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Abstract

Identification of the pure/natural direct effect relies on a cross-world counterfactual independence
assumption which cannot be enforced experimentally and therefore is not strictly subject to scien-
tific scrutiny. Here we extend the Robins-Richardson nonparametric bounds for binary exposure,
mediator and outcome variables, to handle the situation of exposure-induced confounding. The
new bounds are a useful alternative to the strong assumptions made by Tchetgen Tchetgen and
VanderWeele (Epidemiology, 2014,Mar;25(2):282-91) who point identify the pure direct effect un-
der a nonparametric structural equation model with independent errors which implies cross-world
counterfactual independencies, and make an additional assumption about the exposure-dependent
confounder.
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The pure or natural direct effect quantifies the effect of an exposure on an outcome that is not
mediated by an intermediate variable.1−5 For exposure A, mediator M and outcome Y , let M(a)
and Y (a) = Y (a,M(a)) respectively define the counterfactual mediator and outcome had exposure
taken value a. Likewise, let Y (a,m) define the counterfactual outcome had exposure and mediator
taken the value a and m, respectively. Finally let Y (a,M(a∗)) denote the counterfactual outcome
had exposure taken value a and the mediator taken the value it would have under treatment a∗.
The average pure direct effect on the additive scale is then defined for a 6= a∗ :

PDE (a, a∗) = E {Y (a,M(a∗))− Y (a∗)}

Throughout assume that as encoded in the diagram given in Figure 1.a, treatment is randomized,

A ⊥⊥ {Y (a,m),M(a)} (1)

and also, M is randomized within levels of A,

Y (a,m) ⊥⊥M(a)|A = a (2)

Assumptions (1) and (2) are suffi cient under the 3-node diagram to identify the total average
causal effect E {Y (a)− Y (a∗)} and the controlled direct effect E {Y (a,m)− Y (a∗,m)} . However,
assumptions (1) and (2) taken to be the only counterfactual independencies for each value of
a encoded in the 3-node causal diagram of Figure 1.a, do not suffi ce to identify counterfactual
averages of the form E {Y (a,M(a∗))} , and therefore these assumptions alone cannot identify
PDE (a, a∗).
Identification of PDE (a, a∗) has been controversial even in this simple setting, as it requires

interpreting the diagram of Figure 1.a to encode additional counterfactual independencies, such
that in addition to (1) and (2) , we also have for all a, a∗ :2

Y (a,m) ⊥⊥M(a∗)|A = a (3)

This latter assumption is sometimes described as simply requiring that conditional on exposure,
there is no unobserved confounding between the mediator and the outcome, as depicted in Figure
1.a.2−4 However, the assumption is much stronger than suggested in Figure 1.a, since it entails
assuming independencies about counterfactuals indexed by distinct treatment interventions, i.e.
cross-world counterfactual independencies. Whereas, the traditional statement of no unobserved
confounding (1) and (2) ensures that all counterfactuals involved in the independence statements
are defined for a single treatment value a.6,7 In principle, assumptions (1) and (2) can be made
to hold experimentally, say by randomizing A and subsequently randomizing M conditional on A,
while assumption (3) is more audacious and should be made with caution in practice, as it cannot
be experimentally enforced and therefore is not strictly subject to scientific scrutiny.6 The ambigu-
ity as to which counterfactual independencies are naturally being assumed in Figure 1.a stems from
the fact that the counterfactual variables in question (for the mediator and outcome variables) are
themselves not directly represented on the causal diagram. As a remedy to this limiting feature of
the traditional causal diagram, Richardson and Robins6 have recently developed the single-world
intervention graph (SWIG), a new causal diagram which allows one to represent counterfactuals
indexed by a single world intervention directly on the graph. Figure 1.b depicts the SWIG corre-
sponding to the causal diagram given in Figure 1.a., for an intervention which sets the treatment
to a fixed value ã for all persons in the population. One can then verify using d-separation, that
unlike in Figure 1.a, in the SWIG of Figure 1.b., it is guaranteed that only assumptions (1) and
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(2) (for intervention value ã = a), and no cross-world counterfactual independence is encoded in
the graph. Note that to be correctly interpreted, d-separation statements for the SWIG of figure
1.b implicitly condition on variables for all split nodes to equal their value under the intervention,
i.e. all independence statements are conditional on A = a in Figure 1.b.
Upon ruling out cross-world independence assumptions, Robins and Richardson fail to point

identify PDE (a, a∗) and have proposed instead reporting nonparametric bounds for PDE(a, a∗).7

For binary Y,A and M, the Robins-Richardson bounds under assumptions (1) and (2) are given
for PDE (1, 0):

L ≤ PDE (1, 0) ≤ U (4)

L = max {0,Pr (M = 0|A = 0) + E [Y |A = 1,M = 0]− 1}
+max {0,Pr (M = 1|A = 0) + E [Y |A = 1,M = 1]− 1} − E [Y |A = 0]

U = min {Pr (M = 0|A = 0) , E (Y |A = 1,M = 0)}
+min {Pr (M = 1|A = 0) , E [Y |A = 1,M = 1]− E [Y |A = 0]}

Tchetgen Tchetgen and VanderWeele consider identification of PDE(a, a∗) under the causal dia-
gram depicted in Figure 2.a.8 The mediator in this diagram is subject to exposure-induced con-
founding which by the recanting witness criterion, renders PDE(a, a∗) non-identified from the
observed data, even if instead of (3) , one were to assume the nonparametric structural equa-
tions model with independent errors (NPSEM-IE) representation of the diagram in figure 2.a.8

Under the NPSEM-IE, we have that conditioning on A and R recovers cross-world counterfactual
independencies for the mediator and outcome,7,8 i.e. for all a and a∗

Y (a,m) ⊥⊥M(a∗)|A = a,R(a) = r (5)

Tchetgen Tchetgen and VanderWeele8 establish that PDE(a, a∗) becomes identified in the NPSEM-
IE for Figure 2.a, provided an additional assumption also holds, either

(i) the treatment and confounder R are binary and the effect of treatment on R is monotone at
the individual level, i.e. R(a∗) ≤ R(a) for a∗ < a, or,

(ii) there is no average additive interaction between R and M in their joint effects on Y, i.e.

E (Y |a,m, r)− E (Y |a,m∗, r)− E (Y |a,m∗, r) + E (Y |a,m∗, r∗) = 0

Alternative identifying assumptions under the NPSEM-IE were also considered by Robins and
Richardson.7 Note that Tchetgen Tchetgen and VanderWeele8 thus continue to make a cross-world
counterfactual independence assumption now given by (5) . We extend the Robins-Richardson
bounds for PDE(a, a∗) so that they may be used in the presence of exposure-induced confounding
as depicted in Figure 2.a, upon interpreting the causal diagram strictly as encoding assumptions
(1) and

Y (a,m) ⊥⊥M(a)|A = a,R = r (6)

The SWIG corresponding to this causal diagram is given in Figure 2.b for the intervention ã.
In the Appendix we establish that for binary A and M, and a = 1, a∗ = 0, under the SWIG of
Figure 2.b,
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L∗ ≤ PDE (1, 0) ≤ U∗ (7)

L∗ = max {0,Pr (M (0) = 0) + E [Y (1, 0)]− 1}
+max {0,Pr (M (0) = 1) + E [Y (1, 1)]− 1} − E [Y (a = 0)]

U∗ = min {Pr (M (0) = 0) , E [Y (1, 0)]}
+min {Pr (M (0) = 1) , E [Y (1, 1)]− E [Y (a = 0)]}

Therefore the bounds L∗ and U∗ are identified provided E [Y (a,m)] , E [Y (a)] and E [M(a)] are
themselves identified. Under the usual no unobserved confounding assumptions (1) and (6), i.e.
under the SWIG in figure 2.b for ã = a, we indeed have

E [Y (a,m)] =
∑
r

E [Y |a,m, r] f(r|a),

E [Y (a)] = E [Y |a] ,
E [M (a)] = E [M |a] .
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Appendix

SWIG bounds under (1) and (6): The derivation of L∗ and U∗ is analogous to that of L and
U given in Robins and Richardson,6 with a slight generalization to allow for the recanting witness
R. Note that

E {Y (1,M(0))} = E {Y (1, 1)|M(0) = 1}Pr {M(0) = 1}
+ E {Y (1, 0)|M(0) = 0}Pr {M(0) = 0} ,

and

E {Y (1, 1)} = E {Y (1, 1)|M(0) = 1}Pr {M(0) = 1}
+ E {Y (1, 1)|M(0) = 0}Pr {M(0) = 0} ,

which implies

max {0, (E {Y (1, 1)} − Pr {M(0) = 0}) /Pr {M(0) = 1}} ≤ E {Y (1, 1)|M(0) = 1}
min {1, E {Y (1, 1)} /Pr {M(0) = 1}} ≥ E {Y (1, 1)|M(0) = 1}

likewise

E {Y (1, 0)} = E {Y (1, 0)|M(0) = 0}Pr {M(0) = 0}
+ E {Y (1, 0)|M(0) = 1}Pr {M(0) = 1}

which implies

max {0, (E {Y (1, 0)} − Pr {M(0) = 1}) /Pr {M(0) = 0}} ≤ E {Y (1, 0)|M(0) = 0}
min {1, E {Y (1, 0)} /Pr {M(0) = 0}} ≥ E {Y (1, 1)|M(0) = 0}

It follows that

max {0, (E {Y (1, 1)} − Pr {M(0) = 0})}+max {0, (E {Y (1, 0)} − Pr {M(0) = 1})} ≤ E {Y (1,M(0))}
min {Pr (M (0) = 1) , E {Y (1, 1)}}+min {Pr (M (0) = 0) , E {Y (1, 0)}} ≥ E {Y (1,M(0))}

proving the result.

Acknowledgments: The authors thank James Robins and Thomas Richardson for insightful
comments and for providing the SWIG figures included in the paper.
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