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To estimate the multivariate regression model from multiple individual studies, it would

be challenging to obtain results if the input from individual studies only provide univariate

or incomplete multivariate regression information. Samsa et al [1] proposed a simple method

to combine coefficients from univariate linear regression models into a multivariate linear

regression model, a method known as synthesis analysis. However, the validity of this method

relies on the normality assumption of the data, and it does not provide variance estimates.

In this paper we propose a new synthesis method that improves on the existing synthesis

method by eliminating the normality assumption, reducing bias, and allowing for the variance

estimation of the estimated parameters.

1 Introduction

Meta-analysis is a statistical technique for amalgamating, summarizing, and reviewing pre-

vious quantitative research. A typical meta-analysis is to summarize all the research results

on one topic and to discuss reliability of this summary. It is based on the condition that

each individual study reports the same finding for the same research question. The potential

advantage of meta-analysis is the increase in the sample size and the validity of statistical

inference. It would be difficult to utilize meta-analysis methodologies if individual studies

only provide partial findings.

In a practical example, meta-analysis could be used to build a comprehensive and mul-
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tivariate prediction model for the risk of chronic diseases such as coronary heart disease

(CHD). A wide range of CHD risk factors have been reported in the literature, but a com-

prehensive multivariate CHD prediction model has yet to be found. The Framingham CHD

model is widely considered the most comprehensive model, although many well-known CHD

risk factors, such as body mass index, family history of CHD, and c-reactive protein, are not

included in the model [2,3,4].

We propose a new process to solve several of the problems presented above. This novel

multivariate meta-analysis modeling method is called synthesis analysis. Using multiple

study results reported in the scientific and medical literature, the objective of our synthesis

analysis is to estimate the multivariate relations between multiple predictors (Xs) and an

outcome variable (Y ) from the univariate relation of each X with Y and the two-way correla-

tions between each pair of Xs. All the inputs may come from various studies in the literature,

while a cross-sectional population survey may provide correlations of all Xs. We reported

the first method of synthesis analysis (the Samsa-Hu-Root or SHR method) in which the

partial regression coefficients were calculated using the following matrix equation:

B = (R−1(Bu#S))/S,

where B is the vector of partial (excluding the intercept, B0) regression coefficients, Bu is the

vector of univariate regression coefficients, R is the Pearson correlation coefficients among

all independent variables, S is vector of standard deviations of the independent variables, #

stands for element-wise multiplication, and / stands for element-wise division. The intercept,

B0, can be calculated using the resulting multivariate formula, the mean of the predictors

and outcome, and the newly calculated partial regression coefficient for each predictor.

In the present study, we propose an improvement to the existing synthesis analysis. Com-

pared with the previous method, this method has at least two advantages: (1) it includes

a method to compute the variances for predicted outcomes and estimated regression coeffi-

cients; and (2) the estimates of predicted outcomes and regression coefficients can be more

robust when the independent variables are not normally distributed.

Our paper is organized as follows. In Section 2, we describe our new method. In Section

3, we report a simulation study on finite-sample performance of the proposed method in
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comparison with the existing synthesis method. In Section 4, we illustrate the use of the

proposed method in a real life example from the 1999-2000 National Examination Survey.

Finally, in Section 5, we conclude our paper with a discussion on some extensions.

2 New Method for Synthesis Analysis

2.1 Estimation of Synthesized Parameters

Suppose that we know the individual relationships between an outcome Y and each of p risk

factors, X1, X2, ... , and Xp, which are given as follows:

E[Y |Xi] = γi
0 + γi

1Xi, (1)

where i = 1, 2, ..., p. In addition, we assume that we know the mean relationships between

any two pairs among the p risk factors:

E[Xj|Xi] = αij
0 + αij

1 Xi, (2)

where i, j = 1, 2, ..., p, and i 6= j.

The goal in the synthesis analysis is to determine the multivariate linear regression model

between Y and the p risk factors:

E(Y |X1, . . . , Xp) = β0 +

p∑
i=1

βiXi. (3)

Note that the linear regression assumption (1) automatically holds under assumptions (2)

and (3).

Taking the conditional expectation of the both sides of (3) given Xi, we obtain the

following equation:

E(Y |Xi = x) = β0+β1E(X1|Xi = x)+. . .+βi−1E(Xi−1|Xi = x)+βix+. . .+βpE(Xp|Xi = x),

(4)

for i = 1, . . . , p. Combining (1), (2), and (4), we obtain the following result:

γi
0 + γi

1x = β0 + (β1α
i1
0 + . . . + βi−1α

i(i−1)
0 + βi+1α

i(i+1)
0 + . . . + βpα

ip
0 )+
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(β1α
i1
1 + . . . + βi−1α

i(i−1)
1 + βi + βi+1α

i(i+1)
1 + . . . + βpα

ip
1 )x

for all x, where i = 1, . . . , p. Therefore, we obtain the following two sets of equations:

γ1
0 = β0 + (β2α

11
0 + . . . + βpα

1p
0 ),

γi
0 = β0 + (β1α

i1
0 + . . . + βi−1α

i(i−1)
0 + βi+1α

i(i+1)
0 + . . . + βpα

ip
0 ) (5)

for i = 2, . . . , p; and

γ1
1 = β1 + β2α

12
1 + . . . + βpα

1p
1 ,

γi
1 = β1α

i1
1 + . . . + βi−1α

i(i−1)
1 + βi + βi+1α

i(i+1)
1 + . . . + βpα

ip
1 (6)

for i = 2, . . . , p.

Let M be a p × p matrix with diagonal elements 1, and element αij
1 when i 6= j; let

β = (βk, k = 1, . . . , p), and γ1 = (γk
1 , k = 1, . . . , p). From (6), we obtain the following p

equations for the p unknown slope parameters, β1, . . . , βp:

Mβ = γ1. (7)

By using Cramer’s rule, we can easily solve the above p simultaneous linear equations. Let

us define the following determinants:

D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 α12
1 α13

1 . . . α1p
1

α21
1 1 α23

1 . . . α2p
1

... ... ... ... ...

αp1
1 αp2

1 αp3
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

,

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣

γ1
1 α12

1 α13
1 . . . α1p

1

γ2
1 1 α23

1 . . . α2p
1

... ... ... ... ...

γp
1 αp2

1 αp3
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

,

· · ·

and Dp =

∣∣∣∣∣∣∣∣∣∣∣∣

1 α12
1 α13

1 . . . γ1
1

α21
1 1 α23

1 . . . γ2
1

. . . . . . . . . . . . . . .

αp1
1 αp2

1 αp3
1 . . . γp

1

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Cramer’s rule gives us the unique solution to the system of equations (8):

βk =
Dk

D
, (8)

where k = 1, . . . , p.

After obtaining estimates of the vector of slope parameters, β, we can derive an estimate

for the intercept parameter, β0, using any one of the p equations given in (6). Hence, we

have the following p equations for the unknown intercept parameter β0:




β0 + 0 + α12
0 β2 + α13

0 β3 + ... + α1,p−1
0 βp−1 + α1p

0 βp = γ1
0 ,

β0 + α21
0 β1 + 0 + α23

0 β3 + ... + α2,p−1
0 βp−1 + α2p

0 βp = γ2
0 ,

. . .

β0 + αp1
0 β1 + αp2

0 β2 + αp3
0 β3 + ... + αp,p−1

0 βp−1 + 0 = γp
0 .

Although there are p equations for the parameter β0, we show that the solution of β0 is

unique in Appendix A. We give a detailed description of our solution for the two-covariate

case in Appendix B, and in Appendix C, we give an explicit formula for our synthesize

parameters in cases with three and four covariates.

2.2 Variance Estimation

The variance can be estimated using the delta method by assuming that the univariate

parameter estimates γ
(i)
0 and γ

(i)
1 (i = 1, . . . , p) from individual univariate linear regression

models, given by (1), are independent of each other [6]. Let α = (α
(ij)
0 , α

(ij)
1 , i, j = 1, . . . , p)

and γ = (γ
(k)
0 , γ

(k)
1 , k = 1, . . . , p).

By the well-known result from simple linear regression, we know:

n
1
2 [(α, γ)T − (α0, γ0)

T ] →d N(0,Σ),

where α0 and γ0 are the true expected values of α and γ,

Σ =


 Σα 0

0 Σγ


 .

Here

Σα =
(
σαkl

i αk′l′
j

, i, j = 0, 1; k, l, k′, l′ = 1, 2, . . . , p,
)
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where σαkl
i αk′l′

j
(i, j = 0, 1; k, l, k′, l′ = 1, 2, . . . , p) is the covariance between α

(kl)
i and α

(k′l′)
j ,

and

Σγ =




σγ1
0γ1

0
0 . . . 0

0 σγ1
1γ1

1
. . . 0

. . . . . . . . . . . .

0 . . .
. . . σγp

1γp
1




is the covariance matrix of the estimated parameters γ̂.

The synthesized parameter estimates β = (β0, β1, . . . , βp)
T are functions of α’s and γ’s,

which can be expressed mathematically as:

β = g(α, γ).

If the function g is differentiable, then the delta method gives the asymptotic variance of β

as follows:

Σβ = 5g(α, γ)TΣ5 g(α, γ), (9)

where 5g(α, γ) is the vector of derivatives of function g with respect to β = (β0, β1, . . . , βp).

We give an explicit formula for5g(α, γ) when p = 2 in Appendix B. Many programs, such as

Mathematica, can perform derivatives symbolically, thereby making the variance calculation

much easier, since the derivation of the exact form of the 5g is not required before the

calculation.

2.3 Variance of Predicted Value

Once the estimates of parameters and their variances have been derived, we can calculate

the covariance matrix of predicted values as follows:

Cov(Y |X) = Cov(XT β|X) = XT ΣβX,

where XT is the transpose of the X matrix, and Σβ is the covariance matrix of β, given by

(9).
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2.4 Mean Squared Error of the Predicted Value and Correlation

between Predicted and Observed Values

The mean squared error (MSE) of the predicted value is given by:

MSEŶ =

∑n
i=1(Ŷi − Yi)

n
,

where Ŷi and Yi are the predicted and observed value of subject i, respectively. The corre-

lation coefficient between Ŷi and Yi, ρ, can be calculated by

ρ =
Cov(Ŷi, Yi)√

V ar(Ŷi)V ar(Yi)
,

where Cov(Ŷi, Yi) is the covariance between predicted and observed values.

3 Simulation Study

We conducted a simulation study to assess the performance of the proposed method in com-

parison with our previous method (Samsa et al, 2002), denoted by SHR. We simulated data

with two, three, and four predictor variables, respectively. For simplicity of presentation,

we only report the results for the two-predictors here, because the results for three-predictor

and four-predictor cases are similar to those in the two-predictor case.

In each of these cases, we simulated independent variables from (1) a multivariate nor-

mal distribution, (2) a multivariate log-normal distribution, (3) a multivariate exponential

distribution, and (4) a multivariate gamma distribution. We chose the variances of all the

independent variables to be 1 and correlations for pairs of the independent variable to be

0.5. After simulating the independent variables X, we generated the dependent variable Y

by adding random normal errors to the mean model:

Y = β0 +

p∑
i=1

βiXi + ε, (p = 2, 3, 4), (10)

where ε is a random error following the standard normal distribution.

We set the true regression parameters as follows: (β0, β1, β2) = (−5, 5, 3) for the two vari-

able setting; (β0, β1, β2, β3) = (−5, 1, 3, 5) for the three variable setting; and (β0, β1, β2, β3, β4

7 Hosted by The Berkeley Electronic Press



= (−5, 5, 4, 3, 1) for the four variable setting. We divided each data set into Cp+1
2 (p = 2, 3, 4)

subsets with equal sample sizes. Here, Cp+1
2 denoted the total number of combinations of

choosing 2 items from (p+1) items. In simulated data, each subset contained only one pair

of variables chosen from Y , X1, . . . , Xp. The sample size (the total number of observations)

used in simulation was 300 and 3000 (with equal size for each subset). For each of the above

settings, we simulated a total number of 1,000 data sets. Since the results for the data from

the skewed log-normal distribution were similar to those from the other skewed distributions,

we only reported the results for the normal and log-normal distributions. We reported the

mean bias and mean squared error (MSE) for estimated parameters in Tables 1 and 2.
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Table 1: Mean bias and MSE of estimated regression parameters with two independent

variables following a normal distribution

Mean Bias MSE

Sample Size, Method β0 β1 β2 β0 β1 β2

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), New -0.190 -0.016 0.041 14.808 1.708 2.763

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), SHR 0.486 -0.033 -0.090 26.897 0.939 1.527

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), New 0.031 0.000 -0.007 1.346 0.033 0.067

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), SHR 0.050 -0.004 -0.009 2.628 0.079 0.139

*the sample size for subsets with only outcome Y and predictor X1

**the sample size for subsets with only outcome Y and predictor X2

***the sample size for subsets with only predictors X1 and X2

Table 2: Mean bias and MSE of estimated regression parameters with two independent

variables following a log-normal distribution

Mean Bias MSE

Sample Size, Method β0 β1 β2 β0 β1 β2

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), New 0.146 -0.081 -0.042 42.032 3.676 4.799

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), SHR 10.377 -1.104 -1.412 933.764 82.249 80.029

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), New -0.051 -0.004 0.010 1.259 0.033 0.063

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), SHR -0.015 -0.013 0.006 2.349 0.080 0.126

*the sample size for subsets with only outcome Y and predictor X1

**the sample size for subsets with only outcome Y and predictor X2

***the sample size for subsets with only predictors X1 and X2

In order to evaluate the accuracy of predicted values using the new model, we simulated

two data sets with equal sample sizes. One was used as the training set for model derivation,

while the other was used as the validation data set. To evaluate prediction performance, we

reported mean bias, MSE, and the mean of standard error estimates (SEEs) for predicted

values in Tables 3 and 4. The SEEs were derived using the method developed in Sections

2.2 and 2.3. The correlations between predicted and observed values were also reported in
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Table 3: Mean bias, MSE, correlation and S.E. for predicted values with two independent

variables following a normal distribution

Sample Size, Method Mean Bias MSE Correlation SEE

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), New 0.0108 0.8046 0.9949 6.0496

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), SHR 14.1519 221.1321 0.9900 ———

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), New -0.0092 0.0723 0.9996 1.8656

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), SHR 14.0304 209.9250 0.9954 ———

Note: correlation is the mean correlation between observed and predicted values across simulations.

SEE is the mean of standard error estimates for predicted values.

*the sample size for a subset with only outcome Y and predictor X1 .

**the sample size for a subset with only outcome Y and predictor X2 .

***the sample size for a subset with only predictors X1 and X2 .

the two tables.

Simulation results for the regression parameters showed that the mean bias and MSE of

the estimated regression parameters using our new method were, in general, better than those

using the SHR method, across all of the distributions and sample sizes considered here. The

results also indicated that when the distributions of independent variables X were heavily

skewed (log-normal distribution), the bias and MSE of the estimated regression parameters

using both methods were large, especially when sample sizes were small. Nonetheless, the

results from our new method were much better than those from the SHR method under this

situation.

The results for predicted values indicated that both the new method and the SHR method

had similar correlations between observed and predicted values across all sample sizes and

distributions. However, mean bias and MSE for predicted values derived from our new

method were much smaller than those from the SHR method.
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Table 4: Mean Bias, MSE, correlation and S.E. for predicted values with two independent

variables following a log-normal distribution

Sample Size, Method Mean Bias MSE Correlation SEE

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), New -10.2079 199764.1000 0.9376 254.6255

n=300(m∗
1=m∗∗

2 =m∗∗∗
3 =100), SHR 85.9998 47835.6600 0.9335 ——

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), New 1.0546 17442.6700 0.9918 71.3051

n=3000(m∗
1=m∗∗

2 =m∗∗∗
3 =1000), SHR 66.5488 12226.2700 0.9328 ——

Correlation is the mean correlation between observed and predicted values across simulations.

SEE is the mean of standard error estimates for predicted values.

*the sample size for subset with only outcome Y and predictor X1.

**the sample size for subset with only outcome Y and predictor X2.

***the sample size for subset with only predictors X1 and X2.

4 Example

In this section, we analyzed a real example and compared the results using our new synthesis

method and the SHR method. The data came from the 1999-2000 National Health and

Nutritional Examination Survey [5]. There were five variables in this data set, including

one outcome Y , systolic blood pressure, and four predictors, X1, X2, X3, and X4, which

represented age, body mass index (BID), serum total cholesterol level, and the natural log

of serum triglyceroides, respectively. First, we fitted a multivariate regression model to this

data set, which would serve as the gold standard for this analysis. Next, we randomly divided

the data set into the five mutually exclusive subsets with approximately equal sample sizes.

The first four subsets included the outcome Y and each of the four covariates, X1, X2,

X3, and X4, respectively. The last subset contained all four covariates, which was used to

derive pairwise correlations among the covariates. We applied the two synthesis methods to

these five subsets to obtain estimated parameters in the multivariate regression model and

reported the results in Table 5. For comparison purposes, we also included the estimated

parameters in the multivariate regression models obtained by the gold standard model in

Table 5.
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Table 5: Parameter estimates (SE) for the NHANES blood pressure example

Variables Gold standard β̃ NEW Method β̂NEW SHR Method* β̂SHR

Intercept 76.207 (2.556) 73.482 (4.531) 83.401

AGE 0.601 (0.017) 0.634 (0.050) 0.681

BID 0.379 (0.045) 0.403 (0.128) 0.337

TCHOL 0.024 (0.007) 0.029 (0.018) 0.006

LOGTRIG 1.374 (0.529) 1.506 (0.931) 0.160

*Cannot calculate SE using this method

The estimated parameters and their standard errors (SEs) from the gold standard and

from both our new method and SHR method were listed in Table 5 (SE was not available by

the SHR method). From these results, we observed that the new method produced the co-

efficient estimates that were comparable to those derived using the gold standard. However,

the estimates for Intercept and LOGTRIG from the SHR method were varied somewhat

from those derived using the gold standard method. As an illustration, the predicted value

for a 65 years old subject with the BMI of 19, the serum total cholesterol level of 190, and

the serum triglyceroides of 160 would be 134, 135, and 136, using the gold standard method,

the new method, and the SHR method, respectively.

5 Discussion

In this paper, we provided several enhancements to the existing SHR synthesis analysis

methodology. These improvements allow for more robust estimates of the regression param-

eters and predicted values when covariates are not normally distributed. Additionally, the

new method allows for estimation of the variance of the resulting parameters and predicted

outcomes.

Both the previously reported SHR method and our improved method allow for the build-

ing of multivariate regression models using univariate regression coefficients and two-way

correlation coefficient data that are derived from different data sources. The underlying

assumption is that each individual study is representative of the target population. How-
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ever, the validity of the previously reported SHR synthesis analysis methodology relies on

the normality assumption of the data. Although synthesis analysis is related to both meta-

analysis and analysis of missing-data, it is also different from these two traditional analyses

in two important ways. First, while traditional meta-analysis is to combine the multivariate

regression models with the same covariates from different studies, the synthesis analysis is

to create a multivariate linear regression model from univariate linear regression models on

different covariates. Although the statistical problem the synthesis analysis deals with may

be considered as one particular type of missing-data problem, unlike a traditional analysis of

missing-data, the synthesis analysis does not require individual level data and instead only

requires coefficient estimates of univariate linear regression models between the outcome and

a covariate and between any two covariates.

Although the proposed method was developed to synthesize different univariate linear

regression models with different covariates into multivariate linear regression models, it can

be easily extended to the setting in which several studies are available for some (or all) of the

univariate regression models. In this case, there would be variation among the parameter

estimates. For example, if there are five studies available for the linear model, E(Y | X1),

and six studies for the linear model model, E(X1 | X2), then we would have the five sets of

estimates for the intercept and slope of the linear model of Y on X, denoted by γj1
0 and γj1

1 ,

for j = 1, . . . , 5, and the six sets of estimates for the intercept and slope of the linear model

of X1 on X2, denoted by αk21
0 and αk21

1 , for k = 1, . . . , 6.

In this case, we propose to first combine the results on the same univariate regression

model from different studies into the one univariate regression model using the weighted

mean of αjk
i and γj

i , with the weight being the inverse sample size; that is,

γ1
0 =

5∑
j=1

Nj

N
γj1

0 , γ1
1 =

5∑
j=1

Nj

N
γj1

1 ,

where Nj is the sample size for the jth univariate model between Y and X1, and N =
∑5

j=1 Nj. Then, we apply the proposed synthesis method in Section 2 to obtain the multi-

variate regression model.

We performed a simulation study to assess the performance of the modified method

in the two independent variables case, with one independent variables following a normal
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distribution and another following a log-normal distribution. We also compared this modified

method with other combining methods, including mean, median, minimum and maximum

of multiple estimates for a same regression parameter. From these simulation results, we

concluded that parameter estimates using the weighted mean had the smallest bias and

MSE, and were very close to the bias and MSE using the gold standard. Also, the predicted

value using the weighted mean had the smallest bias, MSE, and SEE. We give a detailed

description on our simulation study and results in Appendix D.

Acknowledgments

We would like to thank Vicki Ding and Hua Chen for their help in preparing this

manuscript. Xiao-Hua Zhou, Ph.D, is presently a Core Investigator and Biostatistics Unit

Director at the Northwest HSR&D Center of Excellence, Department of Veterans Affairs

Medical Center, Seattle, WA. The views expressed in this article are those of the authors

and do not necessarily represent the views of the Department of Veterans Affairs. This study

has been partially supported by NSFC 30728019.

14 http://biostats.bepress.com/uwbiostat/paper340



References

1. Samsa G., Hu G., Root M. Combining Information From Multiple Data Sources to

Create Multivariable Risk Models: Illustration and Preliminary Assessment of a New

Method. Journal of Biomedicine and Biotechnology 2, 113-123, 2005.

2. Hackam DG., Anand SS. Emerging Risk Factors for Atherosclerotic Vascular Disease A

Critical Review of the Evidence. JAMA 290,932-940, 2003.

3. Fruchart-Najib J., Bauge E., Niculescu LS., Pham T., Thomas B., Rommens C., Majd

Z., Brewer B., Pennacchio LA., Fruchart, JC. Mechanism of triglyceride lowering in

mice expressing human apolipoprotein. Biochem. Biophys. Res. Commun. 319,

397-404, 2004.

4. Vasan RS. Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Con-

siderations Circulation 113, 2335-2362, 2006.

5. National Center for Health Statistics. National Health and Nutrition Examination

Survey (NHANES) 1999-2000, http : //www.cdc.gov/nchs/about/major/nhanes/.

6. Casella G., Berger RL. . Statistical Inference. 2nd Ed. Thomson Learning: Pacific

Grove, CA, 2002.

15 Hosted by The Berkeley Electronic Press



Appendix A. Sketch Proof for Uniqueness of Intercept

Coefficient

Here we show that there is the unique solution for the intercept term β0 with the p

equations (5), meaning that we need to show that the following p solutions are equivalent:





β
(1)
0 = γ1

0 − (α12
0 β2 + α13

0 β3 + ... + α1,p−1
0 βp−1 + α1p

0 βp),

β
(2)
0 = γ2

0 − (α21
0 β1 + 0 + α23

0 β3 + ... + α2,p−1
0 βp−1 + α2p

0 βp),

...

β
(p)
0 = γp

0 − (αp1
0 β1 + αp2

0 β2 + αp3
0 β3 + ... + αp,p−1

0 βp−1 + 0).

Without losing generality, we only show that the solutions of the first two equations are

equal, that is, β
(1)
0 = β

(2)
0 . The proof for other solutions is similar.

In order to show

γ1
0 − α12

0 β2 − α13
0 β3 − ...− α1,p−1

0 βp−1 − α1p
0 βp

= γ2
0 − α21

0 β1 − α23
0 β3 − ...− α2,p−1

0 βp−1 − α2p
0 βp, (11)

we add E(X1)β1 + E(X2)β2 + ... + E(Xp)βp to both sides of (11), and then the left-side of

(11) becomes

γ1
0 + E(X1)β1 + (E(X2)− α12

0 )β2 + ...(E(Xp−1)− α1,p−1
0 )βp−1 + (E(Xp)− α1p

0 )βp.(12)

Because E(Xj|Xi) = αij
0 + αij

1 Xi, we can get the following result:

E(Xj) = E(E(Xj|Xi)) = αij
0 + αij

1 E(Xi).

So we can replace (E(Xj)− αij
0 ) with α1j

1 E(X1) in (12) and obtain the following result:

γ1
0 + E(X1)β1 + α12

1 β2E(X1) + α1,p−1
1 βp−1E(X1) + α1p

1 βpE(X1)

= γ1
0 + (β1 + α12

1 β2 + ... + α1p
1 βp)E(X1). (13)

Because β1, . . ., and βp are the solutions of Mβ = γ1, we can obtain the following result:

β1 + α12
1 β2 + ... + α1p

1 βp = γ1
1 .
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So the right side of (13) becomes to γ1
0 + γ1

1E(X1), which equals to E(Y ) because E(Y ) =

E(E(Y |X1)) = E(γ1
0 + γ1

1X1) = γ1
0 + γ1

1E(X1).

Similarly, we can proof the right-side of (11) plus E(X1)β1 + E(X2)β2 + ... + E(Xp)βp is

also equal to E(Y ). This completes the proof.

Appendix B. Solution for Two Predictors Case

When p = 2, we can also have an explicit formula for the derivative of β = g(α, γ) with

respective to α and γ, 5g(α, γ), for the two independent variables case. Here, 5g(α, γ) is

used to calculate the variance of β and predicted values.

5g(α, γ) =




∂β̂0

∂α12
0

∂β̂1

∂α12
0

∂β̂2

∂α12
0

∂β̂0

∂α12
1

∂β̂1

∂α12
1

∂β̂2

∂α12
1

∂β̂0

∂α21
0

∂β̂1

∂α21
0

∂β̂2

∂α21
0

∂β̂0

∂α21
1

∂β̂1

∂α21
1

∂β̂2

∂α21
1

∂β̂0

∂γ1
0

∂β̂1

∂γ1
0

∂β̂2

∂γ1
0

∂β̂0

∂γ1
1

∂β̂1

∂γ1
1

∂β̂2

∂γ1
1

∂β̂0

∂γ2
0

∂β̂1

∂γ2
0

∂β̂2

∂γ2
0

∂β̂0

∂γ2
1

∂β̂1

∂γ2
1

∂β̂2

∂γ2
1




=




−γ2
1−α21

1 γ1
1

1−α12
1 α21

1
0 0

α12
0 α21

1

(1−α12
1 α21

1 )2
− γ2

1

1−α12
1 α21

1
+

α21
1 (γ1

1−α21
1 γ2

1)

(1−α12
1 α21

1 )2
α21

1 (γ2
1−α21

1 γ1
1)

1−α12
1 α21

1

0 0 0

−α12
0

[
− γ1

1

1−α12
1 α21

1
− α12

1 (γ2
1−α21

1 γ1
1)

(1−α12
1 α21

1 )2

]
α12

1 (γ1
1−α12

1 γ2
1)

(1−α12
1 α21

1 )2
− γ1

1

1−α12
1 α21

1
− α21

1 (γ2
1−α21

1 γ1
1)

(1−α12
1 α21

1 )2

1 0 0

α12
0 α21

1

1−α12
1 α21

1

1
1−α12

1 α21
1

− α21
1

1−α12
1 α21

1

0 0 0

− α12
0

1−α12
1 α21

1
− α12

1

1−α12
1 α21

1

1
1−α12

1 α21
1




Appendix C. Solution for Three and Four Predictors
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When there are three predictors in the model, D and Di(i=1,2,3) are given as follows:

D =

∣∣∣∣∣∣∣∣∣

1 α12
1 α13

1

α21
1 1 α23

1

α31
1 α32

1 1

∣∣∣∣∣∣∣∣∣

= (1 + α12
1 α23

1 α31
1 + α13

1 α21
1 α32

1 )− (α12
1 α21

1 + α13
1 α31

1 + α23
1 α32

1 ),

D1 =

∣∣∣∣∣∣∣∣∣

γ1
1 α12

1 α13
1

γ2
1 1 α23

1

γ3
1 α32

1 α33
1

∣∣∣∣∣∣∣∣∣
= (γ1

1α
33
1 + α12

1 α23
1 γ3

1 + α13
1 γ2

1α
32
1 )− (α13

1 γ3
1 + α12

1 γ2
1α

33
1 + γ1

1α
23
1 α32

1 ),

D2 =

∣∣∣∣∣∣∣∣∣

1 γ1
1 α13

1

α21
1 γ2

1 α23
1

α31
1 γ3

1 α33
1

∣∣∣∣∣∣∣∣∣
= (γ2

1α
33
1 + γ1

1α
23
1 α31

1 + α13
1 α21

1 γ3
1)− (α13

1 γ2
1α

31
1 + γ1

1α
21
1 α33

1 + α23
1 γ3

1),

and

D3 =

∣∣∣∣∣∣∣∣∣

1 α12
1 γ1

1

α21
1 1 γ2

1

α31
1 α32

1 γ3
1

∣∣∣∣∣∣∣∣∣
= (γ3

1 + α12
1 γ2

1α
31
1 + γ1

1α
21
1 α32

1 )− (γ1
1α

31
1 + α12

1 α21
1 γ3

1 + γ2
1α

32
1 ).

If there are four predictors in the regression model, the D and Di(i=1,2,3,4) are as follows:

D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 α12
1 α13

1 α14
1

α21
1 1 α23

1 α24
1

α31
1 α32

1 1 α34
1

α41
1 α42

1 α43
1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= [(1 + α23
1 α34

1 α42
1 ) + α24

1 α32
1 α43

1 )− (α23
1 α32

1 + α24
1 α42

1 + α34
1 α43

1 )]

−α12
1 [(α21

1 + α23
1 α34

1 α41
1 + α24

1 α31
1 α43

1 )− (α24
1 α41

1 + α23
1 α31

1 + α21
1 α34

1 α43
1 )]

+α13
1 [(α21

1 α32
1 + α34

1 α41
1 + α24

1 α31
1 α42

1 )− (α24
1 α32

1 α41
1 + α21

1 α34
1 α42

1 + α31
1 )]

−α14
1 [(α21

1 α32
1 α43

1 + α41
1 + α23

1 α31
1 α42

1 )− (α23
1 α32

1 α41
1 + α31

1 α43
1 + α21

1 α42
1 )];
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D1 =

∣∣∣∣∣∣∣∣∣∣∣∣

γ1
1 α12

1 α13
1 α14

1

γ2
1 1 α23

1 α24
1

γ3
1 α32

1 1 α34
1

γ4
1 α42

1 α43
1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= γ1

1 [(1 + α23
1 α34

1 α42
1 ) + α24

1 α32
1 α43

1 )− (α23
1 α32

1 + α24
1 α42

1 + α34
1 α43

1 )]

−α12
1 [(γ2

1 + α23
1 α34

1 γ4
1 + α24

1 γ3
1α

43
1 )− (α24

1 γ4
1 + α23

1 γ3
1 + α34

1 α43
1 γ2

1)]

+α13
1 [(γ2

1α
32
1 + α34

1 γ4
1 + α24

1 γ3
1α

42
1 )− (α24

1 α32
1 γ4

1 + γ3
1 + α34

1 α42
1 γ2

1)]

−α14
1 [(γ2

1α
32
1 α43

1 + γ4
1 + α23

1 γ3
1α

42
1 )− (α23

1 α32
1 γ4

1 + α43
1 γ3

1 + α42
1 γ2

1)];

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 γ1
1 α13

1 α14
1

α21
1 γ2

1 α23
1 α24

1

α31
1 γ3

1 1 α34
1

α41
1 γ4

1 α43
1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= [(γ2

1 + α23
1 α34

1 γ4
1 + α24

1 γ3
1α

43
1 )− (α24

1 γ4
1 + α23

1 γ3
1 + α34

1 α43
1 γ2

1)]

−γ1
1 [(α21 + α23

1 α34
1 α41

1 + α24
1 α31

1 α43
1 )− (α24

1 α41
1 + α23

1 α31
1 + α21

1 α34
1 α43

1 )]

+α13
1 [(α21

1 γ3
1 + γ2

1α
34
1 α41

1 + α24
1 α31

1 γ4
1)− (α24

1 γ3
1α

41
1 + γ2

1α
31
1 + α21

1 α34
1 γ4

1)]

−α14
1 [(α21

1 γ3
1α

43
1 + γ2

1α
41
1 + α23

1 α31
1 γ4

1)− (α23
1 γ3

1α
41
1 + γ2

1α
31
1 α43

1 + α21
1 γ4

1)];

D3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 α12
1 γ1

1 α14
1

α21
1 1 γ2

1 α24
1

α31
1 α32

1 γ3
1 α34

1

α41
1 α42

1 γ4
1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= [(γ3

1 + γ2
1α

34
1 α42

1 + α24
1 α32

1 γ4
1)− (α24

1 α42
1 γ3

1 + γ2
1α

32
1 + α34

1 γ4
1)]

−α12
1 [(α21

1 γ3
1 + γ2

1α
34
1 α41

1 + α24
1 α31

1 γ4
1)− (α24

1 γ3
1α

41
1 + γ2

1α
31
1 + α21

1 α34
1 γ4

1)]

+γ1
1 [(α

21
1 α32

1 + α34
1 α41

1 + α24
1 α31

1 α42
1 )− (α24

1 α32
1 α41

1 + α31
1 + α21

1 α34
1 α42

1 )]

−α14
1 [(α21

1 α32
1 γ4

1 + γ3
1α

41
1 + γ2

1α
31
1 α42

1 )− (γ2
1α

32
1 α41

1 + α31
1 γ4

1 + α21
1 γ3

1α
42
1 )];
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and

D4 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 α12
1 α13

1 γ1
1

α21
1 1 α23

1 γ2
1

α31
1 α32

1 1 γ3
1

α41
1 α42

1 α43
1 γ4

1

∣∣∣∣∣∣∣∣∣∣∣∣
= [(γ4

1 + α23
1 γ3

1α
42
1 ) + γ2

1α
32
1 α43

1 )− (γ2
1α

42
1 + α23

1 α32
1 γ4

1 + γ3
1α

43
1 )]

−α12
1 [(α21

1 γ4
1 + α23

1 γ3
1α

41
1 + γ2

1α
31
1 α43

1 )− (γ2
1α

41
1 + α23

1 α31
1 γ4

1 + α21
1 γ3

1α
43
1 )]

+α13
1 [(α21

1 α32
1 γ4

1 + γ3
1α

41
1 + γ2

1α
31
1 α42

1 )− (γ2
1α

32
1 α41

1 + α31
1 γ4

1 + α21
1 γ3

1α
42
1 )]

−γ1
1 [(α

21
1 α32

1 α43
1 + α41

1 + α23
1 α31

1 α42
1 )− (α23

1 α32
1 α41

1 + α31
1 α43

1 + α21
1 α42

1 )].

Appendix D. Simulation Study on the Modified

Synthesis

We performed a simulation study to assess the performance of the modified method, as

described in the discussion section, for the two independent variables case when the vector

of two covariates follows a bivariate normal distribution or bivariate log-normal distribution.

We also compared this modified method with the other combining methods, including mean,

median, minimum and maximum of multiple estimates for a same regression parameter. For

each of the 3 univariate linear models, E(Y | X1) , E(Y | X2) , and E(X1 | X2)), there were

the estimates from 5 different studies. We selected the sample size for each of the 5 studies

for each univariate model to be equal (1000 and 100) or unequal ((100,200,500,1200,3000)

or (10,20,50,120,300)). We assessed the performance of the modified synthesis method using

the weighted mean, mean, median, minimum and maximum of combing results from the five

studies.

Since our results on the simulated data from the bivariate normal distribution are similar

with those on the simulated data from the bivariate log-normal distribution, we only report

the results on the bivariate normal distribution case. Table 6 to Table 9 show the bias and

MSE for each of the regression parameters β0, β1, and β2 as well as the mean bias, MSE,

correlation, and SEE (mean of SE estimates) for the predicted values.

20 http://biostats.bepress.com/uwbiostat/paper340



Table 6: Bias and MSE for estimated parameters with equal sample sizes

Method Bias MSE

β0 β1 β2 β0 β1 β2

Total sample size N = 1000× 3× 5 (equal sample size) = 15000

Weighted Mean (Mean) 0.0023 0.0005 -0.0005 0.2126 0.0026 0.0068

Median -0.0055 -0.0016 0.0007 0.3792 0.0099 0.0183

Minimum 0.0219 0.0075 -0.0036 0.5250 0.0140 0.0266

Maximum -0.0428 -0.0084 0.0083 0.8344 0.0214 0.0399

Total sample size N = 100× 3× 5 (equal sample size) = 1500

Weighted Mean (Mean) 0.1066 0.0107 -0.0272 2.8586 0.0708 0.1509

Median 0.1781 0.0286 -0.0433 4.2857 0.1156 0.2228

Minimum -0.2240 -0.0181 0.0502 5.4686 0.1158 0.2820

Maximum 0.1285 -0.0037 -0.0373 11.4781 0.3338 0.5221

Table 7: Mean Bias, MSE, Correlation and SEE for predicted values with equal sample sizes

Method Mean Bias MSE Correlation SEE

Total sample size N = 1000× 3× 5 (equal sample size) = 15000

Weighted Mean (Mean) 0.0019 0.0301 0.9998 0.9109

Total sample size N = 100× 3× 5 (equal sample size) = 1500

Weighted Mean (Mean) 0.0126 0.3741 0.9956 3.0272
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Table 8: Bias and MSE for estimated parameters with unequal sample sizes

Method Bias MSE

β0 β1 β2 β0 β1 β2

Total sample size N = (100 + 200 + 500 + 1200 + 3000)× 3 = 15000

Weighted Mean 0.0196 0.0049 -0.0056 0.5540 0.0251 0.0496

Mean -0.0231 0. 0067 -0.0076 0.8445 0.0567 0.0875

Median 0.0208 0.0073 -0.0082 0.6676 0.0680 0.0329

Minimum -0.0538 0.0211 -0.0103 3.0387 0.0733 0.1526

Maximum -0.0236 0.0040 -0.0123 5.8060 0.1549 0.2748

Total sample size N = (10 + 20 + 50 + 120 + 300)× 3 = 1500

Weighted Mean 0.1147 0.0268 -0.0283 3.0217 0.3488 0.3621

Mean 0.2007 0.0234 0.0322 4.4266 0.3396 0.4212

Median 0.1583 0.0283 -0.0379 7.2861 0.4095 0.3714

Minimum -2.8130 -0.4905 0.6229 73.6571 2.0423 3.8998

Maximum -0.5346 0.1130 0.0830 529.7432 96.6978 61.0214

Table 9: Mean Bias, MSE, Correlation and SEE for predicted values with unequal sample

sizes

Method Mean Bias MSE Correlation SEE

Total sample size N = (100 + 200 + 500 + 1200 + 3000)× 3 = 15000

Weighted Mean 0.0201 0.0994 0.9886 1.1105

Mean -0.0219 0.1134 0.9825 1.2773

Total sample size N = (10 + 20 + 50 + 120 + 300)× 3 = 1500

Weighted Mean -0.0158 0.3394 0.9900 4.1135

Mean 0.1993 0.3550 0.9789 4.3768
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