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Abstract

We describe a methodology for assigning individual estimates of long-term average air pol-
lution concentrations that accounts for a complex spatio-temporal correlation structure and can
accommodate unbalanced observations. This methodology has been developed as part of the
Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), a prospective cohort study
funded by the U.S. EPA to investigate the relationship between chronic exposure to air pollu-
tion and cardiovascular disease. Our hierarchical model decomposes the space-time field into
a “mean” that includes dependence on covariates and spatially varying seasonal and long-term
trends and a “residual” that accounts for spatially correlated deviations from the mean model.
The model accommodates complex spatio-temporal patterns by characterizing the temporal
trend at each location as a linear combination of empirically derived temporal basis functions,
and embedding the spatial fields of coefficients for the basis functions in separate linear regres-
sion models with spatially correlated residuals (universal kriging). This approach allows us to
implement a scalable single-stage estimation procedure that easily accommodates a significant
number of missing observations at some monitoring locations. We apply the model to predict
long-term average concentrations of oxides of nitrogen (NOx) from 2005-2007 in the Los Angeles
area, based on data from 18 EPA Air Quality System regulatory monitors. The cross-validated
R2 is 0.67. The MESA Air study is also collecting additional concentration data as part of
a supplementary monitoring campaign. We describe the sampling plan and demonstrate in a
simulation study that the additional data will contribute to improved predictions of long-term
average concentrations.

Key words: Air Pollution, Exposure Assessment, Hierarchical Modeling, Spatio-Temporal Mod-
eling, Maximum Likelihood, Universal Kriging

1 Introduction

There is a growing understanding in the literature that exposure to air pollution is associated with

adverse health outcomes. The early epidemiological evidence was based on assigning exposures

using area-wide monitored concentrations in different geographic regions (Dockery et al. 1993; Pope

et al. 2002) or at different times within the same region (Samet et al. 2000). A weakness of area-wide

monitoring approaches is that they fail to take advantage of variation between individuals living in

the same geographic region. In addition, depending on the study design, there is the potential for

unmeasured confounding by region or by time.

More recent cohort studies have assigned individual concentrations based on estimates of intra-

urban variations in ambient concentrations. Prediction approaches have included assigning the

value measured at the nearest monitor to the participant’s residential location (Miller et al. 2007;

Basu et al. 2000; Ritz et al. 2006); using “land use regression” estimates based on Geographic
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Information System (GIS) covariates (Hoek et al. 2008; Brauer et al. 2003; Jerrett et al. 2005a);

and interpolating concentrations by a geostatistical method such as kriging (Jerrett et al. 2005b;

Künzli et al. 2005) or semi-parametric smoothing (Künzli et al. 2005). These studies and others

like them have used relatively simple spatial statistical techniques for exposure assignment based

on monitoring data from existing regulatory networks. Our objective is a flexible and practical

methodology that accounts for the complex structure of the ambient spatio-temporal concentration

field and can take full advantage of regulatory and other monitoring data to more accurately predict

concentrations for individual cohort members.

The work described in this paper is motivated by the Multi-Ethnic Study of Atherosclerosis

and Air Pollution (MESA Air). MESA Air is a cohort study funded by the U.S. Environmental

Protection Agency (EPA) that emphasizes accurate prediction of individual exposures in order to

accomplish its primary aim of assessing the relationship between chronic exposure to air pollution

and sub-clinical cardiovascular disease. The MESA Air cohort is comprised of 6226 male and

female subjects in six major U.S. metropolitan areas (Los Angeles, CA; New York, NY; Chicago,

IL; Minneapolis-St. Paul, MN; Winston-Salem, NC; and Baltimore, MD). Although it is possible to

estimate health effects based on variations in concentrations between these regions, a major thrust

in MESA Air is to develop accurate exposure predictions for individuals that also incorporate intra-

urban difference in ambient concentrations in order to reduce exposure misclassification, increase

the study power, and obviate possible confounding by region. The primary MESA Air hypotheses

relate to exposure to particulate matter of ambient origin with aerodynamic diameter less than

2.5 µm (PM2.5). Gaseous oxides of nitrogen (NOx) demonstrate more intra-urban heterogeneity

and are also considered as a marker for traffic-related air pollution. In this paper we present

examples of modeling outdoor NOx concentrations in the Los Angeles area, but the statistical

methodology is equally applicable to other regions and to PM2.5 and will ultimately be applied
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in all of these settings. We also note that final exposure estimates in MESA Air will integrate

predictions of outdoor concentrations with additional subject-level data, including time-activity

patterns, home infiltration characteristics, address history, and employment address.

A primary source of concentration data for estimating exposures is the EPA’s regulatory Air

Quality System (AQS) repository of ambient monitoring data. The AQS network includes a number

of fixed site monitors in each region, each of which measures ambient air pollution levels on a regular

basis, typically hourly for NOx and less frequently for PM2.5. Although there are some missing

data and variations between sites, most AQS sites provide nearly complete NOx concentration time

series over several years at their spatial locations. MESA Air is also engaged in a supplementary

measurement campaign to provide additional concentration data. The objective of the MESA Air

monitoring is to more completely sample a design space that emphasizes traffic-related pollution

and to capture data at actual subject home locations. For logistical reasons, the supplementary

monitoring data are sampled as two-week averages based on an unbalanced design that results in

significant amounts of missing data at some measurement locations (Cohen et al. 2008).

Although the primary interest in MESA Air and similar cohort studies is in predicting spa-

tial variation of long-term average concentrations to estimate exposures, our statistical modeling

approach needs to account for spatio-temporal variability and correlation structures in the data.

For an overview of techniques for modeling correlated spatio-temporal data, see Banerjee et al.

(2004). A recent paper by Fanshawe et al. (2008) emphasizes the role of carefully chosen covari-

ates in obviating the need to accommodate spatio-temporal correlation in the residuals, but the

model in that paper assumes a uniform time trend across locations. Paciorek et al. (2008) and

Sahu et al. (2006) model particulate matter using techniques that allow for more complex spatio-

temporal interactions, however their estimation and prediction procedures are applicable only with

relatively balanced monitoring data. Smith et al. (2003) uses an expectation-maximization (EM)
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algorithm to allow for arbitrary missing data patterns, but their model does not accommodate

complex spatio-temporal interactions. We describe a new modeling and prediction procedure that

includes sufficiently complex spatio-temporal interactions to accurately account for variation in

seasonal patterns at different locations and that naturally allows for significant amounts of missing

data.

In Section 2, we describe the available AQS monitoring data as well as the sampling pattern for

the MESA Air supplementary monitoring campaign. We also describe the geographic covariates

that are used in this paper. In Section 3, we specify our hierarchical spatio-temporal model and

discuss techniques for efficient estimation. In Section 4, we apply the model to the AQS data from

the Los Angeles region and assess the quality of predictions by cross-validation. In Section 5, we

conduct a simulation study to assess the added benefit of including data from the supplementary

MESA Air monitoring campaign. (The MESA Air supplementary monitoring campaign and quality

control process are ongoing, so these concentration measurements are not included in the present

paper.) We conclude in Section 6 with a discussion.

2 Description of Data

2.1 AQS Data

The EPA manages the national AQS network of regulatory monitors. Many AQS sites report

NOx concentrations on an ongoing basis, most typically as hourly averages. For this study we are

including data from 18 AQS monitors in the Los Angeles region that cover most of the area in

which MESA Air cohort members reside. The monitor locations are shown on the map in Figure 1.

Because the MESA Air supplementary monitoring is done at the two-week average time scale, we

also aggregate the AQS monitoring data to two-week averages. There is a small amount of variability

in the number of AQS measurements that contribute to each two-week average, which can result

in variable amounts of measurement error. The current model assumes a common variance for the
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measurement error of all AQS and MESA Air two-week average concentrations. Since the data

are skewed, we log-transform two-week average NOx concentrations. Example time series for the

period from July 2005 through December 2007 are shown in Figure 2. The locations of these three

sites in Los Angeles, Long Beach, and Pomona are highlighted on the map in Figure 1. Notice that

the time series have different mean levels as well as different patterns of seasonal variation.

2.2 MESA Air Monitoring

A major focus of the MESA Air project is to provide improved individual exposure prediction,

relative to what has been used in previous air pollution cohort studies. To this end, additional

monitoring data are being collected in each of the study’s six geographic regions. One of the

problems with basing exposure estimates entirely on AQS monitoring data is that the AQS system is

designed for regulatory rather than epidemiology study purposes. It is not intended to resolve small

scale differences in pollution levels for individuals living in the same general area, and there are siting

restrictions that limit the characterization of roadway effects on concentration levels. Therefore,

the aim of the MESA Air supplementary monitoring campaign is to provide increased diversity

in geographic sampling locations and to systematically span a design space based on proximity to

traffic. In addition, the supplementary monitoring campaign involves collecting samples at a subset

of the actual cohort home addresses (approximately one in ten cohort members) in order to more

realistically characterize the pollution to which these cohort members are actually exposed. The

sampling strategy and measurement methodology are described below and in more detail by Cohen

et al. (2008).

The MESA Air supplementary monitoring for NOx in each of the six study areas involves

collecting two-week average concentrations in three sub-campaigns: “fixed sites”, “home outdoor”,

and “community snapshot”. All of the locations at which data had been collected in the Los Angeles

region as of July 13, 2007 are shown on the map in Figure 1. Since the measurement and quality
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control processes are ongoing, measured concentrations are not used in the present paper, rather

our simulation study is based on the actual locations and times of the MESA Air supplementary

monitoring prior to July 13, 2007.

There are a total of seven MESA Air “fixed sites” in the Los Angeles area, one of which is

colocated with an AQS monitor to allow for instrument calibration. These “fixed sites” began

measuring two-week average concentrations in November 2005. There were approximately 40 mea-

surements per site and a total of 264 “fixed site” measurements during this timeframe. A total of

73 “home outdoor” monitoring locations in Los Angeles are also included, and these were sampled

during two-week periods starting in May 2006. The plan calls for each home to be sampled two

times, in different seasons. As of the cutoff date for inclusion in this paper, a total of 103 “home

outdoor” measurements were completed. The final component of supplemental monitoring is the

“community snapshot” sub-campaign that consists of three separate rounds of spatially rich sam-

pling during single two-week periods. In the downtown and coastal Los Angeles area, a total of

433 “community snapshot” measurements were made during three two-week periods in June 2006,

October 2006, and January 2007. The sampling was done at different times in the Riverside area,

with a total of 130 measurements from January 2007, April 2007, and June 2007. In each round

of “community snapshot” monitoring, the majority of monitors were arranged in clusters of six,

with three on either side of a major road at distances of approximately 50, 100, and 300 meters.

In addition, the locations were chosen to characterize different land use categories and to cover the

geographic region as broadly as possible.

2.3 Geographic Information System (GIS)

Part of our strategy for predicting concentrations at locations and times where there are no measure-

ments is to use a regression model with geographic covariates. This approach is often termed “land

use regression” because some of the geographic variables relate to local land utilization (Jerrett
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et al. 2005a). We embed this regression in a hierarchical spatio-temporal model that incorporates

flexible correlation structures. In this paper, we consider a limited set of geographic covariates:

(i) distance to the coast, (ii) distance to a major road (major road defined as census feature class

code A1-A3, with distance truncated at 300 meters), and (iii) average population density in a 2000

meter buffer. These are all derived using the ArcGIS (ESRI, Redlands, CA) software package.

The distance to coast variable is based on the Tele Atlas (Lebanon, NH) Dynamap 2000 County

Boundary defined border of the Pacific Ocean, the population density is calculated from publicly

available U.S. Census Bureau data, and the roadway variable is derived from the proprietary Tele

Atlas Dynamap 2000 roadway network. The choice of these variables is based on preliminary ex-

ploratory analysis of the AQS monitoring data using linear regression (results not shown). In our

final prediction model we plan to incorporate a much broader set of geographic covariates, including

new covariates under development to account for local traffic patterns (Wilton et al. 2008).

3 Model and Estimation

3.1 Spatio-Temporal Framework

We are primarily interested in predicting long-term average concentrations at subject home loca-

tions, but certain features of the application and the data necessitate modeling the two-week average

spatio-temporal field rather than pre-averaging the data for a purely spatial analysis. First, the

long-term average time period of interest is not fixed, and it may vary between subjects based on

the hypothesized time scale for the effect of air pollution exposure. We can easily accommodate

the need for averages over arbitrary time periods by predicting a spatio-temporal field of two-week

average concentrations.

Second, as we have seen in Figure 2, there are important spatio-temporal interactions in the

measured concentration field that manifest in varying seasonal patterns at different spatial locations.

Given the unbalanced sampling in the MESA Air supplementary monitoring, this suggests that

8

http://biostats.bepress.com/uwbiostat/paper337



we need to accurately account for space and time in order to optimally use these data. As a

notional example, with only two concentration measurements at a particular home, the only way

to determine if these data suggest that the home has long-term average concentrations that are

relatively high or low compared to other locations in the same region is to calibrate the two

measurements by comparing them to an estimate of the seasonal trend at the home location.

We define here the overall spatio-temporal modeling framework. Denote by Yst a set of known

observations from a space-time field of log-transformed two-week average concentration measure-

ments with indices st ∈ W , where the cardinality of W is

N = |W |.

Define the set of all times at which there are measurements

T = {t : st ∈ W for some s},

the set of all locations at which there are measurements

S = {s : st ∈ W for some t},

and the total number of spatial locations

n = |S|.

Also define the set of times for which there are measurements at location s ∈ S

Ts = {t : st ∈ W}

and the set of locations for which there are measurements at time t ∈ T

St = {s : st ∈ W}.

Let Y ∗
st be a set of values from the same space-time field at which we are interested in making

predictions, and similarly define W ∗, N∗, n∗, T ∗, S∗, T ∗
s , and S∗

t . The space-time indices in Yst
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and Y ∗
st may overlap, in which case the predicted value could differ from the colocated observations

due to the potential for measurement error and process noise that we do not want to include in the

health effect analysis.

We assume that Yst and Y ∗
st can be modeled jointly as a Gaussian random field with a multi-

dimensional parameter Ψ

(
Y T

st , Y
∗T
st

)T
∼ N

(
µY Y ∗(Ψ),ΣY Y ∗(Ψ)

)
. (1)

Our strategy is to first estimate Ψ and then use the estimated Ψ̂ along with the known values of

Yst to predict Y ∗
st. Specifically, we estimate Ψ by the method of maximum-likelihood

Ψ̂ = argmax
Ψ

p(Yst; Ψ), (2)

where the density for Yst is

p(Yst; Ψ) =
1

(2π)N/2|ΣY (Ψ)|1/2
exp

(
−1

2
(Yst − µY (Ψ))T ΣY (Ψ)−1 (Yst − µY (Ψ))

)
.

In the above expression, ΣY (Ψ) and µY (Ψ) are sub-matrices of ΣY Y ∗(Ψ) and µY Y ∗(Ψ). We then

predict Ŷ ∗
st as the conditional mean of Y ∗

st from equation (1)

Ŷ ∗
st = E

(
Y ∗

st|Yst; Ψ = Ψ̂
)

. (3)

We can also compute uncertainty estimates for the Ŷ ∗
st that incorporate the covariance from equa-

tion (1) and the uncertainty in estimating Ψ. We do not present these here as they do not add any

new insight over the cross-validatory assessments of prediction accuracy in Section 4 and because

such individual uncertainty estimates are not helpful when using the predicted concentrations to

estimate exposure in a health effects analysis; see the discussion in Section 6.

Suppose that we are interested in long-term average concentrations over a time interval (τ1, τ2)

at a set of locations S∗. We can obtain the spatial field of long-term average predictions Ĉ∗
s,lta by
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defining W ∗ such that for each location s ∈ S∗, T ∗
s consists of a non-overlapping sequence of two-

week periods ranging from (τ1, τ2) and then computing the average back-transformed concentration

Ĉ∗
s,lta =

1
|T ∗

s |
∑
t∈T ∗

s

exp(Ŷ ∗
st). (4)

We have defined Ĉ∗
s,lta to average over the same time period at each location s, but this is only for

notational convenience. In practice, we can easily predict averages over different time periods for

different subjects’ home locations.

3.2 Hierarchical Model

We now describe the hierarchical structure for the multivariate Gaussian model in equation (1).

To ease the notation we describe the model as it applies to Yst, but it is easy to expand it to the

pair (Y T
st , Y

∗T
st )T . We decompose the field into

Yst = µst + νst, (5)

where µst and νst will be defined below. The idea is that µst represents a smooth spatio-temporal

mean field that incorporates dependence on geographic covariates along with seasonal and long-term

trends, and νst represents the space-time residual field with primarily spatial correlation structure.

Take as given for now a set of m smooth temporal basis functions f1(t), . . . , fm(t), where m is

typically a small number. We assume that each of the fi(t) has mean zero over the interval (τ1, τ2),

and we also define the constant basis function f0(t) ≡ 1. Following Fuentes et al. (2006), we write

the spatio-temporal mean field as

µst = β0s +
m∑

i=1

βisfi(t)

=
m∑

i=0

βisfi(t) (6)

where for each i, we regard βi· as a spatial field on S of coefficients for fi(t). For each location s,
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the smooth function of time µs· represents the seasonal and long-term trend, which is essentially a

projection of the time series at location s onto the space spanned by the fi(t).

Each of the spatial fields βi· is modeled by linear regression with geographic covariates and spa-

tial correlation following a geostatistical structure, which amounts to embedding several instances

of universal kriging (Cressie 1993) in our overall hierarchical model. In particular, we assume that

for each i = 0, . . . ,m

βi· ∼ N
(
Xiα

T
i ,ΣS(θi)

)
,

where Xi is an n × pi design matrix, αi is the corresponding pi-vector of unknown regression

coefficients, and ΣS(θi) is obtained by plugging the unknown multi-dimensional parameter θi into

a common n× n geostatistical covariance matrix function ΣS(·). Note that the design matrices Xi

can incorporate intercept terms and may include different geographic covariates for the different

spatial fields.

What remains is to specify a model for the residual space-time field νst. We will show (Sec-

tion 4.1) that our modeling µst with seasonal basis functions leaves residuals that are essentially

uncorrelated in time at the two-week average time scale. So we define νst as a mean-zero, separable

space-time process, such that for each time t the spatial field ν·t is distributed as

ν·t ∼ N
(
0,ΣSt(θν)

)
, (7)

and there is no temporal autocorrelation. The matrix function ΣSt(·) is defined to be the sub-

matrix of ΣS(·) corresponding to the subset St ⊂ S, i.e., the set of locations with monitoring data

at time t, and θν is a multi-dimensional geostatistical covariance parameter.

Notice that we have assumed a common family of spatial covariance functions for νst and the

various spatial fields embedded in µst. We do this for notational convenience, but in practice it is

not necessary. In particular, while we do not explore the possibility here, the residual field may
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have a non-stationary correlation structure that could be accommodated with a deformation model

(Sampson 2002; Damian et al. 2003).

We still need to define the spatial covariance matrix function ΣS(·). Any of the common

geostatistical forms would be appropriate, and the decision of which to use should be based on the

data. In this paper, we focus on exponential covariance matrices that can be characterized by a

range φ, partial sill σ2, and nugget τ2. For the βsi fields we assume that the nugget term is zero,

implying that the mean value and seasonal trend are each highly correlated at adjacent locations.

Thus, the parameter Ψ is composed of “land use regression” coefficients

α = (α0, . . . αm),

along with spatial covariance parameters for the βsi fields

θ = (θ0, . . . θm),

where

θi = (φi, σ
2
i ) for i = 0, . . . ,m

and spatial covariance parameters for the space-time residual field

θν = (φν , σ
2
ν , τ

2
ν ).

The hierarchical model we have described in this subsection completely specifies the mean and

covariance functions µY (Ψ) and ΣY (Ψ) of Section 3.1.

3.3 Unified Estimation

The first step in predicting Y ∗
st is to find a parameter estimate Ψ̂ by maximum-likelihood, as in

equation (2). We use the constrained L-BFGS-B algorithm implemented in the optim() function

in R (Byrd et al. 1995; R Development Core Team 2008), first log-transforming the variance pa-

rameters to make the optimization easier. The dimension of ΣY (Ψ) is N ×N , where N is the total
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number of space-time concentration measurements in Yst. As such, the time consuming step in the

optimization procedure is evaluating

ΣY (Ψ)−1 (Yst − µY (Ψ)) . (8)

For the simulation scenario we consider in Section 5 with n = 346 monitoring sites and a total

of N = 2011 observations, one such evaluation takes 4.34 seconds running as a single thread in

the default installation of R version 2.6.0 on a Dell workstation with two quad-core Intel Xeon

processors running at 2.33 GHz processor (Red Hat Linux Enterprise Linux Server release 5.2, 64

bit). Linking R to the Goto implementation of a Basic Linear Algebra System (BLAS) in the

identical setting reduces the computation time to 0.84 seconds (Goto 2008).

Although using R linked to the Goto BLAS results in reasonable computation times for our

simulation scenario, we note that longer time series of measurements (which are available from

the AQS monitors) would result in N being substantially larger than 2011, which could make

direct evaluation of the term in (8) impractical on current generation computers. Fortunately an

alternative method of calculating the likelihood is available that scales well for large N when the

number of spatial locations n is held fixed.

We have already decomposed

Yst =
m∑

i=0

βisfi(t) + νst. (9)

To facilitate algebraic manipulations rewrite equation (9) in the form

Y = F B + V

N × 1 N × (m + 1)n (m + 1)n× 1 N × 1
(10)

with vectors Y = (Yst) and V = (νst) defined by varying s and then t, the vector B = (βis) defined

by varying s and then i, and the matrix F = (fst,is′) with similar indexing defined by

fst,is′ =


fi(t) s = s′

0 otherwise.
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We have

V ∼ N (0,ΣV (θν))

where ΣV is an N ×N matrix with block diagonal structure, and we have

B ∼ N (µB(α),ΣB(θ))

where

µB(α) =


X0α0

...

Xmαm

 , ΣB(θ) =


ΣS(θ0) . . . 0

...
...

0 . . . ΣS(θm).


The likelihood for Y can be restated such that

2 log p(Y |Ψ) = −N log(2π)− log |ΣV (θν)| − log|ΣB(θ)| − log |Σ−1
B|Y (θ, θν)|

−Y T Σ−1
V (θν)Y − µT

B(α)Σ−1
B (θ)µB(α) (11)

+
(
Σ−1

B (θ)µB(α) + F T Σ−1
E (θν)Y

)T
ΣB|Y (θ, θν)

(
Σ−1

B (θ)µB(α) + F T Σ−1
V (θν)Y

)
where µB|Y and ΣB|Y are given by

Σ−1
B|Y (θ, θν) = Σ−1

B (θ) + F T Σ−1
V (θν)F

µB|Y (α, θ, θν) = ΣB|Y (θ, θν)
(
Σ−1

B (θ)µB(α) + F T Σ−1
V (θν)Y

)
.

This decomposition of the likelihood is convenient because the only N×N matrix to solve is ΣV , the

covariance for the space-time residual field. This matrix is block-diagonal if we assume temporally

uncorrelated residuals, and even if we were to assume an AR(1) or similar structure this matrix

would be significantly more tractable than the full covariance ΣY . See Lindström and Lindgren

(2008) for some related manipulations.

3.4 Temporal Basis Functions

Up to now we have regarded the fi(t) as pre-specified seasonal trend functions. In practice we follow

an approach similar to Fuentes et al. (2006) and estimate empirical orthogonal basis functions from
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the data at locations where there are nearly complete time series for the dates of interest. If we

restrict to the set of concentration measurements at such locations (e.g., the AQS sites) then we

can regard Yst as a |T | × n matrix where T consists of a non-overlapping sequence of two-week

periods ranging from (τ1, τ2) and n is the number of monitoring locations. For pre-specified m ≥ 1,

if there were no missing data in Yst we would adopt the following procedure

1. Construct Ỹst by normalizing the columns to have mean zero and variance one.

2. Extract f̃1, . . . , f̃m as the first m left singular vectors from a singular value decomposition

(SVD) of Ỹst.

3. Use smoothing splines to derive smooth temporal basis functions f1(t), . . . , fm(t) on the in-

terval (τ1, τ2).

Recall that we always take f0(t) ≡ 1. The idea is that the first few singular vectors will span

the range of seasonal trends observed in the data, but that they will be noisy representations so

the smoothing is used to approximate the truly seasonal piece. Even the AQS time series have

some missing values, so there are missing observations in Yst and the procedure described above

cannot be applied directly. We modify step 2 of the procedure by using an algorithm similar to

expectation-maximization (EM) to approximate the SVD using imputed values. See Fuentes et al.

(2006) for further details on this algorithm.

4 Los Angeles AQS Data

We now apply the hierarchical model from Section 3 to make predictions based on two-week average

log-transformed NOx concentrations from 18 monitoring locations of AQS network in the Los

Angeles area for the time period from July 2005 through December 2007. This involves estimating

the model parameters and then assessing prediction accuracy for long-term average concentrations
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by means of cross-validation. As previously noted, the locations of the monitors we consider are

shown in Figure 1, and several example time series are shown in Figure 2.

Since there are essentially complete time series of data at each location, we can conduct a multi-

step exploratory analysis that will validate the appropriateness of the hierarchical model described

in Section 3. This multi-step analysis gives estimates for all of the parameters in the hierarchical

model, and we can compare these to the estimates obtained by the unified maximum-likelihood

estimation procedure of Section 3.3.

4.1 Seasonal Trends and Residual Autocorrelation

We follow the methodology described in Section 3.4 to extract m = 2 smooth temporal basis func-

tions that are intended to capture the range of seasonal variation in the region. After determining

the first two singular vectors of the observed data matrix, we smooth them using smoothing splines

as implemented in the R function smooth.spline() with four degrees of freedom per year (R De-

velopment Core Team 2008). The two seasonal trend functions are shown in Figure 3, and an

additional basis function that is not shown is f0(t) ≡ 1. For each AQS monitoring location s, we

estimate values β̂0s, β̂1s, and β̂2s by fitting

Yst = β0s + β1sf1(t) + β2sf2(t) + νst. (12)

with ordinary least squares.

For each location s, the residuals from this linear model constitute a time series. Our objective

in using the basis functions to model seasonal variability is to simplify the structure of the residual

field νst, ideally allowing us to treat it as having no temporal correlation. This corresponds to

the residual time series being uncorrelated. Autocorrelation plots are shown in Figure 4 for the

residuals at each of the 18 AQS sites. While there is a small amount of variability between sites,

these plots taken as a group validate our assumption that there is no temporal correlation at the
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two-week time scale.

4.2 β̂is Spatial Fields

For each i = 0, 1, 2 we analyze the estimated spatial field β̂is in terms of its relationship with

geographic covariates and its residual spatial structure. The three geographic covariates considered

in this analysis are: (i) distance to the coast, (ii) distance to a major road (major road is defined

by census feature class code A1-A3, with distance truncated at 300 meters), and (iii) average

population density in a 2000 meter buffer. These variables were extracted using GIS, as described

in Section 2.3.

The results of separate linear regression model fits for each of the β̂is fields are shown in Table 1.

As expected, the estimated long-term averages β̂0s tend to be lower for locations that are farther

from roads and higher in areas of higher population density. In addition, the long-term averages tend

to be higher further from the coast, which is broadly consistent with the notion that the prevailing

wind concentrates pollution on the west side of the coastal mountains in the Los Angeles basin.

The two sets of estimated seasonal basis function coefficients β̂1s and β̂2s do not have statistically

significant relationships with the roadway or population variables, but both are associated with

distance to the coast, indicating that the effect of meteorology varies by geography in this region.

We expect there to be spatial correlation in the β̂is fields. To assess the degree of spatial corre-

lation, we examine empirical variograms for the residuals from regression on the spatial covariates.

For β̂1s and β̂2s, only the distance to coast covariate is included in the regression since the other two

covariates do not appear to be important. Empirical variogram clouds and binned values calculated

using the GeoR package in R (Ribeiro and Diggle 2001) are shown in Figure 5. The variograms

suggest that there is significant spatial correlation in β̂0s, modest correlation in β̂1s, but limited

correlation in β̂2s. We quantify this by fitting universal kriging models with exponential variograms

and no nugget to each of the three fields using the likfit() function in GeoR. The resulting parameter
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estimates are shown in the first column of Table 2.

4.3 Spatio-Temporal Residuals

The last part of the model to be estimated is the spatial structure of the spatio-temporal residual

νst defined by equation (5). We can construct an estimate ν̂st by taking residuals from separately

fitting the linear model in equation (12) at each location s. Then assuming an exponential form

in equation (7) we jointly estimate the range, nugget, and sill parameters by maximum-likelihood

using the likfit() function in GeoR. The estimated parameter values are shown in the first column

of Table 2.

4.4 Full Model Estimation

In the previous subsections, we estimated the model parameters using a multi-step procedure. This

is feasible for the AQS data because there are long time series with few missing values at each

location, so it is possible to estimate the βis fields directly. If there were significant missing data

(as in the MESA Air supplementary monitoring), it would be necessary to jointly estimate the

model parameters using the full hierarchical form, and in any case a unified estimation procedure

is preferable for estimating uncertainty in the health effect analyses (Szpiro et al. 2008; Gryparis

et al. 2008; Madsen et al. 2008). Unified estimation of all of the parameters is accomplished by

maximum-likelihood using the methodology describe in Section 3.3. Results for the AQS data are

shown in the second column of Table 2, and there is very good agreement with estimates from the

multi-step approach.

4.5 Prediction Accuracy

Using the parameter estimates derived above, it is straightforward to follow the procedure in

Section 3.1 and predict long-term average concentrations at locations where measurements are

not available. This amounts to predicting log-concentration values as the conditional mean of
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the latent Gaussian random field at locations without data, and then back-transforming to obtain

concentrations as in equation (4).

We assess the accuracy of the prediction model by leave-one-out cross-validation. For each s̄

corresponding to the spatial location of one of the 18 AQS monitoring sites, we predict the long-

term average concentration Ĉ∗
s̄,lta by applying the model from Section 3 as above, replacing Yst by

the set of observations that excludes all measurements at location s̄

Yst/s̄ = {Yst; s 6= s̄}.

A scatter-plot of cross-validated predictions is shown in Figure 6. The plot suggests that the model

fits well since there are no noticeable outliers. The root mean square error (RMSE) is 4.21 parts

per billion (ppb), corresponding to an R2 of 0.67. The formula used to compute R2 is

R2 = max
(
0, 1−RMSE2/Var(C∗

s,lta)
)
. (13)

5 Simulation Study in Los Angeles

In order to evaluate the added value of the MESA Air supplementary monitoring campaign, we

conducted a simulation study based on sampling Yst at all of the AQS and MESA Air sites described

in Section 2 (N = 2011, n = 346). We simulated log-transformed two-week average concentrations

using the hierarchical model of Section 3 with temporal basis functions and parameters as estimated

from the AQS data in Section 4. We also simulated time series of concentrations at 200 additional

randomly selected subject home addresses. The approximate locations are shown in Figure 1. We

calculated the long-term average concentration values at each home address from July 2005 through

December 2007 and regard these as a validation set C∗
s,lta for evaluating prediction performance.

We simulated twelve random realizations and then estimated the parameters using maximum-

likelihood as in Section 3.3. Mean estimated parameter values are shown in the second column of

Table 3. The estimates are generally very close to the assumed values (first column), although we
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note that the range and sill tend to be underestimated for the β0s field. The third column contains

analogous values when the maximum-likelihood estimation is based only on simulated observations

at the AQS and MESA Air “fixed sites” (N = 1343, n = 25). These values are very close to the

ones obtained by using all monitoring locations, suggesting that the additional sampling at the

“home outdoor” and “community snapshot” locations adds little value for parameter estimation.

However, our interest is in predicting the long-term average concentrations at subject home

locations (C∗
s,lta), not just in estimating the model parameters. Scatterplots of predicted values in

two scenarios are shown: (i) using the AQS and all MESA Air monitoring sites in Figure 7, and (ii)

using only the AQS and MESA Air “fixed sites” in Figure 8. The predictions obtained by using

information from all of the MESA Air monitoring sites are better than those using only the MESA

Air “fixed sites”, with a lower average RMSE (4.21 compared to 5.87), and a higher average R2

(0.94 compare to 0.89). Since the parameter estimates are nearly identical, this result suggests that

there is significant benefit from having additional monitoring locations for the prediction step of

equation (3), even though the measurements at the MESA Air “home outdoor” and “community

snapshot” sites are temporally sparse.

To further evaluate this potential benefit, we consider two additional prediction scenarios: (iii)

all of the monitoring locations are used for parameter estimation but only the AQS and MESA

Air “fixed sites” are used for prediction, and (iv) only the AQS and MESA Air “fixed sites” are

used for parameter estimation but all of the monitoring locations are used for prediction. The

results are shown in the red curves of Figures 9 and 10, and they validate the hypothesis that for

this simulation scenario the primary benefit from including the “home outdoor” and “community

snapshot” monitoring campaigns is for prediction rather than for parameter estimation. We also

show analogous results for the incremental value of adding the “home outdoor” or “community

snapshot” monitoring locations (green and blue curves, respectively, in Figures 9 and 10). The
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same pattern persists, with incremental benefit from each set of additional monitoring locations.

We note that this simulation study demonstrates the benefit of having additional sampling from

the “home outdoor” and “community snapshot” campaigns in the prediction step. In addition to

the simulation study findings, there may turn out to be additional benefit for parameter estimation

in the actual MESA Air study. This will be determined by the final choice of geographic covariates

and how well the various sampling campaigns span the range of values for those covariates. The

“community snapshot” campaign was specifically designed to capture near-road effects, and as we

develop more refined traffic-related covariates we expect the data from this sub-campaign to be

particularly important for estimating the relevant regression coefficients (Wilton et al. 2008).

6 Discussion

The methodology described in this paper has two features that make it attractive for exposure

prediction in environmental epidemiology, and more generally for applications that benefit from

accurate prediction using spatio-temporal data. First, our model has a very flexible correlation

structure that allows for non-separability of space and time by modeling seasonal and long-term

trends using empirical orthogonal basis functions with spatially correlated random fields of coeffi-

cients. Second, the unified estimation approach can be implemented with standard software and

accommodates arbitrary missing data patterns, as long as there are sufficiently rich time series at

a subset of locations to derive temporal basis functions.

An important consideration in implementing this model is determining what covariates are

helpful for modeling the spatial fields of temporal basis function coefficients (recall that one of

the temporal basis functions is the constant function, representing the long-term average). In this

paper we have restricted our attention to a relatively small number of covariates that are easy to

calculate using GIS. However, as part of our work on the MESA Air project, we are developing a
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more comprehensive set of spatial covariates, and we expect that these will be very valuable for

making predictions at subject homes. In particular, we are investigating more complex covariates to

account for the influence of local traffic patterns. This includes estimating actual traffic densities

on the road network and incorporating the results of meteorology through physics-based plume

modeling. Preliminary exploratory analysis in the Los Angeles region indicates that accounting for

meteorology and traffic patterns will contribute significantly to improved predictions (Wilton et al.

2008).

One of our key findings in the simulation study is that the temporally sparse components of

the MESA Air monitoring campaign (“home outdoor” and “community snapshot”) contribute to

improved predictions, but that this improvement is primarily through better interpolation in the

prediction step and not through improved parameter estimation. The details of this finding are

likely connected to the choice of geographic covariates. For example, when we use more refined

covariates to represent traffic density, we expect that the “community snapshot” monitoring will

prove important for accurate estimation of the regression coefficients for these covariates. This

is because the “community snapshot” monitoring includes extensive sampling at gradients within

a few hundred meters of major roads in multiple directions corresponding to up- and down-wind

locations. Thus, our expectation is that the benefit of MESA Air monitoring data in the prediction

step will persist when we use additional covariates, and that additional gains in prediction accuracy

will be realized through more accurate parameter estimation based on these data.

We have focused on making point predictions and evaluating the accuracy of these predictions

compared to true values. It would be straightforward to also calculate a prediction variance at

each location, taking a similar approach to Fanshawe et al. (2008). We do not pursue this here,

however, because independent uncertainty estimates are not helpful if the objective is to use the

predicted concentrations to estimate the health effect in an environmental epidemiology study;
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to obtain valid health effect standard errors, we need to properly account for correlation of the

prediction errors and the manner in which their correlation structure impacts the health effect

analysis (Szpiro et al. 2008; Gryparis et al. 2008; Madsen et al. 2008). The covariance of the spatio-

temporal model prediction error can be obtained by estimating the full likelihood surface for the

parameters or, equivalently, by sampling from the posterior parameter distribution in a Bayesian

model with minimally informative priors. In a future paper we will adapt relevant methods in

order to use predictions from the present spatio-temporal model for inference about health effect

parameters.
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β0 β1 β2

Intercept 3.05 (0.22) 1.10 (0.17) −0.39 (0.14)
Distance to road (km) −1.37 (0.57) −0.62 (0.43) −0.19 (0.35)
Distance to coast (km) 0.012 (0.003) −0.009 (0.002) 0.006 (0.002)
Population density (per m2) 41.04 (10.76) −7.89 (8.24) 9.81 (6.67)

Table 1: Linear regression parameter estimates (standard errors) for empirical orthogonal basis
function coefficients of AQS monitors in Los Angeles area. Distance to nearest A1, A2, or A3 class
road truncated at 300 meters. Population density based on a buffer with 2000 meter radius.
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Multi-step estimation Full maximum-likelihood
β0s Intercept 3.04 3.04

Distance to road (km) −1.63 −1.62
Distance to coast (km) 0.013 0.013
Population density (m−1) 34.5 34.3
Sill 0.049 0.049
Range (km) 27.1 27.8

β1s Intercept 0.96 0.97
Distance to coast (km) −0.009 −0.010
Sill 0.031 0.032
Range (km) 19.73 22.2

β2s Intercept −0.21 −0.21
Distance to coast (km) 0.0052 0.0053
Sill 0.017 0.017
Range (km) 4.15 5.05

νst Sill 0.031 0.033
Range (km) 107.11 106.11
Nugget 0.0095 0.0100

Table 2: Hierarchical model parameter estimates for AQS data in Los Angeles area. The values in
the first column are obtained by first estimating the βis at each site s and then fitting a universal
kriging model to each estimated spatial field β̂is. An estimated field of residuals ν̂st is then derived
and fit to a separate ordinary kriging model to get the parameter estimates for ν. The values in
the second column are obtained by a single step maximum-likelihood estimation for the full model
as described in Section 3.3.
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Assumed ML with all ML with AQS and
values locations fixed sites only

β0s Intercept 3.04 2.98 (0.18) 3.02 (0.14)
Distance to road (km) −1.62 −1.61 (0.04) −1.75 (0.19)
Distance to coast (km) 0.013 0.014 (0.0024) 0.014 (0.0025)
Population density (m−2) 34.3 34.2 (2.8) 33.5 (4.1)
Log Sill −3.02 −3.78 (0.51) −3.86 (0.56)
Log Range (km) 3.32 2.53 (0.56) 2.24 (0.87)

β1s Intercept 0.97 1.01 (0.11) 1.00 (0.12)
Distance to coast (km) −0.010 −0.011 (0.0024) −0.010 (0.0026)
Log Sill −3.45 −3.63 (0.43) −3.74 (0.43)
Log Range (km) 3.09 2.75 (0.62) 2.53 (0.67)

β2s Intercept −0.21 −0.23 (0.047) −0.23 (0.052)
Distance to coast (km) 0.0053 0.0056 (0.0014) 0.0057 (0.0017)
Log Sill −4.07 −4.09 (0.29) −4.11 (0.29)
Log Range (km) 1.62 1.58 (0.43) 1.53 (0.66)

νst Sill −3.42 −3.41 (0.10) −3.42 (0.13)
Log Range (km) 4.67 4.72 (0.17) 4.72 (0.22)
Log Nugget −4.61 −4.62 (0.043) −4.62 (0.098)

Table 3: Mean (standard deviation) of maximum-likelihood estimates of model parameters in
twelve simulated realizations. The first column is the assumed values used to generate the data.
The second column contains estimates based on values at all monitoring locations, and the third
column contains estimates based on values at the AQS and MESA Air fixed sites only.
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Figure 1: AQS and MESA Air monitoring locations in Los Angeles, and the 200 cohort residence
locations used for validation in simulation scenario. (All home locations jittered on map to protect
confidentiality)
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Figure 2: Example time series of log-transformed two-week average NOx concentrations at three
AQS monitors in the Los Angeles area for the period July 2005 through December 2007
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Figure 3: Smoothed (line) and unsmoothed (points) empirical orthogonal basis functions based
on AQS NOx two-week averages in Los Angeles area (centered and normalized to SD=0.707 for
smooth version).
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Figure 4: Empirical autocorrelation functions for two-week average residuals after fitting to empir-
ical orthogonal basis functions. (18 AQS monitors in Los Angeles area.)
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Figure 5: Empirical variograms for the estimated spatial fields of long-term averages (β̂0s) and
coefficients of seasonal basis functions (β̂1s, β̂2s). (18 AQS monitors in Los Angeles area.)
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Figure 6: Cross-validated predictions of long-term average NOx concentrations for 18 AQS monitors
in Los Angeles area. The RMSE is 4.21 and the R2 is 0.67. The formula used to compute R2 is
given in Section 4.5.
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Figure 7: Simulation study results for twelve Monte-Carlo realizations. Scatter plots of predicted vs.
true long-term average NOx concentrations at 200 subject homes in validation set. Results based
on using all AQS and MESA Air monitoring locations for parameter estimation and prediction.
The mean RMSE is 4.21 and the mean R2 is 0.94. The formula used to compute R2 is given in
Section 4.5.

37

Hosted by The Berkeley Electronic Press



Figure 8: Simulation study results for twelve Monte-Carlo realizations. Scatter plots of predicted
vs. true long-term average NOx concentrations at 200 subject homes in validation set. Results
based on using only AQS and MESA Air “fixed sites” for parameter estimation and prediction.
The mean RMSE is 5.87 and the mean R2 is 0.89. The formula used to compute R2 is given in
Section 4.5.
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Figure 9: Simulation study results for twelve Monte-Carlo realizations. Average root mean squared
error for predicted vs. true long-term average NOx concentrations at 200 subject homes in validation
set. Results based on using different subsets of the AQS and MESA Air monitoring locations for
parameter estimation and prediction in the spatio-temporal hierarchical model.
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Figure 10: Simulation study results for twelve Monte-Carlo realizations. Average R2 for predicted
vs. true long-term average NOx concentrations at 200 subject homes in validation set. Results
based on using different subsets of the AQS and MESA Air monitoring locations for parameter
estimation and prediction in the spatio-temporal hierarchical model. The formula used to compute
R2 is given in Section 4.5.
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