + �3�1a
�)(a� a�)

E[INTmedjc] = �3�1(a� a�)(a� a�):

They also showed that the pure direct e¤ect was given by E[PDEjc] = f�1 + �3(�0 + �1a� +
�02c)g(a � a�). The reference interaction is then given by di¤erence between the the pure direct
e¤ect and the controlled direct e¤ect:

E[INTref (m
�)jc] = f�1 + �3(�0 + �1a� + �02c)g(a� a�)� (�1 + �3m�)(a� a�)

= �3(�0 + �1a
� + �02c�m�)g(a� a�):

Standard errors for these expressions could be derived using the delta method along the lines of
the derivations in VanderWeele and Vansteelandt4 or by using bootstrapping.

1.2 Continuous Outcome, Binary Mediator

For Y continuous and M binary, under assumptions (i)-(iv) and correct speci�cation of the
regression models for Y and M :

E[Y ja;m; c] = �0 + �1a+ �2m+ �3am+ �
0
4c

logitfP (M = 1ja; c)g = �0 + �1a+ �
0
2c:

Valeri and VanderWeele16 show that the average controlled direct e¤ect and the average pure
indirect e¤ect are given by:

E[CDE(m�)jc] = (�1 + �3m
�)(a� a�)

E[PIEjc] = (�2 + �3a
�)f exp[�0 + �1a+ �

0
2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:
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The reference interaction is given by the di¤erence between the pure direct e¤ect and the controlled
direct e¤ect, which were both given by Valeri and VanderWeele16:

E[INTref (m
�)jc] = f�1(a� a�)g+ f�3(a� a�)g

exp[�0 + �1a
� + �

0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
� (�1 + �3m�)(a� a�)

= �3(a� a�)
 

exp[�0 + �1a
� + �

0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
�m�

!

The mediated interaction is given by the di¤erence between the total indirect e¤ect and the pure
indirect e¤ect, which were also both given by Valeri and VanderWeele16:

E[INTmedjc] = (�2 + �3a)f
exp[�0 + �1a+ �

0
2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:

�(�2 + �3a�)f
exp[�0 + �1a+ �

0
2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
g

= �3(a� a�)f
exp[�0 + �1a+ �

0
2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0
2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:

2. Decomposition on a Ratio Scale and Logistic Regression Models

2.1. Four-way Decomposition on a Ratio Scale

From Proposition 1 in the text we have Ya � Ya�

= (Yam� � Ya�m�) +
X

m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)

+
X

m
(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)g+ (Ya�Ma � Ya�Ma� ):

Taking expectations conditional on C = c gives: E(Ya � Ya� jc)

= E(Yam� � Ya�m� jc) +
X

m
E[(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)jc]

+
X

m
E[(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)gjc] + E(Ya�Ma � Ya�Ma� jc):

Under assumption (iv) this is: E(Ya � Ya� jc)

= E(Yam� � Ya�m� jc) +
X

m
E(Yam � Ya�m � Yam� + Ya�m� jc)P (Ma� = mjc)

+
X

m
E(Yam � Ya�mjc)fP (Ma = mjc)� P (Ma� = mjc)g+ E(Ya�Ma � Ya�Ma� jc):

and dividing by E(Ya� jc) gives:

RRTEc � 1 = �
�
RRCDEc (m�)� 1

�
+ �RR

INTref
c (m�) + �RRINTmedc + (RRPIEc � 1)
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where RRTEc = E(Yajc)
E(Ya� jc)

, � = E(Ya�m� jc)
E(Ya� jc)

, and

RRCDEc (m�) =
E(Yam� jc)
E(Ya�m� jc)

RR
INTref
c (m�) =

X
m
RERI(a�;m�)P (Ma� = mjc)

RRINTmedc =
X

m
RERI(a�;m�)fP (Ma = mjc)� P (Ma� = mjc)g

RRPIEc =
E(Ya�Ma jc)
E(Ya�Ma� jc)

with RERI(a�;m�) =
�

E(Yamjc)
E(Ya�m� jc)

� E(Ya�mjc)
E(Ya�m� jc)

� E(Yam� jc)
E(Ya�m� jc)

+ 1
�
. Under assumptions (i)-(iii) we

also have E(Yajc) = E(Y ja; c), E(Yamjc) =
X

m
E[Y ja;m; c]P (mja; c) and thus and P (Ma =

mjc) = P (M = mja; c) and thus the right hand side of the equalities above would be identi�ed
from the data. VanderWeele34 also showed that �RRINTmedc = �

X
m
RERI(a�;m�)fP (Ma =

mjc) � P (Ma� = mjc)g =
�

E[YaMa jc]
E[Ya�Ma� jc]

� E[YaMa� jc]
E[Ya�Ma� jc]

� E[Ya�Ma jc]
E[Ya�Ma� jc]

+ 1
�
and called this latter term

RERImediated.
Note also under assumption (iv), (RRPIEc � 1) can be rewritten as

(RRPIEc � 1) =

�
E(Ya�Ma jc)
E(Ya� jc)

� E(Ya
� jc)

E(Ya� jc)

�
=

�

E(Ya�m� jc)fE(Ya
�Ma jc)� E(Ya� jc)g

=
�

E(Ya�m� jc)
X

m
fE[Ya�mjc]� E[Ya�m� jc]gfP (Ma = mjc)� P (Ma� = mjc)g

= �
X

m

�
E(Ya�mjc)
E(Ya�m� jc) � 1

�
fP (Ma = mjc)� P (Ma� = mjc)g

= �
X

m

E(Ya�mjc)
E(Ya�m� jc)fP (Ma = mjc)� P (Ma� = mjc)g

The proportion attributable to each of the four components is then obtained by simply dividing
each of the four components in the display equation above by their sum as in Table 2. A similar
decomposition could likewise be carried out on an additive scale using hazard ratios.

By similar arguments to those above but applied to Propositions 2 and 4, if assumption (iv) did
not hold but assumptions (i)-(iii) all did hold, we would have that (RRTEc � 1) decomposed into
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the product of � and the sum of:

RRCDEc (m�)� 1 = E[Y ja;m�; c]

E[Y ja�;m�; c]
� 1Z

RERI(a�;m�)dP (Ma� jc)

=

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)Z

RERI(a�;m�)fdP (Majc)� dP (Ma� jc)

=

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)gZ
E[Ya�mjc]
E[Ya�m� jc]fdP (Majc)� dP (Ma� jc)g =

Z
E[Y ja�;m; c]
E[Y ja�;m�; c]

fdP (mja; c)� dP (mja�; c)g:

2.2 Binary Outcome, Continuous Mediator

Suppose Y were binary and M continuous, that assumptions (i)-(iv) held, that the outcome is
rare, and that the following regressions were correctly speci�ed:

logit(P (Y = 1ja;m; c)) = �0 + �1a+ �2m+ �3am+ �
0
4c

E[M ja; c] = �0 + �1a+ �
0
2c:

with M normally distribution conditional on (A;C) with variance �2. Suppose that the outcome
is rare so that odds ratios approximate risk ratios. VanderWeele and Vansteelandt5 derived ex-
pressions for the controlled direct e¤ect, the pure indirect e¤ect, and the pure direct e¤ect, all on
the risk ratio scale. The total e¤ect, controlled direct e¤ect, and pure indirect e¤ect were given
approximately by:

RRTEc � exp[�1 + �2�1 + �3(�0 + �1a
� + �1a+ �

0
2c+ �2�

2)g(a� a�) + 1
2
�23�

2(a2 � a�2)]

RRCDEc (m�) � exp[(�1 + �3m
�)(a� a�)]

RRPIEc � exp[(�2�1 + �3�1a
�)(a� a�)]

where the approximations (here and below) hold to the extent that the outcome is rare. We have
that � = E(Ya�m� jc)

E(Ya� jc)
is given by:

� =
E(Ya�m� jc)
E(Ya� jc)

=
E[Y ja�;m�; c]Z

E[Y ja�;m; c]dP (mja�; c)

� exp(�0 + �1a
� + �2m� + �3a�m� + �04c)

expf�0 + �1a� + �04cg
Z
expf(�2 + �3a�)mgdP (mja�; c)

=
exp(�2m

� + �3a�m�)

expf(�2 + �3a�)(�0 + �1a� + �02c) + 1
2(�2 + �3a

�)2�2g

= e�2m
�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2 :
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We have
Z

E[Y ja;m;c]
E[Y ja�;m�;c]dP (mja

y; c)

�
Z
exp(�1a+ �2m+ �3am� �1a� � �2m� � �3a�m�)dP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g
Z
expf(�2 + �3a)mgdP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g expf(�2 + �3a)(�0 + �1ay + �02c) +
1

2
(�2 + �3a)

2�2g

= e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a

y+�02c)+
1
2
(�2+�3a)2�2 :

The reference interaction is thus given by:

RR
INTref
c (m�) =

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)

= e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a

�+�02c)+
1
2
(�2+�3a)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a
�+�02c)+

1
2
(�2+�3a�)2�2 � e(�1+�3m�)(a�a�) + 1

and the component due to the reference interaction �RR
INTref
c (m�) by:

ef�1+�3(�0+�1a
�+�02c+�2�

2)g(a�a�)+ 1
2
�23�

2(a2�a�2) � 1
�e�1(a�a�)+�2m�+�3am��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2

+e�2m
�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2

The mediated interaction is given by:

RRINTmedc =

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)g

� e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a+�

0
2c)+

1
2
(�2+�3a)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a+�
0
2c)+

1
2
(�2+�3a�)2�2

�e�1(a�a�)��2m���3a�m�+(�2+�3a)(�0+�1a
�+�02c)+

1
2
(�2+�3a)2�2

+e��2m
���3a�m�+(�2+�3a�)(�0+�1a

�+�02c)+
1
2
(�2+�3a�)2�2 :

and the component due to the mediated interaction �RRINTmedc by:

ef�1+�2�1+�3(�0+�1a
�+�1a+�

0
2c+�2�

2)g(a�a�)+ 1
2
�23�

2(a2�a�2)

�e(�2�1+�3�1a�)(a�a�) � ef�1+�3(�0+�1a�+�02c+�2�2)g(a�a�)+
1
2
�23�

2(a2�a�2) + 1:

We also have that the component due to controlled direct e¤ect is:

�
�
RRCDEc (m�)� 1

�
= �[e(�1+�3m

�)(a�a�) � 1]

= e�1(a�a
�)+�2m�+�3am��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2

�e�2m�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1
2
(�2+�3a�)2�2
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and the component due to the pure indirect e¤ect is:

(RRPIEc � 1) = �

Z
m

E(Ya�mjc)
E(Ya�m� jc)fdP (mja; c)� dP (mja

�; c)g

= �fe��2m���3a�m�+(�2+�3a�)(�0+�1a+�
0
2c)+

1
2
(�2+�3a�)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a
�+�02c)+

1
2
(�2+�3a�)2�2g

= e(�2�1+�3�1a
�)(a�a�) � 1:

Standard errors for these various expressions could be derived using the delta method along the
lines of the derivations in the Online Appendix of VanderWeele and Vansteelandt5 or by using
bootstrapping.

2.3 Binary Outcome, Binary Mediator

Suppose both Y and M were binary, that assumptions (i)-(iv) held, that the outcome was rare
and that the following regressions were correctly speci�ed:

logitfP (Y = 1ja;m; c)g = �0 + �1a+ �2m+ �3am+ �
0
4c

logitfP (M = 1ja; c)g = �0 + �1a+ �
0
2c:

Valeri and VanderWeele16 show that the average total e¤ect, controlled direct e¤ect and the average
pure indirect e¤ect conditional on C = c are given approximately by:

RRTEc � exp(�1a)f1 + exp(�0 + �1a� + �
0
2c)gf1 + exp(�0 + �1a+ �

0
2c+ �2 + �3a)g

exp(�1a�)f1 + exp(�0 + �1a+ �
0
2c)gf1 + exp(�0 + �1a� + �

0
2c+ �2 + �3a

�)g
RRCDEc (m�) � expf(�1 + �3m)(a� a�)g

RRPIEc � f1 + exp(�0 + �1a� + �02c)gf1 + exp(�0 + �1a+ �02c+ �2 + �3a�)g
f1 + exp(�0 + �1a+ �02c)gf1 + exp(�0 + �1a� + �02c+ �2 + �3a�)g

where the approximations (here and below) hold to the extent that the outcome is rare. We have
that � = E(Ya�m� jc)

E(Ya� jc)
is given by:

� =
E(Ya�m� jc)
E(Ya� jc)

=
E[Y ja�;m�; c]Z

E[Y ja�;m; c]dP (mja�; c)

� exp(�0 + �1a
� + �2m� + �3a�m� + �04c)

expf�0 + �1a� + �04cg
Z
expf(�2 + �3a�)mgdP (mja�; c)

=
exp(�2m

� + �3a�m�)

1+exp(�0+�1a
�+�

0
2c+�2+�3a

�)

1+exp(�0+�1a
�+�

0
2c)

=
e�2m

�+�3a�m�f1 + e�0+�1a�+�
0
2cg

1 + e�0+�1a
�+�

0
2c+�2+�3a

�
:

Hosted by The Berkeley Electronic Press



We also have
Z

E[Y ja;m;c]
E[Y ja�;m�;c]dP (mja

y; c)

�
Z
exp(�1a+ �2m+ �3am� �1a� � �2m� � �3a�m�)dP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g
Z
expf(�2 + �3a)mgdP (mjay; c)

=
e�1(a�a

�)��2m���3a�m�

1 + e�0+�1a
y+�

0
2c

(1 + e�0+�1a
y+�

0
2c+�2+�3a)

e�1(a�a
�)��2m���3a�m�

(1 + e�0+�1a
y+�

0
2c+�2+�3a)

1 + e�0+�1a
y+�

0
2c

:

The reference interaction is thus given by: RR
INTref
c (m�) =Z

f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)

=
e�1(a�a

�)��2m���3a�m�
(1 + e�0+�1a

�+�
0
2c+�2+�3a)

1 + e�0+�1a
�+�

0
2c

� e
��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�
)

1 + e�0+�1a
�+�

0
2c

�e(�1+�3m�)(a�a�) + 1

and the component due to the reference interaction �RR
INTref
c (m�) by:

=
e�1(a�a

�)(1 + e�0+�1a
�+�

0
2c+�2+�3a)

1 + e�0+�1a
�+�

0
2c+�2+�3a

�
� 1

�e
�1(a�a�)+�2m�+�3am�

(1 + e�0+�1a
�+�

0
2c)

1 + e�0+�1a
�+�

0
2c+�2+�3a

�
e(�1+�3m

�)(a�a�) +
e�2m

�+�3a�m�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a
�+�

0
2c+�2+�3a

�

The mediated interaction is given by: RRINTmedc =Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)g

=
e�1(a�a

�)��2m���3a�m�
(1 + e�0+�1a+�

0
2c+�2+�3a)

1 + e�0+�1a+�
0
2c

� e
��2m���3a�m�

(1 + e�0+�1a+�
0
2c+�2+�3a

�
)

1 + e�0+�1a+�
0
2c

�e
�1(a�a�)��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a)

1 + e�0+�1a
�+�

0
2c

+
e��2m

���3a�m�
(1 + e�0+�1a

�+�
0
2c+�2+�3a

�
)

1 + e�0+�1a
�+�

0
2c

and the component due to the mediated interaction �RRINTmedc by:

=
e�1(a�a

�)(1 + e�0+�1a+�
0
2c+�2+�3a)(1 + e�0+�1a

�+�
0
2c)

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�)(1 + e�0+�1a+�
0
2c)

� (1 + e
�0+�1a+�

0
2c+�2+�3a

�
)(1 + e�0+�1a

�+�
0
2c)

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�)(1 + e�0+�1a+�
0
2c)

�e
�1(a�a�)(1 + e�0+�1a

�+�
0
2c+�2+�3a)

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�
)

+ 1
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We also have that the component due to controlled direct e¤ect is:

�
�
RRCDEc (m�)� 1

�
= �[e(�1+�3m

�)(a�a�) � 1]

=
e�1(a�a

�)+�2m�+�3am�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a
�+�

0
2c+�2+�3a

�
� e

�2m�+�3a�m�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a
�+�

0
2c+�2+�3a

�

and the component due to the pure indirect e¤ect is:

�

Z
m

E(Ya�mjc)
E(Ya�m� jc)fdP (mja; c)� dP (mja

�; c)g

= �

 
e��2m

���3a�m�
(1 + e�0+�1a+�

0
2c+�2+�3a

�
)

1 + e�0+�1a+�
0
2c

� e
��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�
)

1 + e�0+�1a
�+�

0
2c

!

=
f1 + exp(�0 + �1a� + �02c)gf1 + exp(�0 + �1a+ �02c+ �2 + �3a�)g
f1 + exp(�0 + �1a+ �02c)gf1 + exp(�0 + �1a� + �02c+ �2 + �3a�)g

� 1:

Standard errors for these expressions could be derived using the delta method along the lines of
the derivations in the Online Appendix of Valeri and VanderWeele16 or by using bootstrapping.

3. SAS Code for the 4-Way Decomposition

3.1. Continuous Outcome, Continuous Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a
continuous outcome Y with continuous mediator M under the regression models in Section 1.1,
one can use the code below. Suppose we have a dataset named �mydata�with outcome variable �y�,
exposure variables �a�and mediator �m�and three covariates �c1�, �c2�and �c3�. If there were more
or fewer covariates the user would have to modify the second, third, fourth, �fth and tenth lines of
the code below to include these covariates.

The user must input in the third line of code the two levels of A (�a1=�and �a0=�) that are
being compared (these are exposure levels 1 and 0 in the code below but this could be modi�ed for
an ordinal or continuous exposure) and the level of M = m� (�mstar=�) at which to compute the
controlled direct e¤ect and the remainder of the decomposition (it is assumed in the code below
that the mediator is �xed to the value M = m� = 0 but this could be modi�ed). The user must
also input in the third line of the code the value of the covariates C at which the e¤ects are to
be calculated (�cc1=�, �cc2�and �cc3=�). Alternatively the mean value of these covariates in the
sample could be inputted on this line as a summary measure. The code below on line 3 speci�es
these as 10, 10, and 20 which should be altered according to the covariate values in the application
of interest.

The output will include estimates and con�dence intervals for the total e¤ect as well as the
four components of the total e¤ect, i.e. the controlled direct e¤ect, the reference interaction,
the mediated interaction, and the pure indirect e¤ect; the output will also include estimates and
con�dence intervals for the proportion of the total e¤ect due to each of the four components; and
estimates and con�dence intervals for the overall proportion mediated, the overall proportion due
to interaction, and the overall proportion of the e¤ect that would be eliminated if the mediator M
were �xed to the value m�, speci�ed by the user.

proc nlmixed data=mydata;
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parms t0=0 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0 ss_m=1 ss_y=1;
a1=1; a0=0; mstar=0; cc1=10; cc2=10; cc3=20;
mu_y=t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3;
mu_m =b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3;
ll_y= -((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
cde = (t1 + t3*mstar)*(a1-a0);
intref = t3*(b0 + b1*a0 + bcc - mstar)*(a1-a0);
intmed = t3*b1*(a1-a0)*(a1-a0);
pie = (t2*b1 + t3*b1*a0)*(a1-a0);
te = cde + intref + intmed + pie;
estimate �Total Effect� te;
estimate �CDE� cde;
estimate �INTref� intref;
estimate �INTmed� intmed;
estimate �PIE� pie;
estimate �Proportion CDE� cde/te;
estimate �Proportion INTref� intref/te;
estimate �Proportion INTmed� intmed/te;
estimate �Proportion PIE� pie/te;
estimate �Overall Proportion Mediated� (pie+intmed)/te;
estimate �Overall Proportion Attributable to Interaction� (intref+intmed)/te;
estimate �Overall Proportion Eliminated� (intref+intmed+pie)/te;
run;

3.2. Continuous Outcome, Binary Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a
continuous outcome Y with binary mediatorM under the regression models in Section 1.2, one can
use the code below. The explanation of the code follows that presented in Section 3.1 above.

proc nlmixed data=mydata;
parms t0=0 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=1 b1=0 bc1=0 bc2=0 bc3=0 ss_y=1;
a1=1; a0=0; mstar=0; cc1=10; cc2=10; cc3=20;
mu_y=t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3;
p_m=(1+exp(-(b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= -((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
ll_m= m*log (p_m)+(1-m)*log(1-p_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
cde = (t1 + t3*mstar)*(a1-a0);
intref = t3*(a1-a0)*(exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)) - mstar);
intmed = t3*(a1-a0)*(exp(b0+b1*a1+bcc)/(1+exp(b0+b1*a1+bcc))-exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)));
pie = (t2 + t3*a0)*(exp(b0+b1*a1+bcc)/(1+exp(b0+b1*a1+bcc))-exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)));
te = cde + intref + intmed + pie;
estimate �Total Effect� te;
estimate �CDE� cde;
estimate �INTref� intref;
estimate �INTmed� intmed;
estimate �PIE� pie;
estimate �Proportion CDE� cde/te;
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estimate �Proportion INTref� intref/te;
estimate �Proportion INTmed� intmed/te;
estimate �Proportion PIE� pie/te;
estimate �Overall Proportion Mediated� (pie+intmed)/te;
estimate �Overall Proportion Attributable to Interaction� (intref+intmed)/te;
estimate �Overall Proportion Eliminated� (intref+intmed+pie)/te;
run;

3.3. Binary Outcome, Continuous Mediator

To estimate the components of the 4-way decomposition on the ratio scale for the e¤ect of
exposure A on a binary outcome Y with continuous mediator M under the regression models in
Section 2.2, one can use the code below. Suppose we have a dataset named �mydata�with outcome
variable �y�, exposure variables �a�and mediator �m�and three covariates �c1�, �c2�and �c3�. If there
were more or fewer covariates the user would have to modify the second, third, fourth, �fth and
tenth lines of the code below to include these covariates.

The user must input in the third line of code the two levels of A (�a1=�and �a0=�) that are
being compared (these are exposure levels 1 and 0 in the code below but this could be modi�ed for
an ordinal or continuous exposure) and the level of M = m� (�mstar=�) at which to compute the
controlled direct e¤ect and the remainder of the decomposition (it is assumed in the code below
that the mediator is �xed to the value M = m� = 0 but this could be modi�ed). The user must
also input in the third line of the code the value of the covariates C at which the e¤ects are to be
calculated (�cc1=�, �cc2�and �cc3=�). Alternatively the mean value of these covariates in the sample
could be inputted on this line as a summary measure. The code below on line 3 speci�es these as
58.57, 1.44, and 0.34 which should be altered according to the covariate values in the application
of interest.

The output will include estimates and con�dence intervals for the total e¤ect risk ratio, the
excess relative risk (i.e. the relative risk minus 1) as well as the four components of the excess
relative risk, i.e. the excess relative risks due to the controlled direct e¤ect, to the reference
interaction, to the mediated interaction, and to the pure indirect e¤ect; the output will also include
estimates and con�dence intervals for the proportion of the excess relative risk due to each of
the four components; and estimates and con�dence intervals for the overall proportion mediated,
the overall proportion due to interaction, and the overall proportion of the e¤ect that would be
eliminated if the mediator M were �xed to the value m�, speci�ed by the user.

proc nlmixed data=mydata;
parms t0=1 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0 ss_m=1;
a1=1; a0=0; mstar=0; cc1=58.57; cc2=1.44; cc3=0.34;
p_y=(1+exp(-(t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3)))**-1;
mu_m =b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3;
ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m);
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
CDE_comp = exp( t1*(a1-a0)+t2*mstar + t3*a1*mstar - (t2+t3*a0)*(b0+b1*a0+bcc)

- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m )
- exp(t2*mstar + t3*a0*mstar - (t2+t3*a0)*(b0+b1*a0+bcc) - (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m );

INTref_comp = exp((t1+t3*(b0+b1*a0+bcc+t2*ss_m))*(a1-a0) + (1/2)*t3*t3*ss_m*(a1*a1-a0*a0)) - (1.0)
-exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar-(t2+t3*a0)*(b0+b1*a0+bcc)- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m)
+exp(t2*mstar+t3*a0*mstar-(t2+t3*a0)*(b0+b1*a0+bcc)- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m);
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INTmed_comp = exp( (t1+t2*b1+t3*(b0+b1*a0+b1*a1+bcc+t2*ss_m))*(a1-a0)
+ (1/2)*t3*t3*ss_m*(a1*a1-a0*a0) )
-exp( (t2*b1+t3*b1*a0)*(a1-a0) ) -exp( (t1+t3*(b0+b1*a0+bcc+t2*ss_m ))*(a1-a0)
+ (1/2)*t3*t3*ss_m*(a1*a1-a0*a0) ) + (1);

PIE_comp = exp( (t2*b1+t3*b1*a0)*(a1-a0) ) - (1);
terr=cde_comp+intref_comp+intmed_comp+pie_comp;
total = exp((t1 + t3*(b0+b1*a0+bcc + t2*ss_m))*(a1-a0)+(1/2)*t3*t3*ss_m*(a1*a1-a0*a0))

*exp((t2*b1+t3*b1*a1)*(a1-a0));
estimate �Total Effect Risk Ratio� total;
estimate �Total Excess Relative Risk� total-1;
estimate �Excess Relative Risk due to CDE� cde_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTref� intref_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTmed� intmed_comp*(total-1)/terr;
estimate �Excess Relative Risk due to PIE� pie_comp*(total-1)/terr;
estimate �Proportion CDE� cde_comp/terr;
estimate �Proportion INTref� intref_comp/terr;
estimate �Proportion INTmed� intmed_comp/terr;
estimate �Proportion PIE� pie_comp/terr;
estimate �Overall Proportion Mediated� (pie_comp+intmed_comp)/terr;
estimate �Overall Proportion Attributable to Interaction� (intref_comp+intmed_comp)/terr;
estimate �Overall Proportion Eliminated� (intref_comp+intmed_comp+pie_comp)/terr;
run;

The code given above is applicable to cohort data. For case-control studies in which sampling
is done on the outcome Y , if the outcome is rare, then the code above can be adapted by �tting
the mediator regression only among the controls. This can be done by replacing the sixth line of
code by: ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m)*(1-y);

3.4. Binary Outcome, Binary Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a binary
outcome Y with binary mediator M under the regression models in Section 2.3, one can use the
code below. The explanation of the code follows that presented in Section 3.3 above.

proc nlmixed data=mydata;
parms t0=1 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0;
a1=1; a0=0; mstar=0; cc1=58.57; cc2=1.44; cc3=0.34;
p_y=(1+exp(-(t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3)))**-1;
p_m =(1+exp(-(b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_m= m*log (p_m)+(1-m)*log(1-p_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
CDE_comp = exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0))

- exp(t2*mstar+t3*a0*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0));
INTref_comp = exp(t1*(a1-a0))*(1+exp(b0+b1*a0+bcc+t2+t3*a1))/(1+exp(b0+b1*a0+bcc+t2+t3*a0)) - (1)

-exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar)*(1+exp(b0+b1*a0+bcc))*exp((t1+t3*mstar)*(a1-a0))
/(1+exp(b0+b1*a0+bcc+t2+t3*a0))
+ exp(t2*mstar+t3*a0*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0));

INTmed_comp = exp(t1*(a1-a0))*(1+exp(b0+b1*a1+bcc+t2+t3*a1))*(1+exp(b0+b1*a0+bcc))
/( (1+exp(b0+b1*a0+bcc+t2+t3*a0))*(1+exp(b0+b1*a1+bcc)) )
- (1+exp(b0+b1*a1+bcc+t2+t3*a0))*(1+exp(b0+b1*a0+bcc)) / ( (1+exp(b0+b1*a0+bcc+t2+t3*a0))
*(1+exp(b0+b1*a1+bcc)) )
- exp(t1*(a1-a0))*(1+exp(b0+b1*a0+bcc+t2+t3*a1))/(1+exp(b0+b1*a0+bcc+t2+t3*a0)) + (1);
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PIE_comp = (1+exp(b0+b1*a0+bcc))*(1+exp(b0+b1*a1+bcc+t2+t3*a0)) / ( (1 + exp(b0+b1*a1+bcc))
*(1+exp(b0+b1*a0+bcc+t2+t3*a0)) ) -(1);

terr=cde_comp+intref_comp+intmed_comp+pie_comp;
total = exp(t1*a1)*(1+exp(b0+b1*a0+bcc))*(1+exp(b0+b1*a1+bcc+t2+t3*a1))

/ ( exp(t1*a0)*(1 + exp(b0+b1*a1+bcc))*(1+exp(b0+b1*a0+bcc+t2+t3*a0)) );
estimate �Total Effect Risk Ratio� total;
estimate �Total Excess Relative Risk� total-1;
estimate �Excess Relative Risk due to CDE� cde_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTref� intref_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTmed� intmed_comp*(total-1)/terr;
estimate �Excess Relative Risk due to PIE� pie_comp*(total-1)/terr;
estimate �Proportion CDE� cde_comp/terr;
estimate �Proportion INTref� intref_comp/terr;
estimate �Proportion INTmed� intmed_comp/terr;
estimate �Proportion PIE� pie_comp/terr;
estimate �Overall Proportion Mediated� (pie_comp+intmed_comp)/terr;
estimate �Overall Proportion Attributable to Interaction� (intref_comp+intmed_comp)/terr;
estimate �Overall Proportion Eliminated� (intref_comp+intmed_comp+pie_comp)/terr;
run;

The code given above is applicable to cohort data. For case-control studies in which sampling
is done on the outcome Y , if the outcome is rare, then the code above can be adapted by �tting
the mediator regression only among the controls. This can be done by replacing the sixth line of
code by: ll_m= m*log (p_m)+(1-m)*log(1-p_m)*(1-y);

Decomposition in the Presence of an Exposure-Induced Mediator-Outcome Confounder

Consider a setting in which there is a variable L that is a¤ected by exposure A and in turn a¤ects
both M and Y as in Figure 4. Although several of the components of the four-way decomposition
are not identi�ed in this setting, alternative e¤ects which randomly set M to a value chosen from
the distribution of a particular exposure level can be identi�ed. The discussion here will give
a randomized interventional interpretation to Proposition 4 in the text and extend that result to
settings such as Figure 4 in which there is a mediator-outcome confounder a¤ected by the exposure.

Let Gajc denote a random draw from the distribution of the mediator amongst those with
exposure status a conditional on C = c. Let a and a� be two values of the exposure e.g. for binary
exposure we may have a = 1 and a� = 0. As in VanderWeele34, the e¤ect E(YaGajc jc)�E(YaGa�jc jc)
is then the e¤ect on the outcome of randomly assigning an individual who is given the exposure to a
value of the mediator from the distribution of the mediator amongst those given exposure versus no
exposure, conditional on covariates; this is a randomized interventional analogue of the pure indirect
e¤ect. Next consider the e¤ect E(YaGa�jc jc)�E(Ya�Ga�jc jc); this is a direct e¤ect comparing exposure
versus no exposure with the mediator in both cases randomly drawn from the distribution of the
population when given the absence of exposure, conditional on covariates; this is a randomized
interventional analogue of the pure direct e¤ect. Finally, the e¤ect E(YaGajc jc) � E(Ya�Ga�jc jc)
compares the expected outcome when having the exposure with the mediator randomly drawn
from the distribution of the population when given the exposure, conditional on covariates to the
expected outcome when not having the exposure with the mediator randomly drawn from the
distribution of the population when not exposed, conditional on covariates. With e¤ects thus
de�ned we have the decomposition: E(YaGajc jc) � E(Ya�Ga�jc jc) = fE(YaGajc jc) � E(YaGa�jc jc)g +
fE(YaGa�jc jc)�E(Ya�Ga�jc jc)g so that the total e¤ect decomposes into the sum of the e¤ect through
the mediator and the direct e¤ect. These e¤ects arise from randomly choosing for each individual
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a value of the mediator from the distribution of the mediator amongst all of those with a particular
exposure.

We might further decompose this as follows:

E(YaGajc jc)� E(Ya�Ga�jc jc) = fE(YaGa�jc jc)� E(Ya�Ga�jc jc)g+ fE(Ya�Gajc jc)� E(Ya�Ga�jc jc)g
+[fE(YaGajc jc)� E(Ya�Gajc jc)g � fE(YaGa�jc jc)� E(Ya�Ga�jc jc)g]

where the �rst term in the decomposition is the randomized intervention analogue of the pure
direct e¤ect, the second is the randomized intervention analogue of the pure indirect e¤ect, and
the third is the di¤erence between the randomized intervention analogue of the total direct e¤ect
and the pure direct e¤ect. As shown in VanderWeele34 this third term has the interpretation of an
interaction. We have that:

fE(YaGajc jc)� E(Ya�Gajc jc)g � fE(YaGa�jc jc)� E(Ya�Ga�jc jc)g

=
X

m
E[Yam � Ya�mjGajc = m; c]P (Gajc = mjc)�

X
m
E[Yam � Ya�mjGa�jc = m; c]P (Ga�jc = mjc)

=
X

m
E[Yam � Ya�mjc]P (Ma = mjc)�

X
m
E[Yam � Ya�mjc]P (Ma� = mjc)

=
X

m
E[Yam � Ya�m � Yam� + Ya�m� jc]fP (Ma = mjc)� P (Ma� = mjc)g

wherem� is an arbitrary value ofM . We have the three-way decomposition given in VanderWeele.34

Moreover, for the analogue of the pure direct e¤ect we have: fE(YaGa�jc jc)� E(Ya�Ga�jc jc)g

= E(Yam� � Ya�m� jc) + fE(YaGa�jc jc)� E(Ya�Ga�jc jc)� E(Yam� � Ya�m� jc)g

= E(Yam� � Ya�m� jc) +
X

m
E[Yam � Ya�mjGa�jc = m; c]P (Ga�jc = mjc)� E(Yam� � Ya�m� jc)

= E(Yam� � Ya�m� jc) +
X

m
E[Yam � Ya�m � Yam� + Ya�m� jc]P (Ma� = mjc)

i.e. the analogue of the pure direct e¤ect is the sum of a controlled direct e¤ect and the reference
interaction term,

X
m
E[Yam�Ya�m�Yam� +Ya�m� jc]P (Ma� = mjc). We thus have a randomized

interventional analogue of the four way decomposition.
To identify these e¤ects the following conditions su¢ ce: Assumptions (i) Yam ?? AjC and (iii)

Ma ?? AjC above, that conditional on C there is no unmeasured exposure-outcome or exposure-
mediator confounding, along with an assumption (ii*) that Yam ?? M jfA;C;Lg, i.e. that con-
ditional on (A;C;L), there is no unmeasured confounding of the mediator-outcome relationship.
These three assumptions would hold in the causal diagram in Figure 4. Under the three assump-
tions, each of these component are identi�ed from data and it follows from the g-formula39 that:

E(Yam� � Ya�m� jc) =
X

l
fE[Y ja; l;m�; c]P (lja; c)� E[Y ja�; l;m�; c]P (lja�; c)g

E(Ya�Gajc jc)� E(Ya�Ga�jc jc) =
X

l;m
E[Y ja�; l;m; c]P (lja�; c)fP (mja; c)� P (mja�; c)g

X
m
E[Yam � Ya�m � Yam� + Ya�m� jc]fP (Ma = mjc)� P (Ma� = mjc)g

=
X

l;m
fE[Y ja; l;m; c]P (lja; c)� E[Y ja�; l;m; c]P (lja�; c)gfP (mja; c)� P (mja�; c)g

http://biostats.bepress.com/harvardbiostat/paper170



and X
m
E[Yam � Ya�m � Yam� + Ya�m� jc]fP (Ma� = mjc)g

=
X

l;m
fE[Y ja; l;m; c]P (lja; c)� E[Y ja�; l;m; c]P (lja�; c)� E[Y ja; l;m�; c]P (lja; c)

+E[Y ja�; l;m�; c]P (lja�; c)gP (mja�; c):

Thus a randomized interventional analogue of the four-way decomposition holds and its components
can be identi�ed under assumptions (i), (ii*) and (iii). When Figure 3 is in fact the underlying causal
diagram so the L can be chosen to be empty then assumption (ii*) simply becomes assumption (ii)
in the text. And the identi�cation results here simply reduce to those of Proposition 4 in the text.
As in Proposition 4 in the text, the randomized interventional interpretation does not require the
more controversial cross-world independence assumption, assumption (iv).
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