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Summary. The predictive capacity of a marker in a population can be

described using the population distribution of risk (Huang et al., 2007;

Pepe et al., 2008a; Stern, 2008). Virtually all standard statistical sum-

maries of predictability and discrimination can be derived from it (Gail

and Pfeiffer, 2005). The goal of this paper is to develop methods for
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making inference about risk prediction markers using summary measures

derived from the risk distribution. We describe some new clinically mo-

tivated summary measures and give new interpretations to some existing

statistical measures. Methods for estimating these summary measures are

described along with distribution theory that facilitates construction of

confidence intervals from data. We show how markers and, more gener-

ally, how risk prediction models, can be compared using clinically relevant

measures of predictability. The methods are illustrated by application to

markers of lung function and nutritional status for predicting subsequent

onset of major pulmonary infection in children suffering from cystic fibro-

sis. Simulation studies show that methods for inference are valid for use

in practice.

Keywords: Classification; Diagnosis; Prediction; Prognosis; Risk models

1 Background

Let D denote a binary outcome variable, such as presence of disease or occurrence of an

event within a specified time period and let Y denote a set of predictive markers used to

predict a bad outcome, D = 1, or a good outcome, D = 0. For example, elements of the

Framingham risk score (age, gender, total and high-density lipoprotein cholesterol, systolic

blood pressure, treatment for hypertension and smoking) are used to predict occurrence of a
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cardiovascular event within 10 years (http://hp2010.nhlbihin.net/atpiii/calculator.asp). We

write the risk associated with marker value Y = y as risk(y) = P [D = 1|Y = y].

Huang et al. (2007) proposed the predictiveness curve to describe the predictive capacity

of Y . It displays the population distribution of risk via the risk quantiles, R(ν) versus ν,

where

P [risk(Y ) ≤ R(ν)] = ν.

The inverse of the predictiveness curve is simply the cumulative distribution function (cdf)

of risk(Y )

R−1(p) = P [risk(Y ) ≤ p] = Frisk(p)

and correspondingly

R(ν) = F−1
risk(ν).

Gail and Pfeiffer(2005) noted that standard statistical measures used to quantify the

predictive capacity of a risk prediction model can be calculated from the risk distribution

function, Frisk(p). These include measures derived from the receiver operating characteristic

(ROC) curve and the Lorenz curve, predictive values, misclassification rates, and measures

of explained variation. Bura and Gastwirth (2001) used the risk quantiles, R(ν), to assess

predictors in binary regression models. They proposed a summary index which they called

the total gain.

Summary indices are often used to compare prediction models. The area under the ROC
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curve is widely used in practice for this purpose. However there is controversy about its use,

particularly in the cardiovascular research community (Cook, 2007; Pencina et al., 2008).

This has motivated another approach to evaluating risk prediction markers that relies on

defining categories of risk that are clinically meaningful. Several summary indices based

on this notion have been proposed. The reclassification percent and the net reclassification

index (NRI) are such summary measures derived from reclassification tables and they have

recently gained popularity in the applied literature (Ridker et al., 2008; D’Agostino et al.,

2008).

In this paper, we explicitly relate existing and new summary measures of prediction

to the risk distribution, i.e. to the predictiveness curve. We contrast them qualitatively,

paying particular attention to their clinical interpretations and relevance. We then derive

distribution theory that can be used for making statistical inference. Note that rigorous

methods for inference have not been available heretofore for several of the existing summary

measures. Rather the measures are used informally in practice. Small sample performance

is investigated for the new and existing summary measures with simulation studies.

The methods are illustrated with data from 12,802 children with cystic fibrosis disease.

We describe the data and risk modelling methods in detail later in section 7. Briefly, we

compare the capacities of lung function and nutritional measures made in 1995 to predict

onset of a pulmonary exacerbation event during the following year. Overall, 41% of children

had a pulmonary exacerbation in 1996. Figure 1 displays predictiveness curves for two risk

models, one based on lung function (FEV1) and one based on weight. We see from Figure 1
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that lung function is more predictive in the sense that more subjects have lung function based

risks that are at the high and low ends of the risk scale than is true for weight based risks.

Since a good risk marker is one that is helpful to individuals making medical decisions, and

because decisions are more easily made when an individual’s risk is high or low than if it is in

the middle, we conclude informally from the curves that lung function is a superior predictor

than weight. We next define formal summary indices that can be used for descriptive and

comparative purposes and illustrate them with the cystic fibrosis data.

Figure 1

2 Summary Indices Involving Risk Thresholds

In clinical practice, a subject’s risk is calculated to assist in medical decision making. If his

risk is high, he may be recommended for diagnostic, treatment or preventive interventions. If

his risk is low, he may avoid interventions that are unlikely to benefit him. In certain clinical

contexts, explicit treatment guidelines exist that are based on individual risk calculations.

For example, the Third Adult Treatment Panel recommends that if a subject’s 10 year risk

of a cardiovascular disease exceeds 20% he should consider low density lipoprotein (LDL)-

lowering therapy (Adult Treatment Panel III, 2001). The risk threshold that leads one to

opt for an intervention depends on anticipated costs and benefits. These may vary with

individuals’ perceptions and preferences (Vickers and Elkin, 2006; Hunink et al., 2006). The
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choice of threshold may also vary with the availability of health care resources. In this section

we discuss summary indices that depend on specifying a risk threshold. To be concrete we

suppose that the overall risk in the population is high, ρ = P [D = 1], and that the goal of the

risk model is to identify individuals at low risk, risk(Y ) < pL, where pL is the risk threshold

that defines low risk in the specific clinical context. Analagous discussion would pertain

to a low risk population in which a risk model is sought to identify a subset of individuals

at high risk. Extensions to settings where multiple risk categories are of interest occur in

practice when multiple treatment options are available, and will be discussed at the end of

this section.

For illustration with the cystic fibrosis data, we choose the low risk threshold pL =

0.25 which contrasts with the overall incidence ρ = 0.41. Patients with cystic fibrosis now

routinely receive inhaled antibiotic treatment to prevent pulmonary exacerbations but this

was not the case in the 1990s the time during which our data were collected. If subjects

at low risk, risk(Y ) < pL, in the absence of treatment could be identified, they could

forego treatment and thereby avoid inconveniences, monetary costs and potentially increased

risk of developing therapy resistant bacterial strains associated with inhaled prophylactic

antibiotics.
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2.1 Population proportion at low risk

A simple compelling summary measure is the proportion of the population deemed to be at

low risk according to the risk model. This is R−1(pL), the inverse function of the predictive-

ness curve, as noted earlier. A good risk prediction marker should identify more people at

low risk. That is, a better model will have larger values for R−1(pL). In the Cystic Fibrosis

example, we see from Figure 1 that 32% of subjects in the population are in the low risk

stratum based on lung function measures while 11%, are in the low risk stratum according

to weight. A completely uninformative marker would put none in the low risk stratum since

it assigns risk(Y ) = ρ to all subjects.

2.2 Cases and controls classified as low risk

Another important perspective from which to evaluate risk prediction markers is classification

accuracy (Pepe et al., 2008a , Janes et al., 2008). This is characterized by the risk distribution

in cases, subjects for whom D = 1, and in controls, subjects with a good outcome D = 0.

Specifically, a better risk model will classify fewer cases and more controls as low risk (Pencina

et al., 2008). This is desirable because cases should not forego treatment as they may benefit

from it. On the other hand, treatment should be avoided for controls since they only suffer its

negative consequences. Corresponding summary measures are termed true and false positive
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rates,

TPR(pL) = P (risk(Y ) ≥ pL|D = 1); FPR(pL) = P (risk(Y ) ≥ pL|D = 0).

Higher TPR(pL) and lower FPR(pL) are desirable.

Figure 2 shows cumulative distributions of risk(Y ) in cases and controls separately. From

this, TPR(p) and FPR(p) can be gleaned for any value of p. We see that the proportion of

controls in the low risk stratum is much larger when using lung function as the risk prediction

marker than for weight, 1-FPR(pL) = 46% for lung function as opposed to 15% for weight.

However the proportion of cases whose risks exceed pL is also lower for the lung function

model (TPR(pL) = 87%) than for the weight model (TPR(pL) = 93%)

Figure 2

Observe that TPR(pL) and FPR(pL) are indexed by the threshold pL. This contrasts

with the display of TPR and FPR that constitutes the ROC curve. ROC curves (Figure

3) suppress the risk thresholding values by showing TPR just as a function of FPR, not

TPR and FPR as functions of risk threshold (Figure 2). When specific risk thresholds define

clinically meaningful risk categories, the TPR and FPR associated with those risk category

definitions are of intrinsic interest, more so than the TPR achieved at a fixed FPR value.

Figure 3
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2.3 Event rates in risk strata

Another pair of summary measures is the event rates in the two risk strata. These can be

thought of as predictive values, PPV(pL) and 1-NPV(pL), defined as

PPV(pL) = P (D = 1|risk(Y ) > pL), and 1-NPV(pL) = P (D = 1|risk(Y ) < pL). (1)

PPV(pL) is the event rate in the high risk stratum and 1-NPV(pL) is the event rate in the

low risk stratum. For a good marker, the event rate PPV(pL) will be high and the event

rate 1-NPV(pL) will be low.

By applying Bayes theorem to (1), PPV and NPV can be written in terms of TPR and

FPR:

PPV(p) =
ρ

1 − ρ

TPR(p)

FPR(p)
; NPV(p) =

1 − ρ

ρ

1 − FPR(p)

1 − TPR(p)
, (2)

These expressions facilitate estimation of PPV(p) and NPV(p), which we discuss in section 4.

Event rates are also functions of the predictiveness curve. Specifically they average the

curve over the ranges (νL, 1) and (0, νL) where νL = R−1(pL).

PPV(pL) =

∫ 1

νL

R(u)du/(1 − νL); and 1-NPV(pL) =

∫ νL

0

R(u)du/νL.

For the cystic fibrosis example, estimates of the event rates, 1-NPV(pL) and PPV(pL),

9

Hosted by The Berkeley Electronic Press



are 17% and 53% for the risk strata defined by lung function. In contrast the event rates

are much closer to each other, 24% and 43%, in the two risk strata defined by weight. Again

lung function appears to be the better predictor of low risk. Not only is R−1(pL), the size of

the low risk stratum, bigger when using lung function but 1-NPV(pL), the event rate in the

low risk stratum, is also smaller.

2.4 ν
th Risk percentile

In the applied literature, variables are often categorized using quantiles. In this vein, cate-

gories of risk are sometimes defined using risk quantiles for which we have used the notation

R(ν). For example, Ridker et al. (2000) used quartiles of risk and noted that high sensitivity

c-reactive protein (hs-CRP) was more predictive of cardiovascular risk than standard lipid

screening because the level of hs-CRP in the highest versus lowest quartile was associated

with a much higher relative risk for future coronary events than was the case for standard

lipid measurements.

Another context in which R(ν) is well motivated is when availability of medical resources

is limited. Suppose resources are available to provide an intervention to a fraction 1 − ν of

the population, those 1 − ν at highest risk. Since R(ν) is the corresponding risk quantile,

subjects given the intervention have risks ≥ R(ν). A marker or risk model for which R(ν)

is larger is preferable because it ensures that those receiving intervention are at greater risk

of a bad outcome in the absence of the intervention.
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In the cystic fibrosis example, suppose the 10% of the population deemed to be at high-

est risk will be treated. If lung function is used to calculate risk, subjects with risks at or

above 0.76 receive treatment. On the other hand if weight is used to calculate risk, subjects

whose risks are as low as 0.52 will be offered treatment.

2.5 Risk threshold yielding specified TPR or FPR

In a diagnostic setting, it may be important to flag most people with disease as high risk

so that people with disease get necessary treatment. In other words, we may require that

the TPR exceed a certain minimum value, TPR=t. The corresponding risk threshold is an

important entity to report. We denote it by R(νT (t)). The decision rule that yields TPR=t,

requires people whose risks are as low as R(νT (t)) to undergo treatment. If the treatment

is cumbersome or risky the decision rule may be unacceptable or unethical if the threshold

R(νT (t)) is low.

In screening healthy populations for a rare disease such as ovarian cancer, the false

positive rate must be very low in order to avoid large numbers of subjects undergoing unnec-

essary medical procedures. The risk threshold that yields an acceptable FPR must also be

acceptable for individuals as a threshold for deciding for or against medical procedures. To

maintain a very low FPR, the risk threshold may be very high in which case the decision rule

would not be ethical. Reporting the risk threshold that yields specified FPR=t is therefore
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often important in practice and we denote the threshold by R(νF (t)).

Unlike other predictiveness summary measures, R(νT (t)) and R(νF (t)) may not be suited

to the task of comparing markers. It is not clear that a specific ordering of thresholds is

always preferable. In the cystic fibrosis example, the risk threshold that yields TPR=0.85 is

0.27 when the calculation is based on lung function, but 0.32 when weight is used. Observe

that another consideration is the corresponding false positive rate which is 0.50 for lung

function and 0.72 for weight. If one wanted to control the false positive rate, at FPR=0.15

say, the corresponding risk thresholds are 0.54 for lung function and 0.51 for weight. Observe

that the lung function based risk threshold is lower than that for weight when controlling

the TPR but higher when controlling the FPR.

2.6 Risk reclassification measures

Several summary measures that rely on defined risk categories have been proposed recently.

The context for their definition has been when comparing a baseline risk model with one

that adds a novel marker to the baseline predictors using risk reclassification tables that

involve 3 or more categories of risk. It is illuminating to consider these measures in our

much simplified context, where only 2 risk categories defined by a single risk threshold pL

are of interest and when the baseline model involves no covariates at all so that the baseline

risk is equal to ρ for all subjects. We discuss the more complex setting later.
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Cook (2007) proposes the reclassification percent to summarize predictive information

in a model. In our context, all subjects are considered high risk under the baseline model

because ρ > pL. The reclassification percent is therefore the proportion of subjects classified

as low risk according to the risk model involving Y . This is exactly the summary index

R−1(pL) discussed earlier.

Pencina et al. (2008) criticize the reclassification percent because it does not distinguish

between desirable risk reclassifications (up for cases and down for controls) and undesirable

risk reclassifications (down for cases and up for controls). They propose the net reclassifi-

cation improvement (NRI) summary statistic as an alternative. We use ”up” and ”down”

to denote changes of one or more risk categories in the upward and downward directions,

respectively, for a subject between their baseline and augmented risk values. The NRI is

defined as

NRI = [P (up|D = 1) − P (down|D = 1)] − [P (up|D = 0) − P (down|D = 0)].

In our simple context it is easy to see that

NRI = TPR(pL) − FPR(pL)

where TPR(pL) and FPR(pL) were discussed earlier. We see that in the 2 category setting

the NRI statistic is equal to Youden’s index (Youden, 1950). Youden’s index has been

criticized because implicitly it weighs equally the consequences of classifying a case as low
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risk, i.e. a case failing to receive intervention, and classifying a control as high risk, i.e.

a control subjected to unnecessary intervention. Most often the costs and consequences of

these mistakes will differ greatly for cases and controls. Therefore we recommend reporting

the two components of the NRI separately, TPR(pL) and FPR(pL). Values were reported for

the cystic fibrosis study above. The corresponding NRI values are 0.33=0.87-0.54 for lung

function and 0.08=0.93-0.85 for weight.

2.7 Extensions and discussion

A key use of summary measures is to compare different risk models. One can quantify the

difference in performance between two risk models by taking the difference between summary

measures derived from the two models. In the cystic fibrosis example discussed here, the

two risk models involve completely different markers. However, one could also entertain two

models that involve some common predictors. The setting in which risk reclassification ideas

have emerged, is where one model involves standard baseline predictors and the other includes

a novel marker in addition to the baseline predictors. Taking the difference in summary

measures for the two models is a sensible way of assessing improvement in performance in

this context too.

Recall that when only 2 risk categories (low versus high) exist, Cook’s reclassification

percent is equal to R−1(pL) when the baseline risk does not depend on baseline covariates.

However, the reclassification percent is not equal to the difference of values for R−1(pL)
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between the baseline and augmented models when the baseline model does involve covari-

ates. In general, even when two models have exactly the same predictive performance, the

reclassification percent is typically non-zero. In fact it has been shown to vary dramatically

with correlations between predictors in one model versus another (Janes et al., 2008). This

measure therefore does not seem well suited for gauging the difference between predictive

capacities of two models. Instead we suggest that one simply focus on the difference in

proportions of subjects classified as low (or high) risk with the two models, i.e. differences

in R−1(pL).

We represented the NRI statistic as TPR(pL)-FPR(pL) in the simple setting. It is easy to

show that when two models involve covariates, the NRI statistic to compare the two models

is the difference (TPR1(pL)-TPR2(pL))-(FPR1(pL)-FPR2(pL)) where subscripts 1 and 2 are

used to index the two models. In analogy with our earlier discussion, we recommend reporting

the two comparative components separately, TPR1(pL)-TPR2(pL) and FPR1(pL)-FPR2(pL),

rather than their difference, the NRI, because typically changes in TPR should be weighted

differently than changes in FPR.

Summarizing data is difficult when more than two risk categories are involved. Statistics

such as the NRI have been criticized because they do not distinguish between changes of

one risk category and more than one risk category (Pepe et al., 2008b). In a similar vein,

when 3 risk categories exist with specific treatment recommendations for each, misclassifying

a case as being in the lowest risk level may be more serious than misclassifying him as in

the middle category. Similarly, misclassifying a control as being in the highest risk level
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may be more serious than misclassifying him as being in the middle category. Without

specifying utilities associated with different types of misclassifications, any accumulation

of data across risk categories is difficult to justify. For these settings we propose use of a

vector of summary statistics distinguished by the risk thresholds. For example, suppose we

consider three risk categories for the cystic fibrosis study defined by two thresholds pL = 0.25

and pH = 0.75. We could report: the proportions of subjects in the highest and lowest

categories, (1 − R−1(pH), R−1(pL)); the proportions of cases and controls in each category,

(TPR(pH), 1 − TPR(pL)) and (FPR(pH), 1 − FPR(pL)); and so forth.

Although statistical summaries that depend on clinically meaningful risk thresholds are

appealing, the choice of risk thresholds is often uncertain. Different clinicians or policy

makers may choose different risk categorizations. This argues for displaying the risk distri-

butions as continuous curves since one can then read from them summary indices described

here using any risk threshold of interest to the reader.

3 Threshold Independent Summary Measures

Classic measures that describe the predictive strength of a model can be interpreted as

summary indices for the predictiveness curve. We describe the relationships next. These

measures can compliment the display of risk distributions for several models when no spe-

cific risk thresholds are of key interest. In addition, formal hypothesis tests to compare

predictiveness curves can be based on them.
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3.1 Proportion of explained variation

The proportion of explained variation, also called R2, is the most popular measure of pre-

dictive power for continuous outcomes and is popular for binary outcomes too. It is most

commonly defined as

PEV ≡ var(D) −E(var(D|Y ))

var(D)
.

But it can also be written as

PEV = var(risk(Y ))/ρ(1 − ρ),

because var(D)=E(var(D|Y ))+var(E(D|Y )) and E(D|Y ) = P (D = 1|Y ) = risk(Y ). PEV

is a standardized measure of the variance in risk(Y ) since ρ(1−ρ) in the denominator is the

risk variance for an ideal marker that predicts risk(Y ) = 1 for cases and risk(Y ) = 0 for

controls. Hu et al. (2006) noted that PEV can also be written as the correlation between D

and risk(Y ).

An unintuitive but interesting and simple interpretation for PEV is as the difference

between the averages of risk(Y ) for cases and controls(Pepe et al., 2008b),

PEV = E[risk(Y )|D = 1] − E[risk(Y )|D = 0].

17
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In summary for the cystic fibrosis data, PEV, calculated as 0.22 for the lung function

measure and 0.05 for weight, can be interpreted as variances of risk distributions displayed

in Figure 1 standardized by the ideal variance of 0.41 × (1 − 0.41) = 0.24, or as differences

in means of distributions shown in Figure 2. In Figure 1, var(risk(Y )) = 0.053 for lung

function and 0.012 for weight yielding 0.22 and 0.05 respectively when divided by 0.24. On

the other hand in Figure 2, case and control mean risks are 0.54 and 0.32 for lung function

while they are 0.44 and 0.39 for weight, again yielding 0.54-0.32=0.22 and 0.44-0.39=0.05

for the PEV values calculated as the differences in means.

Pencina et al. (2008) employ the PEV summary measure to gauge the improvement in

risk prediction when clinically relevant risk thresholds do not exist. They do not recognize

it as the proportion of explained variation but call it integrated discrimination improvement

(IDI) and note that it has another interpretation as Youden’s index integrated uniformly

over (0,1):

PEV =

∫

Y I(p)dp,

where Y I(p) = P (risk(Y ) > p|D = 1) − P (risk(Y ) > p|D = 0) is Youden’s index for

the binary decision rule that is positive when risk(Y ) > p. In other words, PEV can also

be interpreted as the difference between integrated TPR(p) and FPR(p) functions defined

earlier.

In a commentary on the Pencina et al. paper, Ware and Cai (2008) suggest that IDI,

denoted here by PEV, does not depend on the overall event rate, ρ = P (D = 1). We disagree.
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To illustrate, suppose we have a single marker with risk function risk(Y ) increasing in Y .

Then

PEV =

∫

(P (risk(Y ) > p|D = 1) − P (risk(Y ) > p|D = 0))dp

=

∫

(P (Y > y|D = 1) − P (Y > y|D = 0))
∂risk(Y )

∂Y
|Y =ydy

Here, the conditional probabilities, P (Y > y|D = 1) and P (Y > y|D = 0), are independent

of prevalence, ρ, but ∂risk(Y )
∂Y

is a function of ρ. To demonstrate, consider a simple linear

logistic regression model,

logitP (D = 1|Y ) = θ0 + θ1Y. (3)

and note that

∂risk(Y )

∂Y
=

∂P (D = 1|Y )

∂Y
= θ1P (D = 1|Y ){1 − P (D = 1|Y )}.

Since P (D = 1|Y ) = P (Y |D=1)
P (Y |D=0)

ρ

1−ρ
/{1 + P (Y |D=1)

P (Y |D=0)
ρ

1−ρ
}, clearly varies with ρ, so does its

derivative. Figure 4 shows the relationship between PEV and ρ for a marker Y that is

standard normally distributed in controls and normally distributed with mean 1 and variance

1 in cases. The risk is a simple linear logistic risk function (equation (3)). As ρ increases

from 0 to 1, we see that PEV increases then decreases with maximum occurring at ρ = 0.5.

Janssens et al. (2006) also demonstrated dependence of PEV on ρ through a simulation
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study.

Figure 4

The proportion of explained variation has been defined in other ways, notably based

on notions of log likelihood (deviance). Gail and Pfeiffer (2005) note that these can also be

calculated from the risk distribution. However, Zheng and Agresti (2000) make the point that

these summary measures are difficult to interpret and we concur wholeheartedly. Therefore,

we do not pursue them further in this paper but note that methods for inference could be

developed in analogy with those we develop here for PEV.

3.2 Total Gain

Total gain, proposed by Bura and Gastwirth (2001) is defined as ,

TG =

∫ 1

0

|R(ν) − ρ|dν. (4)

This is the area sandwiched between the predictiveness curve and the horizontal line at ρ,

which is the predictiveness curve for a completely uninformative marker assigning risk(Y ) =

ρ to all subjects. TG is appealing because it can be visualized directly from the predictiveness

curve. For a perfect risk prediction model, the predictiveness curve is a step function rising

from 0 to 1 at ν = 1 − ρ. The corresponding TG is 2ρ(1 − ρ).
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Other interpretations can be made for TG. Huang and Pepe (2008b) have shown that

TG is equivalent to the Kolmogorov-Smirnov measure of distance between risk distributions

for cases and controls. This is an ROC summary index (Pepe, 2003, page 80):

TG = 2ρ(1 − ρ)supt{ROC(t) − t} (5)

= 2ρ(1 − ρ)maxp{TPR(p) − FPR(p)}, (6)

In fact we can write this more simply.

Result

TG = 2ρ(1 − ρ){TPR(ρ) − FPR(ρ)} (7)

Proof

Let ν∗ be the point where R(ν∗) = ρ. We have

TG =

∫ ν∗

0

(ρ − R(ν))dν +

∫ 1

ν∗

(R(ν) − ρ)dν.

Furthermore, because ρ =
∫ ν∗

0
R(ν)dν +

∫ 1

ν∗
R(ν)dν and ρ =

∫ 1

0
ρdν, setting these two terms

equal it follows that
∫ ν∗

0

(ρ −R(ν))dν =

∫ 1

ν∗

(R(ν) − ρ)dν.
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Therefore TG can be written as

TG = 2

∫ 1

ν∗

(R(ν) − ρ)dν

= 2

∫ 1

ν∗

R(ν)dν − 2ρ(1 − ν∗)

= 2ρTPR(ρ) − 2ρ(1 − R−1(ρ))

because TPR(ρ) =
∫ 1

ν∗
R(ν)dν/ρ. Moreover, since 1 − R−1(ρ) = ρTPR(ρ) + (1 − ρ)FPR(ρ),

the above representation of TG can be further simplified to 2ρ(1 − ρ){TPR(ρ) − FPR(ρ)}.

This representation of TG is useful for estimation and for deriving asymptotic distribution

theory. Interestingly, by equating (6) and (7), we find that the maximum value of TPR(p)-

FPR(p) occurs at the risk threshold p = ρ. Another short proof follows by taking its

derivative. In particular, since

TPR(R(ν)) − FPR(R(ν)) =

∫ 1

ν
R(u)du

ρ
+

∫ 1

ν
(1 −R(u))du

1 − ρ
, (8)

taking the derivative of the right side with respect to ν and setting it to 0, we have

{1 − R(ν)

ρ
} − {1 − 1 − R(ν)

1 − ρ
} = 0

at the solution. That is, the solution is at R(ν) = ρ. In the same illustrative setting used

above, where ρ = 0.2, Y is standard normal in controls and normal with mean 1 and variance

1 in cases, we see from Figure 5 how TPR(p)-FPR(p) varies with p. The maximum value,
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0.39, is achieved at p = 0.2, i.e. at p = ρ.

Figure 5

Another appealing feature of TG is that after it is standardized by 2ρ(1− ρ), the total gain

for a perfect marker, it is functionally independent of ρ. Let’s use TG to denote standardized

total gain

TG ≡ TG

2ρ(1 − ρ)

so that TG ∈ [0, 1]. We will focus on TG here. It is independent of disease prevalence because

of it’s interpretation as the Kolmogorov-Smirnov ROC summary index. Moreover, based on

the results above, TG is simply interpreted as the difference between the proportions of cases

and controls with risks above the average, ρ = P (D = 1) = E(risk(Y )).

In the cystic fibrosis example, TG based on lung function is 0.20, while TG based on

weight is 0.09. Since the overall event rate is ρ=41%, the corresponding standardized TG

values are TG=0.42 for lung function and TG =0.20 for weight.

3.3 Area under the ROC curve and further discussion

The area under the ROC curve is widely used to summarize and compare predictive markers

and models. It can be interpreted simply as the probability of correctly ordering subjects
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with and without events using risk(Y ):

AUC = P (risk(Y1) > risk(Y2)|D1 = 1, D2 = 0)

However, it has been criticized widely for having little relevance to clinical practice (Cook,

2007; Pepe and Janes, 2008; Pepe et al., 2007). In particular, the task facing the clinician in

practice is not to order risks for two individuals. Part of the appeal of the AUC, however, lies

in the fact that it depends neither on prevalence, ρ, nor on risk thresholds. Yet in the context

of risk prediction within a specific clinical population, these attributes may be weaknesses.

In particular, when specific risk thresholds are of interest, the ROC curve hides them. In

Figure 3, we plot the ROC curves for risk based on lung function and on weight. The AUC

values are 0.771 and 0.639, respectively.

Interestingly all of the measures discussed here can be thought of as the mathematical

distance between risk distributions for cases and controls (Figure 2) measured in different

ways. The PEV is the difference in the means of case and control risk distributions. The TG

is the Kolmogorov-Smirnov measure and we have shown that this is equal to the difference

between the proportions of cases and controls with risks larger than ρ. The AUC is equivalent

to the Wilcoxon measure of distance between risk distributions for cases and controls.
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4 Estimation of Summary Measures

We now turn to estimation of summary indices from data. We focus on the scenario where

Y is a single continuous marker. We also allow Y to be a predefined combination of multiple

markers. For example, the score may be derived from a training dataset and our task is to

evaluate the combination score using a test dataset.

We use the following notation: Y , YD and YD̄ are marker measurements from the gen-

eral, case and control populations, respectively. Let F , FD and FD̄ be the corresponding

distribution functions and let f , fD and fD̄ be the density functions. We assume the risk,

risk(Y ) = P (D = 1|Y ), is monotone increasing in Y . Under this assumption we have

R(ν) = P{D = 1|Y = F−1(ν)}. Thus the curve R(ν) vs. ν is the same as the curve

risk(Y ) vs F (Y ) and the predictiveness curve can be obtained by first estimating the risk

model risk(Y ), and then the marker distribution F (Y ). Let YDi
, i = 1, ..., nD be the nD

independent identically distributed observations from cases, and YD̄i
, i = 1, ..., nD̄ be the nD̄

independent identically distributed observations from controls. We write Yi, i = 1, ..., n for

{YD1
, ..., YDn

D
, YD̄1

, ..., YD̄n
D̄

} where n = nD + nD̄.

Suppose the risk model is risk(Y ) = P (D = 1|Y ) = G(θ, Y ), where

logit{G(θ, Y )} = θ0 + h(θ1, Y ),

and h is some monotone increasing function of Y . This is a very general formulation. As a
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special case, logit{G(θ, Y )} could be as simple as θ0 + θ1Y with θ1 > 0, the ordinary linear

logistic model. We consider estimation first under a cohort or cross sectional design and

later discuss case-control designs for which the logistic regression formulation is particularly

helpful.

4.1 Cohort Design

Suppose we have n independent identically distributed observations (Yi, Di) from the popula-

tion. Maximum likelihood estimates of θ can be obtained, denoted by θ̂, as well as empirical

estimates of F , FD, FD̄, and ρ, denoted by F̂ , F̂D, F̂D̄, and ρ̂. We use these to calculate

estimated summary indices. Summary measures that involve risk thresholds are the risk

quantile, R(ν), the population proportion with risk below p, R−1(p), cases and controls with

risks above p, TPR(p) and FPR(p), event rates in risk strata, PPV(p) and 1-NPV(p), and

the risk thresholds yielding specified TPR or FPR, R(νT (t)) and R(νF (t)).

We plug θ̂ and F̂ into G to get estimators of R(ν), and R−1(p):

R̂(ν) = G{θ̂, F̂−1(ν)} for ν ∈ (0, 1),

R̂−1(p) = F̂{G−1(θ̂, p)} for p ∈ {R(ν) : ν ∈ (0, 1)}.
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Estimates of cases and controls with risks above p are:

ˆTPR(p) = 1 − F̂D{G−1(θ̂, p)} for p ∈ {R(ν) : ν ∈ (0, 1)},

ˆFPR(p) = 1 − F̂D̄{G−1(θ̂, p)} for p ∈ {R(ν) : ν ∈ (0, 1)}.

We write the event rates in risk strata in terms of TPR(p) and FPR(p) to facilitate their

estimation:

ˆPPV(p) =
ρ̂

1 − ρ̂

ˆTPR(p)

ˆFPR(p)
for p ∈ {R(ν) : ν ∈ (0, 1)}

ˆ1 − NPV(p) = 1 − 1 − ρ̂

ρ̂

1 − ˆFPR(p)

1 − ˆTPR(p)
for p ∈ {R(ν) : ν ∈ (0, 1)}

In a cohort study, these estimates are equal to the empirical proportions of cases amongst

those with estimated risks above and below p. However, the formulations here are valid in a

case-control study too. Finally risk thresholds yielding specified TPR or FPR are obtained

by first calculating the corresponding quantile of Y and then plugging it into the fitted risk

model:

R̂(νT (t)) = G{θ̂, F̂−1
D (νT (t))} for TPR = 1 − νT (t),

R̂(νF (t)) = G{θ̂, F̂−1
D̄

(νF (t))} for FPR = 1 − νT (t)
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Summary measures that do not involve specific risk thresholds are proportion of explained

variation, PEV, standardized total gain, TG, and area under the ROC curve, AUC. Recall

that PEV is the difference between mean risk in cases and in controls. Sample means of

estimated risks yield an estimator of PEV:

ˆPEV =

∫

G(θ̂, Y )dF̂D(Y ) −
∫

G(θ̂, Y )dF̂D̄(Y ).

On the other hand, TG, can be expressed as the difference between the proportion of

cases and controls with risks less than ρ. We write:

T̂G = {F̂D̄(G−1(θ̂, ρ̂)) − F̂D(G−1(θ̂, ρ̂))}.

Finally AUC is estimated as the proportion of case-control pairs where the estimated risk

for the case exceeds that of the control

ˆAUC =
1

nDnD̄

nD
∑

i=1

n
D̄

∑

j=1

I(G(θ̂, YDi) > G(θ̂, YD̄j)).

Since G(θ, Y ) is increasing in Y , this is the same as the standard empirical estimator of the

AUC based on Y ,

ˆAUC =
1

nDnD̄

nD
∑

i=1

n
D̄

∑

j=1

I(YDi > YD̄j).
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4.2 Case-Control Design

Case-control studies are often conducted in the early phases of marker development(Pepe et

al., 2001; Baker et al., 2002). Compared to cohort studies, they are smaller and more cost

efficient. Since early phase studies dominate biomarker research, it is crucial that estimates

of statistical measures of performance accommodate case-control designs. In this section, we

describe estimation under a case-control design assuming that an estimate of prevalence, ρ̂

is available. The value ρ̂ may be derived either from a cohort which is independent from

the case-control sample, or from the parent cohort within which the case-control sample is

nested. As a special case one can assume ρ is known or fixed without sampling variability. In

determining populations where risk markers may or may not be useful, predictiveness curves

could be evaluated for various specified fixed values of ρ.

In case-control studies, we sample fixed numbers of cases and controls, nD and nD̄,

respectively. As a consequence, the intercept of the logistic risk model is not estimable. But

by adjusting the intercept, we can still estimate the true risk in the population. In particular

let S indicate case-control sampling. In the case-control study the risk model can be written

as

logit{G(θS, Y )} = θ0S + h(θ1S, Y ),

where θ0S = θ0 − log n
D̄

nD

ρ

1−ρ
and θ1S = θ1, and θ0 and θ1 are population based intercept and

slope. Therefore, having calculated maximum likelihood estimates for θ0S and θ1 from the

case-control study, we use θ̂0S + log(
n

D̄

nD

ρ̂

1−ρ̂
) to estimate the population intercept θ0.
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The marker distribution in the population, F , cannot be estimated directly because of

the case-control sampling design. However, since case and control samples are representative,

empirical estimates of FD and FD̄ are valid which we have denoted by F̂D and F̂D̄. Therefore

we estimate F with F̂ = ρ̂F̂D + (1 − ρ̂)F̂D̄.

Estimates of the predictiveness summary measures can then be obtained by plugging

corresponding values for θ̂, F̂ , F̂D, F̂D̄ and ρ̂ into the expressions given earlier. These esti-

mates are called semiparametric “empirical” estimates by Huang and Pepe (2008a) because

FD and FD̄ are estimated empirically. The semiparametric likelihood framework also allows

one to estimate FD and FD̄ using maximum likelihood (Qin and Zhang, 1997, Zhang, 2000).

Huang and Pepe (2008a) compared the performance of semiparametric “empirical” estima-

tors of the predictiveness curve with semiparametric maximum likelihood estimators. Gains

in efficiency by using maximum likelihood are typically small. We use empirical estimators

of FD and FD̄ here, because this approach is intuitive and easy to implement. Moreover,

they estimate important estimable quantities even when the risk model is misspecified. For

example, ˆTPR(p) is the proportion of cases whose calculated risks (calculated under the as-

sumed model) exceed p, ˆPEV is the difference in mean calculated risk for cases and controls,

and so forth.
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5 Asymptotic Distribution Theory

In this section, we present asymptotic distribution theory for all of the summary measures

defined in previous sections. Results for pointwise estimators of R(ν) and R−1(p)were pre-

viously reported by Huang et al. (2007) and Huang and Pepe (Biometrika, in press), but

for completeness we restate them here. Theory for the empirical estimator of AUC is not

reported here since it is well established (Pepe, 2003, page 105). Derivations of our results

are provided in the Appendix. In addition, in the Appendix, we detail the components of

the asymptotic variance expressions separately for case-control and cohort study designs.

Assume the following conditions hold:

(1) G(s, Y ) is a differentiable function with respect to s and Y at s = θ, Y = F−1(ν).

(2) G−1(s, p) is continuous, and ∂G−1(s, p)/∂s exists at s = θ.

Theorem As n → ∞, each of the following random variables converges to a mean zero

normal random variable:
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(i)
√

n(R̂−1(p) −R−1(p)), with variance

σ1(p)
2 = var(

√
n(F̂ (G−1(θ, p)) − F (G−1(θ, p)))) + (

∂R−1(p)

∂θ
)T var(

√
n(θ̂ − θ))(

∂R−1(p)

∂θ
)

+ 2(
∂R−1(p)

∂θ
)T cov(

√
n(θ̂ − θ),

√
n(F̂ (G−1(θ, p)) − F (G−1(θ, p))));

(ii)
√

n( ˆTPR(p) − TPR(p)), with variance

σ2(p)
2 = var(

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p)))) + (

∂TPR(p)

∂θ
)Tvar(

√
n(θ̂ − θ))(

∂TPR(p)

∂θ
)

− 2(
∂TPR(p)

∂θ
)T cov(

√
n(θ̂ − θ),

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))));

(iii)
√

n( ˆFPR(p) − FPR(p)), with variance

σ3(p)
2 = var(

√
n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p)))) + (

∂FPR(p)

∂θ
)Tvar(

√
n(θ̂ − θ))(

∂FPR(p)

∂θ
)

− 2(
∂FPR(p)

∂θ
)T cov(

√
n(θ̂ − θ),

√
n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p))));

(iv)
√

n( ˆPPV (p) − PPV (p)), with variance

σ4(p)
2 = PPV (p)2(1 − PPV (p))2{( σ2(p)

2

TPR(p)2
+

σ3(p)
2

FPR(p)2
+

σ2
ρ

ρ2(1 − ρ)2
)

− 2(
cov1

TPR(p)FPR(p)
− cov2

TPR(p)ρ(1 − ρ)
+

cov3

FPR(p)ρ(1 − ρ)
)}
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where σ2
ρ is the asymptotic variance of

√
n(ρ̂ − ρ) and

cov1 = cov(
√

n( ˆTPR(p) − TPR(p)),
√

n( ˆFPR(p) − FPR(p))) (9)

cov2 = cov(
√

n( ˆTPR(p) − TPR(p)),
√

n(ρ̂ − ρ)) (10)

cov3 = cov(
√

n( ˆFPR(p) − FPR(p)),
√

n(ρ̂ − ρ)); (11)

(v)
√

n( ˆNPV (p) − NPV (p)), with variance

σ5(p)
2 = NPV (p)2(1 − NPV (p))2{( σ5(p)

2

(1 − TPR(p))2
+

σ6(p)
2

(1 − FPR(p))2
+

σ2
ρ

ρ2(1 − ρ)2
)

− 2(
cov1

(1 − TPR(p))(1 − FPR(p))
+

cov2

(1 − TPR(p))ρ(1 − ρ)
− cov3

(1 − FPR(p))ρ(1 − ρ)
)};

(vi)
√

n(R̂(ν) − R(ν)), with variance

σ6(ν)2 = (
∂R(ν)

∂ν
)2var(

√
n(F̂ (F−1(ν)) − ν)) + (

∂R(ν)

∂θ
)Tvar(

√
n(θ̂ − θ))(

∂R(ν)

∂θ
)

− 2(
∂R(ν)

∂ν
)cov(

√
n(θ̂ − θ),

√
n(F̂ (F−1(ν)) − ν))(

∂R(ν)

∂θ
);
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(vii)
√

n(R̂(νT (t))− R(νT (t))) where TPR=1 − νT (t) is pre-specified, with variance

σ7(t)
2 = (

∂R(νT (t))

∂t
)2var(

√
n(F̂D(F−1

D (νT (t)))− t)) + (
∂R(νT (t))

∂θ
)Tvar(

√
n(θ̂ − θ))(

∂R(νT (t))

∂θ
)

− 2(
∂R(νT (t))

∂t
)cov(

√
n(θ̂ − θ),

√
n(F̂D(F−1

D (νT (t))) − t))(
∂R(νT (t))

∂θ
);

(viii)
√

n(R̂(νF (t)) −R(νF (t))) where FPR=1 − νF (t) is pre-specified, with variance

σ8(t)
2 = (

∂R(νF (t))

∂t
)2var(

√
n(F̂D̄(F−1

D̄
(νF (t))) − t)) + (

∂R(νF (t))

∂θ
)T var(

√
n(θ̂ − θ))(

∂R(νF (t))

∂θ
)

− 2(
∂R(νF (t))

∂t
)cov(

√
n(θ̂ − θ),

√
n(F̂D̄(F−1

D̄
(νF (t)))− t))(

∂R(νF (t))

∂θ
);

(ix)
√

n( ˆPEV − PEV ), with variance

σ2
9 =

var(G(θ, YD))

nD/n
+

var(G(θ, YD̄))

nD̄/n
+ (

∫

∂G(θ, y)

∂θ
dFD(y) −

∫

∂G(θ, y)

∂θ
dFD̄(y))T×

var(
√

n(θ̂ − θ)) × (

∫

∂G(θ, y)

∂θ
dFD(y)−

∫

∂G(θ, y)

∂θ
dFD̄(y))

+ 2(

∫

∂G(θ, y)

∂θ
dFD(y) −

∫

∂G(θ, y)

∂θ
dFD̄(y))T×

{cov(
√

n(θ̂ − θ),
√

n

∫

G(θ, Y )d(F̂D(Y ) − FD(Y )))

− cov(
√

n(θ̂ − θ),
√

n

∫

G(θ, Y )d(F̂D̄(Y ) − FD̄(Y )))};
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(x)
√

n(T̂G− TG), with variance

σ2
10 = Σ1 − 2Σ1,2 + Σ2,

where

Σ1 = var(
√

n( ˆTPR(ρ̂) − TPR(ρ))), (12)

Σ2 = var(
√

n( ˆFPR(ρ̂) − FPR(ρ))), (13)

Σ1,2 = cov(
√

n( ˆTPR(ρ̂) − TPR(ρ)),
√

n( ˆFPR(ρ̂) − FPR(ρ))). (14)

6 Simulation Studies

We performed simulation studies to investigate the validity of using large sample theory for

making inference in finite sample studies, and to compare it with inference using bootstrap

resampling. Data were simulated under a linear logistic risk model. Specifically we employed

a population prevalence of ρ = 0.2 and generated marker data according to YD̄ ∼ N(0, 1) and

YD ∼ N(1, 1). The correct form for G(θ, Y ) was employed in fitting the risk model, namely

a linear logistic model. For each simulated dataset, estimates of summary indices were

calculated and their corresponding variances were estimated using the analytic formulae from

the asymptotic theory. Variance estimates were also calculated using bootstrap resampling.

Sample sizes ranged from 100 to 2000 and 5000 simulations were conducted for each scenario.
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Simulation studies were conducted for case-control study designs as well as for cohort

study designs. For the case-control scenario, we simulated nested case-control samples within

the main study cohort employing equal numbers of cases and controls and with size of the

cohort equal to 5 times that of the case-control study. The estimator ρ̂ is calculated from the

main study cohort and sampling variability in summary estimates due to ρ̂ is acknowledged

in making inference. Separate resampling of cases and controls was done for the nested

case-control scenarios.

Table 1-3 displayed results for the summary indices under cohort study designs, while

Table 4-6 are corresponding results under case-control study designs. Indeed, extensive

simulation results for estimates of points on the predictiveness curve, R(ν) and R−1(p), were

already reported by Huang and Pepe (2008a). For completeness, we also included results

for these two estimates under our simulation. We found little bias in the estimated values.

Moreover estimated standard deviations based on asymptotic theory agree well with the

actual standard deviations and with those estimated from bootstrap resampling. Coverage

probabilities were excellent when sample sizes were moderate to large. We observed some

under-coverage and some over coverage with small sample sizes (n = nD + nD̄ = 100). Not

surprisingly this occurred primarily at the boundaries of the case and control distributions

and was not an issue for the overall summary measures, PEV, TG and AUC. Generally,

coverage based on percentiles of the bootstrap distribution are somewhat better than those

based on assumptions of normality, but the difference shrinks for larger n.
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7 The Cystic Fibrosis Data

Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system

of people. A defective gene and its protein product cause the body to produce unusually

thick, sticky mucus which clogs the lungs and leads to life-threatening lung infections, and

also obstructs the pancreas and stops natural enzymes from helping the body break down

and absorb food. The main culminating event that leads to death is acute pulmonary

exacerbations, i.e. lung infection requiring intravenous antibiotics.

The data for analysis here is from the Cystic Fibrosis Registry, a database maintained by

the Cystic Fibrosis Foundation that contains annually updated information on over 20,000

people diagnosed with CF and living in the USA. In order to illustrate our methodology,

we consider FEV1, a measure of lung function, and weight, a measure of nutritional status,

as measured in 1995 to predict occurrence of pulmonary exacerbation in 1996. Data from

12,802 patients 6 years of age and older are analyzed. 5245 subjects (41%) had at least one

pulmonary exacerbation. A child’s weight is standardized for age and gender by reporting

his/her percentile value in a healthy population of children of the same age and gender

(Hamill, et al., 1977), while FEV1 is standardized for age, gender and height in a different

way, explicit formulae were provided by Knudson et al. (1983). We modelled the risk

functions using logistic regression models with weight and FEV1 entered the model as linear

terms, and both are negated to satisfy the assumption that increasing values are associated

with increasing risk. Figure 1 shows the predictiveness curves for the entire cohort and Figure
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2 shows the risk distributions separately for cases (those who had a pulmonary exacerbation)

and for controls.

First, we use the entire cohort to estimate predictiveness summary measures for weight

and lung function. Table 3 shows the point estimates discussed earlier in sections 2 and

3. Here we provide confidence intervals based on asymptotic distribution theory and on

bootstrap resampling. Observe that standard deviations are all small and that corresponding

confidence intervals are very tight. Bootstrap confidence intervals are almost identical to

those based on asymptotic theory.

We used the summary indices as the basis for hypothesis tests to formally compare the

predictive capacities of FEV1 and weight. The difference between estimates of the indices

was calculated and standardized using a bootstrap estimate of the variance of the differ-

ence. By comparing these test statistics with quantiles of the standard normal distribution,

p-values were calculated. We see that differences between lung function and weight as pre-

dictive markers are statistically significant, no matter what summary index is employed.

Note however that each test relates to a different question about predictive performance,

depending on the particular summary index on which it is based. Asking if PEVs for weight

and lung function are equal is not the same as asking if the proportion of subjects whose

risks are less than 0.25, R−1(0.25), are equal. Asking if PEVs for weight and lung function

are equal is not the same as asking if the AUCs for risks associated with weight and FEV1

are equal.
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Next, we randomly sampled 1280 cases and 1280 controls from the entire cohort to form a

nested case-control study sample that is about 1/5 th the size of the cohort. Table 4 presents

results that use data on FEV1 and weight from the case-control subset and the estimate of

the overall incidence of pulmonary exacerbation from the entire cohort, ρ̂ = 0.41. Estimates

of summary indices are very close to the cohort estimates but corresponding confidence

intervals are much wider. Nevertheless conclusions remain the same. This demonstrates

that in a study where predictive markers are costly to obtain, the nested case-control design

could yield considerable cost savings.

Predictiveness summary measures, such as R(ν) and R−1(p), are based on a single point

on the predictiveness curve. Others, such as true and false positive rates and event rates,

accumulate differences over part of the curve. Measures such as PEV, TG and AUC accumu-

late differences over the entire curve. One might conjecture that measures that accumulate

differences would often be more powerful for testing if the predictiveness curves are equal.

To investigate, we varied the case-control sample size and evaluated p-values associated with

differences between the various summary measures. From Table 4, with a reasonably large

case-control sample size (n=2560), we concluded that differences between almost all sum-

mary indices for the two markers are significantly different. However we see from Table 5

that as the size of the case-control study varies from medium (n=500) to small (n=100), the

point estimates of measures based on specific thresholds become much more variable and

p-values for differences between lung function and weight become statistically insignificant

in most cases. In contrast, conclusions about the superiority of lung function as a predictive
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marker remained firm when PEV, TG or AUC were used as the basis of hypothesis tests

about equality of curves, even with very small sample sizes (n=100).

8 Concluding Remarks

This paper presents some new clinically relevant measures that quantify the predictive per-

formance of a risk marker. New measures formally defined include TPR(p), FPR(p), PPV(p),

NPV(p), R(νT ), R(νF ), although several of these are already used informally in the applied

literature. We have previously argued for use of R(ν) and R−1(p) in practice. In addition we

have provided new intuitive interpretations for some existing predictive measures, including

the popular proportion of explained variation, PEV which is called the IDI by Pencina et

al. (2008), the standardized total gain, TG, and recently proposed risk reclassification mea-

sures, namely the NRI and the risk reclassification percent. We demonstrated that all of

these measures are functions of the risk distribution, also known as the predictiveness curve.

A fundamental initial step in the assessment of any risk model is to evaluate if risks calcu-

lated according to the model reflect the probabilities P (D = 1|Y ). The predictiveness curve

can also be useful in making this assessment (Pepe et al., 2008) and is complemented by

use of the Hosmer-Lemeshow statistic (Hosmer and Lemeshow, 1989). In our cystic fibrosis

example, the two linear logistic risk models, one for lung function and one for weight, both

yield Hosmer-Lemeshow test p-values>0.05, indicating that they fit the observed data well.

A second contribution of this paper is to provide distribution theory for estimators of
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the summary indices. Such has not been available for most of the measures heretofore,

including the popular PEV measure. Our methods can now be used to construct confidence

intervals for the summary indices. Simulation studies indicate that the methods are valid

for application in practice with finite samples.

We also demonstrated in an example how summary indices can be used to make formal

rigorous comparisons between markers. Such has only been possible previously for compar-

isons based on the AUC or on point estimates of the predictiveness curve, R(ν) and R−1(p)

(Huang et al., 2007; Huang and Pepe, 2008).

Our methods accommodate cohort or case-control study designs. The latter are par-

ticularly important in the early phases of biomarker development when biomarker assays

are expensive or procurement of biological samples is difficult (Pepe et al., 2001). In such

settings nested case-control studies are much more feasible (Baker et al., 2002; Pepe et al.,

2008d). Our methodology is currently restricted to risk models that include a single marker

or a predefined combination of markers. In practice studies often involve development of a

marker combination and assessment of its performance. Compelling arguments have been

provided in the literature for splitting a dataset into training and test subsets (Simon, 2006;

Ransohoff, 2004). In these circumstances our methods apply to evaluation with the test data

of the combination developed with the training data. It would be worthwhile however to

explore use of cross validation techniques for simultaneous development and assessment of

risk models using the summary indices we have described.
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Which summary index should be recommended for use in practice? In our opinion, a

summary index should not replace the display of the risk distributions (Figures 1 and 2) but

should serve only to complement them. The choice of summary indices to report should be

driven by the scientific objectives of the study. For example, if the objective is to risk stratify

the population according to some risk threshold, below which treatment is not indicated and

above which treatment is indicated, the corresponding proportions of the population that

fall into the two risk strata, R−1(pL) and 1 − R−1(pL) would be key performance measures

to report. Yet additional measures would also be of interest in this setting and should be

reported including TPR(pL), FPR(pL), PPV(pL) and NPV(pL). When no risk thresholds

have been defined as clinically relevant, PEV or TG or AUC could complement the displays of

risk distributions and serve as the basis of test statistics to test for the equality of differences

between case and control risk distribution curves.

The final stages of evaluating a model for use in practice should incorporate notions of

costs and benefits (i.e. utilities) that may be associated with decisions based on risk(Y ).

However, specifying costs and benefits is typically very difficult in practice. Vickers and Elkin

(2006) have recently proposed a standardized measure of expected utility for a prediction

model that does not require explicit specifications of costs and benefits. The net benefit at

risk threshold p is defined as NB(p) = ρTPR(p)+(1−ρ)FPR(p)p/(1−p), and their decision

curve plots NB(p) versus p. This weighted average of true and false positive rates could

complement descriptive plots of risk distributions. Moreover, the methods for inference that

we have presented here give rise to methods for inference about decision curves too.
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Appendix: Asymptotic Theory

To simplify notation, we suppose the risk model is logistic linear in Y :

logit{G(θ, Y )} = θ0 + θ1Y.

I. Cohort Design

In a cohort study the log likelihood function is

l(θ|Y1, ..., Yn) =

nD
∑

i=1

log
exp(θ0 + θ1Yi)

1 + exp(θ0 + θ1Yi)
+

n
D̄

∑

i=1

log
1

1 + exp(θ0 + θ1Yi)
. (15)

Let θ̂0, θ̂1 be the maximum likelihood estimators (MLE) of θ0, θ1 based on (15). The following

results are well known.

Result 1 Let

A0(θ, t) =

∫ t

−∞

exp(θ0 + θ1y)

(1 + exp(θ0 + θ1y))2
dF (y)

A1(θ, t) =

∫ t

−∞

yexp(θ0 + θ1y)

(1 + exp(θ0 + θ1y))2
dF (y)

A2(θ, t) =

∫ t

−∞

y2exp(θ0 + θ1y)

(1 + exp(θ0 + θ1y))2
dF (y)

A(θ, t) =









A0(θ, t) A1(θ, t)
T

A1(θ, t) A2(θ, t)









,
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and A(θ) = A(θ,∞). If A(θ)−1 exists,

√
n









θ̂0 − θ0

θ̂1 − θ1









→d N(0, A(θ)−1).

We can also write
√

n(θ̂ − θ) = 1√
n

∑n

i=1 `θ(Yi) + op(1), where `θ(Yi) = A(θ)−1 l̇θ(Yi), i =

1, ..., n. And

l̇θ(Yi) =









∂l(θ|Yi)/∂θ0

∂l(θ|Yi)/∂θ1









=









Di − exp(θ0 + θ1Yi)/(1 + exp(θ0 + θ1Yi))

DiYi − Yiexp(θ0 + θ1Yi)/(1 + exp(θ0 + θ1Yi))









.

Result 2 As n → ∞,

√
n(ρ̂ − ρ) →d N(0, ρ(1 − ρ)),

√
n(F̂ (t) − F (t)) →d N(0, F (t)(1 − F (t))),

√
n(F̂D(t) − FD(t)) →d N(0, FD(t)(1 − FD(t))/η),

√
n(F̂D̄(t) − FD̄(t)) →d N(0, FD̄(t)(1 − FD̄(t))/(1 − η)),

where η ≡ nD/n.
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Lemma 1 Let

BD,0(t) =

∫ t

−∞

1

1 + exp(θ0 + θ1y)
dFD(y)

BD,1(t) =

∫ t

−∞

y

1 + exp(θ0 + θ1y)
dFD(y)

BD̄,0(t) =

∫ t

−∞

exp(θ0 + θ1y)

1 + exp(θ0 + θ1y)
dFD̄(y)

BD̄,1(t) =

∫ t

−∞

yexp(θ0 + θ1y)

1 + exp(θ0 + θ1y)
dFD̄(y),

and use BD,0, BD,1, BD̄,0 and BD̄,1 for the limits at t = ∞.

Then we have

cov(
√

n(θ̂ − θ),
√

n(F̂ (t)− F (t))

=A(θ)−1









ρBD,0(t) − (1 − ρ)BD̄,0(t)

ρBD,1(t) − (1 − ρ)BD̄,1(t)









cov(
√

n(θ̂ − θ),
√

n(F̂D(t) − FD(t))

=A(θ)−1









BD,0(t) − FD(t)BD,0

BD,1(t) − FD(t)BD,1








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cov(
√

n(θ̂ − θ),
√

n(F̂D̄(t) − FD̄(t))

=A(θ)−1









−BD̄,0(t) + FD̄(t)BD̄,0

−BD̄,1(t) + FD̄(t)BD̄,1









Proof:

We prove the first result and proofs of the other two results follow from similar arguments.

cov(
√

n(θ̂ − θ),
√

n(F̂ (t)− F (t))

=cov(
1√
n

n
∑

i=1

A(θ)−1 l̇θ(Yi),
1√
n

n
∑

i=1

(I(Yi ≤ t) − F (t)))

=cov(A(θ)−1l̇θ(Y ), I(Y ≤ t) − F (t)))

=A(θ)−1E(l̇θ(Y ) × I(Y ≤ t))

=A(θ)−1{ρE(l̇θ(YD) × I(YD ≤ t)) + (1 − ρ)E(l̇θ(YD̄) × I(YD̄ ≤ t))}

=A(θ)−1









ρBD,0(t) − (1 − ρ)BD̄,0(t)

ρBD,1(t) − (1 − ρ)BD̄,1(t)









Proof of Theorem items (i), (ii) and (iii) We show the proof for item (i). The proofs

for items (ii) and (iii) follow similar arguments.

√
n(R̂−1(p) −R−1(p)) =

√
n(F̂ (G−1(θ̂, p)) − F (G−1(θ, p)))

=
√

n(F̂ (G−1(θ, p)) − F (G−1(θ, p))) +
√

n(F (G−1(θ̂, p)) − F (G−1(θ, p))) + Rn,
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where

Rn =
√

n(F̂ (G−1(θ̂, p)) − F̂ (G−1(θ, p))) −
√

n(F (G−1(θ̂, p)) − F (G−1(θ, p))) = op(1)

by equicontinuity of the process
√

n(F̂ − F ). Earlier results and the delta method then

imply:

σ1(p)
2 =var(

√
n(R̂−1(p) − R−1(p)))

=var(
√

n(F̂ (G−1(θ, p)) − F (G−1(θ, p)))) + var(
√

n(F (G−1(θ̂, p)) − F (G−1(θ, p))))

+ 2cov
√

n(F̂ (G−1(θ, p)) − F (G−1(θ, p))),
√

n(F (G−1(θ̂, p)) − F (G−1(θ, p)))) (16)

=R−1(p)(1 − R−1(p)) + (
∂R−1(p)

∂θ
)TA(θ)−1(

∂R−1(p)

∂θ
)

+ 2(
∂R−1(p)

∂θ
)TA(θ)−1









ρBD,0(G
−1(θ, p)) − (1 − ρ)BD̄,0(G

−1(θ, p))

ρBD,1(G
−1(θ, p)) − (1 − ρ)BD̄,1(G

−1(θ, p))









.

The last equality follows from Result 2 (for variance of F̂ ), Result 1 (for variance of θ̂) and

Lemma 1 (for covariance of (F̂ , θ̂)).

Proof of Theorem items (iv) and (v)

We write

ˆPPV (p) =
ρ̂

1 − ρ̂

ˆTPR(p)

ˆFPR(p)
,

The asymptotic distribution of
√

n(ρ̂ − ρ) is given in Result 2 as are the distributions of
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√
n( ˆTPR(p) − TPR(p)) and

√
n( ˆFPR(p) − FPR(p)) because:

√
n( ˆTPR(p) − TPR(p)) =

√
n((1 − F̂D(G−1(θ̂, p))) − (1 − FD(G−1(θ, p))))

= −
√

n(F̂D(G−1(θ̂, p)) − FD(G−1(θ, p))).

And similarly,

√
n( ˆFPR(p) − FPR(p)) = −

√
n(F̂D̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))).

In the following, we calculate the covariances between (
√

n( ˆTPR(p)−TPR(p)),
√

n(ρ̂− ρ)),

(
√

n( ˆFPR(p)−FPR(p)),
√

n(ρ̂−ρ)) and (
√

n( ˆTPR(p)−TPR(p)),
√

n( ˆFPR(p)−FPR(p))).

The asymptotic variance of
√

n( ˆPPV (p) − PPV (p)), σ4(p)
2, then follows from the delta

method.

Consider the covariance between
√

n( ˆTPR(p) − TPR(p)) and
√

n( ˆFPR(p) − FPR(p)):

cov1 =cov(
√

n( ˆTPR(p) − TPR(p)),
√

n( ˆFPR(p) − FPR(p)))

=cov(
√

n(F̂D(G−1(θ̂, p)) − FD(G−1(θ, p))),
√

n(F̂D̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))))

=cov(
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))) +
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))) + op(1),

√
n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p))) +

√
n(FD̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))) + op(1)),
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Because F̂D and F̂D̄ are uncorrelated, the above covariance can be written as

cov1 =cov(
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))),
√

n(FD̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))))

+ cov(
√

n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p))),
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))))

+ cov(
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))),
√

n(FD̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))))

=(
∂TPR(p)

∂θ
)T var(

√
n(θ̂ − θ))(

∂FPR(p)

∂θ
)

− (
∂TPR(p)

∂θ
)T cov(

√
n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p))),

√
n(θ̂ − θ))

− (
∂FPR(p)

∂θ
)T cov(

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))),

√
n(θ̂ − θ)) (17)

=(
∂TPR(p)

∂θ
)T A(θ)−1(

∂FPR(p)

∂θ
)

− (
∂TPR(p)

∂θ
)T A(θ)−1









−BD̄,0(G
−1(θ, p)) + (1 − FPR(p))BD̄,0

−BD̄,1(G
−1(θ, p)) + (1 − FPR(p))BD̄,1









− (
∂FPR(p)

∂θ
)T A(θ)−1









BD,0(G
−1(θ, p)) − (1 − TPR(p))BD,0

BD,1(G
−1(θ, p)) − (1 − TPR(p))BD,1









(18)

The last equality uses Result 1 (for variance of θ̂) and Lemma 1 (for covariance of (F̂D, θ̂)

and (F̂D̄, θ̂)).
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The second covariance (equation (10)) is between
√

n(ρ̂ − ρ) and
√

n( ˆTPR(p) − TPR(p)):

cov2 =cov(
√

n(ρ̂ − ρ),
√

n( ˆTPR(p) − TPR(p)))

= −cov(
√

n(ρ̂ − ρ),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))) +
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))))

= −cov(
√

n(ρ̂ − ρ),
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))))

−cov(
√

n(ρ̂ − ρ),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

≡ −(An + Bn),

where An = cov(
√

n(ρ̂ − ρ),
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p)))) and Bn = cov(
√

n(ρ̂ −

ρ),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p)))).

Observe that

√
n(ρ̂ − ρ) =

√
n(

∫

G(θ̂, Y )dF̂ (Y ) −
∫

G(θ, Y )dF (Y ))

=
√

n(

∫

(G(θ̂, Y ) − G(θ, Y ))dF (Y ) +
√

n

∫

G(θ, Y )d(F̂ (Y ) − F (Y )) + Hn

=(

∫

∂R(ν)

∂θ
dν)

√
n(θ̂ − θ) +

√
n

∫

G(θ, Y )d(F̂ (Y ) − F (Y )) + Hn,

where R(ν) ≡ G(θ, Y ) and Hn ≡ √
n

∫

(G(θ̂, Y )−G(θ, Y ))d(F̂ (Y )−F (Y )) = 1√
n

∫ √
n(G(θ̂, Y )−

G(θ, Y ))d(
√

n(F̂ (Y ) − F (Y ))). Both
√

n(G(θ̂, Y ) − G(θ, Y )) and
√

n(F̂ (Y ) − F (Y )) are

bounded in probability and therefore Hn converges to 0 as n → ∞.
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We next derive expressions for An and Bn.

An =cov(
√

n(ρ̂ − ρ),
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))))

=(
∂(1 − TPR(p))

∂θ
)T cov(

√
n(ρ̂ − ρ),

√
n(θ̂ − θ))

=(
∂(1 − TPR(p))

∂θ
)T{var(

√
n(θ̂ − θ))

∫

∂R(ν)

∂θ
dν + cov(

√
n

∫

G(θ, Y )d(F̂ (Y ) − F (Y )),
√

n(θ̂ − θ))}

=(
∂(1 − TPR(p))

∂θ
)T{var(

√
n(θ̂ − θ))

∫

∂R(ν)

∂θ
dν + cov(1/

√
n

n
∑

i=1

G(θ, Yi), 1/
√

n
n

∑

i=1

A(θ)−1l̇θ(Yi))}

=(
∂(1 − TPR(p))

∂θ
)TA(θ)−1(

∫

∂R(ν)

∂θ
dν) + (

∂(1 − TPR(p))

∂θ
)A(θ)−1cov(G(θ, Y ), l̇θ(Y ))

=(
∂(1 − TPR(p))

∂θ
)TA(θ)−1(

∫

∂R(ν)

∂θ
dν)

+(
∂(1 − TPR(p))

∂θ
)TA(θ)−1









ρ
∫

G(θ,y)
1+exp(θ0+θ1y)

dFD(y) + (1 − ρ)
∫ −G(θ,Y )exp(θ0+θ1y)

1+exp(θ0+θ1y)
dFD̄(y)

ρ
∫

yG(θ,y)
1+exp(θ0+θ1y)

dFD(y) + (1 − ρ)
∫ −yG(θ,Y )exp(θ0+θ1y)

1+exp(θ0+θ1y)
dFD̄(y)









(19)

And Bn is

Bn =cov(
√

n(ρ̂ − ρ),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

=(

∫

∂R(ν)

∂θ
dν)T cov(

√
n(θ̂ − θ),

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

cov(

∫

G(θ, Y )d(
√

n(F̂ (Y ) − F (Y )),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

=(

∫

∂R(ν)

∂θ
dν)T cov(

√
n(θ̂ − θ),

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

+ cov(1/
√

n

n
∑

i=1

G(θ, Yi),
√

n/nD

nD
∑

i=1

I(YDi ≤ G−1(θ, p)))
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=(

∫

∂R(ν)

∂θ
dν)T cov(

√
n(θ̂ − θ),

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))))

+ (

∫ G−1(θ,p)

−∞
G(θ, Y )dFD(Y ) − FD(G−1(θ, p))

∫

G(θ, Y )dFD(Y )), (20)

where cov(
√

n(θ̂ − θ),
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p)))) is given by Lemma 1.

Combining the two terms yields a value for cov2. The derivation of cov3 follows from a similar

argument.

The proof of item (v) of the Theorem uses exactly the same techniques.

Proof of Theorem items (vi), (vii) and (viii) We prove Theorem item (vii) in the

following. Proofs of (vi) and (viii) are similar. The following proof is based on Huang and

Pepe (2008a) where they derived the asymptotic distribution of
√

n(R̂(ν)−R(ν)) when R(ν)

is estimated under a case-control design.

When the value of TPR is 1 − νT (t), by a Taylor series expansion,

√
n(R̂(νT (t))− R(νT (t))) =

√
n(G(θ̂, F̂−1

D (νT (t))) − G(θ, F−1
D (νT (t))))

=(
∂G(θ, F−1

D (νT (t)))

∂F−1
D (νT (t))

)
√

n(F̂−1
D (νT (t)) − F−1

D (νT (t))) + (
∂G(θ, F−1(νT (t)))

∂θ
)T
√

n(θ̂ − θ) + op(1)

= − (
∂R(νT (t))

∂t
)
√

n(F̂D(F−1
D (νT (t))) − t) + (

∂R(νT (t))

∂θ
)T
√

n(θ̂ − θ) + op(1)
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It follows that the asymptotic variance is

σ7(t)
2 =var(

√
n(R̂(νT (t)) − R(νT (t))))

=(
∂R(νT (t))

∂t
)2var(

√
n(F̂D(F−1

D (νT (t)))− t)) + (
∂R(νT (t))

∂t
)Tvar(

√
n(θ̂ − θ))(

∂R(νT (t))

∂θ
)

− 2(
∂R(νT (t))

∂t
)cov(

√
n(θ̂ − θ),

√
n(F̂D(F−1

D (νT (t))) − t))(
∂R(νT (t))

∂θ
). (21)

The variance of
√

n(θ̂−θ) and of
√

n(F̂D(F−1
D (νT (t)))−t) are provided in Result 2, and their

covariance is provided in Lemma 1. Putting them all together, we have the following result,

σ7(t)
2 =(

∂R(νT (t))

∂t
)2νT (t)(1 − νT (t))/η + (

∂R(νT (t))

∂θ
)T A(θ)−1(

∂R(νT (t))

∂θ
)

− 2(
∂R(νT (t))

∂t
)(

∂R(νT (t))

∂θ
)TA(θ)−1









BD,0(F
−1
D (νT (t))) − νT (t)BD̄,0(F

−1
D (νT (t)))

BD,1(F
−1
D (νT (t))) − νT (t)BD̄,1(F

−1
D (νT (t)))









Proof of Theorem item (ix)

√
n( ˆPEV − PEV )

=
√

n{(
∫

G(θ̂, Y )dF̂D −
∫

G(θ̂, Y )dF̂D̄) − (

∫

G(θ, Y )dFD −
∫

G(θ, Y )dFD̄)}

=
√

n{(
∫

G(θ̂, Y )dF̂D −
∫

G(θ, Y )dFD) − (

∫

G(θ̂, Y )dF̂D̄ −
∫

G(θ, Y )dFD̄)}

={
√

n(

∫

G(θ, Y )d(F̂D − FD)) +
√

n(

∫

(G(θ̂, Y ) − G(θ, Y ))dFD)}

− {
√

n(

∫

G(θ, Y )d(F̂D̄ − FD̄)) +
√

n(

∫

(G(θ̂, Y ) − G(θ, Y ))dFD̄)} + Pn
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≡(An + Bn) − (Cn + Dn) + Pn,

where Pn =
√

n
∫

(G(θ̂, Y )−G(θ, Y ))d(F̂D −FD) +
√

n
∫

(G(θ̂, Y )−G(θ, Y ))d(F̂D̄ − FD̄). It

is easy to see that Pn converges to zero as n → ∞ since
√

n(G(θ̂, Y ) − G(θ, Y )) is bounded

in probability and F̂D − FD (or F̂D̄ − FD̄) converges in probability to 0. We define An ≡
√

n(
∫

G(θ, Y )d(F̂D −FD)), Bn ≡ √
n(

∫

(G(θ̂, Y )−G(θ, Y ))dFD), Cn ≡ √
n(

∫

G(θ, Y )d(F̂D̄ −

FD̄)) and Dn ≡ √
n(

∫

(G(θ̂, Y ) − G(θ, Y ))dFD̄).

Now we have,

var(An + Bn) = var(An) + var(Bn) + 2cov(An, Bn)

=var(
1√
η

1√
nD

nD
∑

i=1

G(θ, YDi)) + var((

∫

∂G(θ, Y )

∂θ
dFD(Y ))T

√
n(θ̂ − θ))

+ 2(

∫

∂G(θ, Y )

∂θ
dFD(Y ))T cov(

√
n(

∫

G(θ, Y )d(F̂D − FD)),
√

n(θ̂ − θ))

=var(G(θ, YD))/η + (

∫

∂G(θ, Y )

∂θ
dFD(Y ))TA(θ)−1(

∫

∂G(θ, Y )

∂θ
dFD(Y ))

+ 2(

∫

∂G(θ, Y )

∂θ
dFD(Y ))T cov(G(θ, YD), A(θ)−1 l̇θ(YD))

=var(G(θ, YD))/η + (

∫

∂G(θ, Y )

∂θ
dFD(Y ))TA(θ)−1(

∫

∂G(θ, Y )

∂θ
dFD(Y ))

+ 2(

∫

∂G(θ, Y )

∂θ
dFD(Y ))T A(θ)−1









P1

P2









, (22)
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where









P1

P2









≡









∫

G(θ, Y )(∂l(θ|YD)/∂θ0)dFD(Y ) −
∫

G(θ, Y )dFD(Y )
∫

(∂l(θ|YD)/∂θ0)dFD(Y )

∫

G(θ, Y )(∂l(θ|YD)/∂θ1)dFD(Y ) −
∫

G(θ, Y )dFD(Y )
∫

(∂l(θ|YD)/∂θ0)dFD(Y )









=









∫

G(θ,Y )
1+exp(θ0+θ1Y )

dFD(Y ) −
∫

G(θ, Y )dFD(Y )
∫

1
1+exp(θ0+θ1Y )

dFD(Y )

∫

Y G(θ,Y )
1+exp(θ0+θ1Y )

dFD(Y ) −
∫

G(θ, Y )dFD(Y )
∫

Y
1+exp(θ0+θ1Y )

dFD(Y )









. (23)

From a similar argument,

var(Cn + Dn) = var(Cn) + var(Dn) + 2cov(Cn, Dn)

=var(G(θ, YD̄))/(1 − η) + (

∫

∂G(θ, Y )

∂θ
dFD̄)TA(θ)−1(

∫

∂G(θ, Y )

∂θ
dFD̄)

+ 2(

∫

∂G(θ, Y )

∂θ
dFD̄)TA(θ)−1









Q1

Q2









, (24)

where









Q1

Q2









≡









−
∫

G(θ, Y )(∂l(θ|YD̄)/∂θ0)dFD̄(Y ) +
∫

G(θ, Y )dFD̄(Y )
∫

(∂l(θ|YD̄)/∂θ0)dFD̄(Y )

−
∫

G(θ, Y )(∂l(θ|YD̄)/∂θ1)dFD̄(Y ) +
∫

G(θ, Y )dFD̄(Y )
∫

(∂l(θ|YD̄)/∂θ1)dFD̄(Y )









=









−
∫

G(θ,Y )exp(θ0+θ1Y )
1+exp(θ0+θ1Y )

dFD̄(Y ) +
∫

G(θ, Y )dFD̄(Y )
∫

exp(θ0+θ1Y )
1+exp(θ0+θ1Y )

dFD̄(Y )

−
∫

Y G(θ,Y )exp(θ0+θ1Y )
1+exp(θ0+θ1Y )

dFD̄(Y ) +
∫

G(θ, Y )dFD̄(Y )
∫

Y exp(θ0+θ1Y )
1+exp(θ0+θ1Y )

dFD̄(Y )









. (25)

Because F̂D and F̂D̄ are independent the covariance between An and Cn is zero. Observe
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also that from previous derivations we have

cov(An + Bn, Cn + Dn) = cov(An, Dn) + cov(Bn, Cn) + cov(Bn, Dn)

=(

∫

∂G(θ, Y )

∂θ
dFD)T A(θ)−1(

∫

∂G(θ, Y )

∂θ
dFD̄)

+ (

∫

∂G(θ, Y )

∂θ
dFD)T A(θ)−1









Q1

Q2









+ (

∫

∂G(θ, Y )

∂θ
dFD̄)TA(θ)−1









P1

P2









(26)

The asymptotic variance of
√

n( ˆPEV − PEV ), σ2
9, can be obtained by combining var(An +

Bn), var(Cn + Dn) and cov(An + Bn, Cn + Dn).

Proof of Theorem item (x)

√
n( ˆTG − TG) =

√
n{( ˆTPR(ρ̂) − ˆFPR(ρ̂)) − (TPR(ρ) − FPR(ρ))}

=
√

n( ˆTPR(ρ̂) − TPR(ρ)) −
√

n( ˆFPR(ρ̂) − FPR(ρ)).

The result in the Theorem follows. Now we derive expressions for the variance components

in a cohort study. Observe that

−
√

n( ˆTPR(ρ̂) − TPR(ρ))

=
√

n(F̂D(G−1(θ̂, ρ̂)) − FD(G−1(θ, ρ)))

=
√

n(F̂D(G−1(θ̂, ρ̂)) − F̂D(G−1(θ, ρ))) −
√

n(FD(G−1(θ̂, ρ̂)) − FD(G−1(θ, ρ)))

+
√

n(F̂D(G−1(θ, ρ)) − FD(G−1(θ, ρ))) +
√

n(FD(G−1(θ̂, ρ̂)) − FD(G−1(θ, ρ)))
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=
√

n(F̂D(G−1(θ, ρ)) − FD(G−1(θ, ρ))) + fD(G−1(θ, ρ))
∂G−1(θ, ρ)

∂θ

√
n(θ̂ − θ)

+ fD(G−1(θ, ρ))
∂G−1(θ, ρ)

∂ρ

√
n(ρ̂ − ρ) + op(1)

≡An + Bn + Cn + op(1),

where we define

An ≡
√

n(F̂D(G−1(θ, ρ)) − FD(G−1(θ, ρ))),

Bn ≡ fD(G−1(θ, ρ))
∂G−1(θ, ρ)

∂θ

√
n(θ̂ − θ),

Cn ≡ fD(G−1(θ, ρ))
∂G−1(θ, ρ)

∂ρ

√
n(ρ̂ − ρ).

and note that
√

n(F̂D(G−1(θ̂, ρ̂))− F̂D(G−1(θ, ρ)))−√
n(FD(G−1(θ̂, ρ̂))−FD(G−1(θ, ρ))) → 0

as n → ∞ due to the equicontinuity of the process.

Σ1 ≡var(
√

n( ˆTPR(ρ̂) − TPR(ρ)))

=var(An) + var(Bn) + var(Cn) + cov(An, Bn) + cov(An, Cn) + cov(Bn, Cn) (27)

The variance of Bn follows from that of
√

n(θ̂ − θ) given in Result 1, and the variances of

An and Cn both follow from Result 2. cov(An, Bn) follows from Lemma 1. Furthermore,

cov(An, Cn) and cov(Bn, Cn) concern the covariance between (F̂D, ρ̂) and (θ̂, ρ̂), both of which

can be found in the proof of Theorem item (iv), cov2 (see equation (19) and (20)).
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Similarly, we have

−
√

n( ˆFPR(ρ̂) − FPR(ρ))

=
√

n(F̂D̄(G−1(θ̂, ρ̂)) − FD̄(G−1(θ, ρ)))

=
√

n(F̂D̄(G−1(θ, ρ)) − FD̄(G−1(θ, ρ))) + fD̄(G−1(θ, ρ))
∂G−1(θ, ρ)

∂θ

√
n(θ̂ − θ)

+ fD̄(G−1(θ, ρ))
∂G−1(θ, ρ)

∂ρ

√
n(ρ̂ − ρ) + op(1)

≡Dn + En + Fn + op(1). (28)

The variance of
√

n( ˆFPR(ρ̂)− FPR(ρ)), Σ2 (equation (13)), depends on the variances and

covariances of the three terms

Dn ≡
√

n(F̂D̄(G−1(θ, ρ)) − FD̄(G−1(θ, ρ))),

En ≡fD̄(G−1(θ, ρ))
∂G−1(θ, ρ)

∂θ

√
n(θ̂ − θ),

Fn ≡fD̄(G−1(θ, ρ))
∂G−1(θ, ρ)

∂ρ

√
n(ρ̂ − ρ).

The variance of En can be obtained by using Result 1, and the variances of Dn and Fn

can be found using Result 2. The covariance between Dn and En follows from Lemma 1.

Covariances between (Dn, Fn) and (En, Fn) follow from an argument similar to that used in

deriving cov(An, Cn) and cov(Bn, Cn) (equation (19) and (20)).
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The asymptotic variance of
√

n( ˆTG − TG), σ2
10, is therefore

σ2
10 = Σ1 + Σ2 − 2Σ1,2,

where Σ1,2 is

Σ1,2 ≡cov(
√

n( ˆTPR(ρ̂) − TPR(ρ)),
√

n( ˆFPR(ρ̂) − FPR(ρ)))

=cov(An + Bn + Cn, Dn + En + Fn)

=cov(An, En) + cov(An, Fn) + cov(Bn, Dn) + cov(Bn, En) + cov(Bn, Fn)

+cov(Cn, Dn) + cov(Cn, En) + cov(Cn, Fn). (29)

All of these covariance terms can be obtained using corresponding Results and Lemmas:

cov(An, En) and cov(Bn, Dn) from Lemma 1; cov(Bn, En) from Result 1; cov(Cn, Fn) from

Result 2. cov(An, Fn) and cov(Bn, Fn) concern the covariance between (F̂D, ρ̂) and (θ̂, ρ̂) and

expressions have been derived in the proof of Theorem item (iv) above, cov2 (equation (19)

and (20)), while cov(Cn, Dn) and cov(Cn, En) concern the covariance between (F̂D̄, ρ̂) and

(θ̂, ρ̂) and are derived using a similar argument.

II. Case-Control Design

Let ρ̂ be the estimate of disease prevalence ρ from a cohort independent of the case-control

sample, or the parent cohort within which the case-control sample is nested. Assume the
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size of the cohort is λ times the size of the case-control sample. Denote

F̂ ∗(t) = ρF̂D(t) + (1 − ρ)F̂D̄(t)

θ̂∗ =









θ̂∗0

θ̂∗1









=









θ̂0s + log(n
D̄

nD

ρ

1−ρ
)

θ̂1s









.

The following results are well established.

Result 3 Let

A0(t) =

∫ t

−∞

exp(θ∗0 + θ∗1y)

(1 + kexp(θ∗0 + θ∗1y))
dFD̄(y)

A1(t) =

∫ t

−∞

yexp(θ∗0 + θ∗1y)

(1 + kexp(θ∗0 + θ∗1y))
dFD̄(y)

A2(t) =

∫ t

−∞

y2exp(θ∗0 + θ∗1y)

(1 + kexp(θ∗0 + θ∗1y))
dFD̄(y)

A(t) =









A0(t) A1(t)
T

A1(t) A2(t)









,

where k ≡ nD/nD̄ and A = A(∞). If A−1 exists,

√
n









θ̂∗0 − θ∗0

θ̂∗1 − θ∗1









→d N(0, Σ−1),
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where

Σ =
1 + k

k
{A−1 −









1 + k 0

0 0









}.

A proof can be found in Prentice and Pyke (1979), Qin and Zhang (1997) and Zhang (2000).

The next set of results, Results 4-7, have been proved by Huang and Pepe (2008a).

Result 4 As n → ∞,
√

n(F̂ ∗(t) − F ∗(t)) converges to a normal random variable with

mean 0 and variance

σ2
F∗ = (1 − ρ)2(1 + k)FD̄(t)(1 − FD̄(t)) + ρ2 1 + k

k
FD(t)(1 − FD(t)).

Result 5

cov(
√

n(θ̂∗ − θ∗),
√

n(F̂D(t) − FD(t))) =
n

nD

{A−1









A0(t)

A1(t)









−









FD(t)

0









},

cov(
√

n(θ̂∗ − θ∗),
√

n(F̂D̄(t) − FD̄(t))) =
n

nD̄

{−A−1









A0(t)

A1(t)









+









FD̄(t)

0









}
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cov(
√

n(θ̂∗ − θ∗),
√

n(F̂ ∗(t)− F (t))) =
n

nD̄

(1 − ρ){−A−1









A0(t)

A1(t)









+









FD̄(t)

0









}

+
n

nD

ρ{A−1









A0(t)

A1(t)









−









FD(t)

0









}.

Result 6

var(
√

n(ρ̂ − ρ)) = ρ(1 − ρ)/λ,

var(
√

n(θ̂ − θ)) =









1
λρ(1−ρ)

0

0 0









+ var(
√

n(θ̂∗ − θ)),

cov(
√

n(θ̂ − θ),
√

(ρ̂ − ρ)) =









1/λ

0









.

Result 7

var(
√

n(F̂ (t) − F (t))) = (FD(t)− FD̄(t))2ρ(1 − ρ)/λ + var(
√

n(F̂ ∗(t) − F (t))),

cov(
√

n(θ̂ − θ),
√

n(F̂ (t) − F (t))) =









FD(t)−F
D̄

(t)

λ

0









+ cov(
√

n(θ̂∗ − θ),
√

n(F̂ ∗(t) − F (t))),

cov(
√

n(θ̂ − θ),
√

n(F̂D(t) − FD(t))) = cov(
√

n(θ̂∗ − θ∗),
√

n(F̂D(t) − FD(t))),

cov(
√

n(θ̂ − θ),
√

n(F̂D̄(t) − FD̄(t))) = cov(
√

n(θ̂∗ − θ∗),
√

n(F̂D̄(t) − FD̄(t))).
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Most of the proofs in the following are exactly the same as those developed for a cohort

study. Therefore we do not repeat the proofs that are the same. However, expressions for

the components of the asymptotic variances that are different are provided. We will fre-

quently refer to expressions in Results 4-7.

Proof of Theorem item (i), (ii) and (iii)

The proof is the same as the proof provided for cohort studies. Based on equation (16),

σ1(p)
2 =var(

√
n(F̂ (G−1(θ, p)) − F (G−1(θ, p)))) + (

∂R−1(p)

∂θ
)T var(

√
n(θ̂ − θ))(

∂R−1(p)

∂θ
)

+2(
∂R−1(p)

∂θ
)T cov(

√
n(θ̂ − θ),

√
n(F̂ (G−1(θ, p)) − F (G−1(θ, p)))).

Expressions for the three individual components can all be found in Results 6 and 7. Proofs

for items (ii) and (iii) of the Theorem follow similar arguments.

Proof of Theorem items (iv) and (v)

According to equation (17),

cov1 =(
∂TPR(p)

∂θ
)T var(

√
n(θ̂ − θ))(

∂FPR(p)

∂θ
)

− (
∂TPR(p)

∂θ
)T cov(

√
n(F̂D̄(G−1(θ, p)) − FD̄(G−1(θ, p))),

√
n(θ̂ − θ))

− (
∂FPR(p)

∂θ
)T cov(

√
n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))),

√
n(θ̂ − θ)).

Results 6 and 7 provide expressions for the three individual terms.
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However, the expressions for cov2 and cov3 are different from those under a cohort study

design,

cov2 =cov(
√

n( ˆTPR(p) − TPR(p)),
√

n(ρ̂ − ρ))

= − cov(
√

n(F̂D(G−1(θ̂, p)) − FD(G−1(θ, p))),
√

n(ρ̂ − ρ))

= − cov(
√

n(F̂D(G−1(θ, p)) − FD(G−1(θ, p))) +
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))),
√

n(ρ̂ − ρ))

= − cov(
√

n(FD(G−1(θ̂, p)) − FD(G−1(θ, p))),
√

n(ρ̂ − ρ))

=(
∂TPR(p)

∂θ
)T ×









1/λ

0









Similarly,

cov3 =cov(
√

n( ˆFPR(p) − FPR(p)),
√

n(ρ̂ − ρ))

= − cov(
√

n(F̂D̄(G−1(θ̂, p)) − FD̄(G−1(θ, p))),
√

n(ρ̂ − ρ))

=(
∂FPR(p)

∂θ
)T ×









1/λ

0









Item (v) of the Theorem follows from a similar argument.

Proof of Theorem (vi), (vii) and (viii) These all follow similar arguments. We use

(vii) to illustrate.
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According to equation (21),

σ7(t)
2 =var(

√
n(R̂(νT (t)) − R(νT (t))))

=(
∂R(νT (t))

∂t
)2var(

√
n(F̂D(F−1

D (νT (t)))− t)) + (
∂R(νT (t))

∂t
)Tvar(

√
n(θ̂ − θ))(

∂R(νT (t))

∂θ
)

− 2(
∂R(νT (t))

∂t
)cov(

√
n(θ̂ − θ),

√
n(F̂D(F−1

D (νT (t))) − t))(
∂R(νT (t))

∂θ
).

The result follows by plugging in corresponding expressions from Result 2, 6 and 7. Proofs

of items (vi) and (viii) follow similar arguments.

Proof of Theorem item (ix) Proof of Theorem (ix) is exactly the same as the proofs

for a cohort study. Equations (22), (24) and (26) defined expressions for the components of

the asymptotic variance of
√

n( ˆPEV − PEV ), σ2
9. We only need to substitute l(θ) in the

definition of









P1

P2









and









Q1

Q2









(equation (23) and (25)) with the likelihood function based

on case-control data, which are defined by Prentice and Pyke (1979), Qin and Zhang (1997)

and Zhang (2000).

Proof of Theorem item (x) According to equations (27), (28) and (29), the three com-

ponents of var(
√

n( ˆTG − TG)), σ2
10, are

Σ1 =var(An) + var(Bn) + var(Cn) + cov(An, Bn) + cov(An, Cn) + cov(Bn, Cn);
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Σ2 =var(Dn) + var(En) + var(Fn) + cov(Dn, En) + cov(Dn, Fn) + cov(En, Fn);

Σ1,2 =cov(An, En) + cov(An, Fn) + cov(Bn, Dn) + cov(Bn, En) + cov(Bn, Fn)

+cov(Cn, Dn) + cov(Cn, En) + cov(Cn, Fn).

The following Results provide corresponding expressions for each of the individual compo-

nents:

Result 2: var(An) and var(Dn).

Result 3: cov(Bn, En).

Result 6: var(Bn), var(Cn), var(En), cov(Bn, Cn), var(Fn), cov(En, Fn), cov(Bn, Fn), cov(Cn, En)

and cov(Cn, Fn).

Result 7: cov(An, Bn), cov(Dn, En), cov(Bn, Dn) and cov(An, En).

Furthermore, cov(An, Cn)=cov(Dn, Fn)=cov(An, Fn)=cov(Cn, Dn)=0.
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Table 1: Results of simulations to evaluate the application of inference based on asymptotic distribution theory and bootstrap resampling to finite 

sample studies. The study employs cohort design with prevalence 0.2. Marker data for controls are standard normally distributed and for cases is 

normally distributed with mean 1 and variance 1. Shown are results for R(v), R
-1

(p), R(v(TPR)) and R(v(FPR)). 

 
  v=0.1 v=0.5 v=0.9 p=0.1 p=0.35 p=0.6 TPR=.9 TPR=.5 TPR=.1 FPR=.9 FPR=.5 FPR=.1 

   R(v)=   R
-1

(p)=  R(v(TPR))= R(v(FPR))= 

  0.045 0.154 0.427 0.321 0.839 0.972 0.103 0.292 0.598 0.040 0.132 0.353 

% Bias 
n=100  7.15 -1.56  -0.26 3.47 -0.08 -0.85 15.84 5.77 -3.30 11.17 -2.75 -3.43 

n=500  1.59 0.06 -0.14 0.62 0.04 -0.18 2.95 0.89 -0.78 2.80 -0.25 -0.60 

n=2000  0.21 -0.24 0.09 0.04 0.02 -0.04 0.84 0.30 -0.32 0.79 -0.10 -0.14 

Standard deviation 

n=100 observed 

asymptotic 

bootstrap 

0.027 

0.027 

0.028 

0.045 

0.044 

0.044 

0.104 

0.100 

0.104 

0.142 

0.136 

0.140 

0.074 

0.077 

0.084 

0.033 

0.037 

0.050 

0.037 

0.036 

0.041 

0.086 

0.089 

0.092 

0.153 

0.154 

0.152 

0.028 

0.026 

0.027 

0.043 

0.041 

0.037 

0.068 

0.065 

0.064 

n=500 observed 

asymptotic 

bootstrap 

0.013 

0.012 

0.012 

0.021 

0.020 

0.020 

0.044 

0.045 

0.046 

0.064 

0.063 

0.065 

0.035 

0.035 

0.035 

0.015 

0.016 

0.016 

0.016 

0.016 

0.017 

0.037 

0.038 

0.038 

0.072 

0.072 

0.073 

0.012 

0.012 

0.013 

0.019 

0.019 

0.018 

0.029 

0.029 

0.028 

n=2000 observed 

asymptotic 

bootstrap 

0.006 

0.006 

0.006 

0.010 

0.010 

0.010 

0.023 

0.023 

0.023 

0.032 

0.032 

0.032 

0.017 

0.018 

0.018 

0.008 

0.008 

0.008 

0.008 

0.008 

0.008 

0.018 

0.019 

0.019 

0.038 

0.037 

0.037 

0.006 

0.006 

0.006 

0.009 

0.009 

0.009 

0.015 

0.015 

0.016 

95% coverage probability 
n=100 asymptotic 

bootstrap—N  

bootstrap—P  

88.7 

89.4 

92.0 

93.0 

91.4 

93.0 

92.1 

95.0 

96.2 

89.6 

90.2 

92.6 

92.8 

95.4 

96.0 

90.0 

96.8 

96.0 

94.8 

98.2 

96.8 

93.7 

96.4 

97.6 

87.2 

88.8 

93.4 

87.6 

89.3 

93.8 

92.7 

90.6 

93.4 

93.9 

92.5 

95.8 

n=500 asymptotic 

bootstrap—N  

bootstrap—P  

94.0 

93.8 

95.0 

94.6 

94.8 

94.4 

94.4 

94.8 

94.2 

93.2 

94.8 

95.6 

94.7 

95.8 

95.6 

93.1 

91.8 

95.0 

94.5 

96.4 

97.2 

94.7 

95.8 

95.8 

92.4 

94.0 

95.8 

93.9 

94.2 

93.6 

94.5 

92.8 

96.8 

94.4 

94.8 

95.4 

n=2000 asymptotic 

bootstrap—N  

bootstrap—P  

94.9 

95.0 

93.8 

95.4 

96.2 

96.2 

95.2 

95.6 

95.0 

94.4 

94.2 

95.0 

94.7 

94.6 

94.4 

95.2 

94.6 

95.0 

94.8 

96.0 

95.6 

95.0 

94.8 

94.8 

94.3 

96.0 

95.6 

94.7 

94.8 

95.0 

95.2 

94.8 

94.6 

94.6 

95.2 

94.6 

 
* bootstrap-N: confidence intervals are based on the normal assumption of bootstrapped values 

      bootstrap-P: confidence intervals are based on percentile of bootstrapped values 
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Table 2: Results of simulations to evaluate the application of inference based on asymptotic distribution theory and bootstrap resampling to finite 

sample studies. Data were generated as described for Table 1. Shown are results for TPR(p), FPR(p), PPV(p) and NPV(p).  

 
  p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 

  TPR(p)= FPR(p)= PPV(p)= NPV(p)= 
  0.905 0.395 0.098 0.622 0.103 0.011 0.267 0.490 0.691 0.941 0.856 0.814 

% Bias 

n=100  -0.20 -1.09 29.45 -1.48 -0.21 18.82 3.53 -0.05 -14.08 -0.75 0.42 0.73 

n=500  0.01 -0.89 5.48 -0.10 -0.58 3.69 0.70 -0.02 -1.88 0.03 0.08 0.15 

n=2000  0.01 0.05 1.12 0.02 -0.05 1.83 0.04 -0.05 -0.19 0.02 0.02 0.06 

Standard deviation 
n=100 observed 

asymptotic 

bootstrap 

0.074 

0.073 

0.092 

0.174 

0.161 

0.168 

0.116 

0.117 

0.128 

0.158 

0.151 

0.154 

0.052 

0.054 

0.067 

0.016 

0.019 

0.033 

0.053 

0.052 

0.052 

0.115 

0.117 

0.117 

0.211 

0.213 

0.210 

0.045 

0.045 

0.045 

0.032 

0.033 

0.030 

0.037 

0.036 

0.034 

n=500 observed 

asymptotic 

bootstrap 

0.029 

0.030 

0.032 

0.077 

0.075 

0.078 

0.054 

0.054 

0.053 

0.073 

0.071 

0.072 

0.023 

0.024 

0.024 

0.007 

0.008 

0.007 

0.022 

0.022 

0.021 

0.042 

0.041 

0.040 

0.135 

0.132 

0.136 

0.015 

0.015 

0.016 

0.014 

0.015 

0.014 

0.016 

0.016 

0.016 

n=2000 observed 

asymptotic 

bootstrap 

0.015 

0.015 

0.015 

0.038 

0.038 

0.039 

0.027 

0.027 

0.027 

0.037 

0.036 

0.037 

0.012 

0.012 

0.012 

0.003 

0.004 

0.004 

0.011 

0.011 

0.011 

0.199 

0.020 

0.020 

0.058 

0.057 

0.056 

0.007 

0.007 

0.007 

0.008 

0.007 

0.007 

0.008 

0.008 

0.008 

95% coverage probability 
n=100 asymptotic 

bootstrap—N  

bootstrap—P  

93.0 

95.2 

98.0 

90.2 

93.0 

97.0 

87.6 

95.2 

96.8 

88.3 

90.6 

94.8 

93.5 

97.2 

98.2 

91.1 

98.2 

98.6 

95.2 

94.8 

95.0 

96.5 

96.6 

96.6 

96.4 

94.6 

95.0 

91.2 

90.4 

92.4 

93.0 

92.4 

93.4 

93.2 

92.3 

93.5 

n=500 asymptotic 

bootstrap—N  

bootstrap—P  

93.3 

96.2 

97.4 

93.8 

94.4 

95.0 

91.9 

93.6 

96.2 

93.3 

95.2 

95.8 

94.9 

94.6 

94.8 

93.8 

93.6 

97.0 

94.6 

94.0 

94.0 

95.1 

94.0 

95.4 

96.4 

95.9 

95.2 

92.8 

93.6 

94.8 

94.6 

92.4 

93.2 

95.0 

94.3 

95.1 

n=2000 asymptotic 

bootstrap—N  

bootstrap—P  

94.7 

94.8 

95.8 

94.9 

96.0 

96.0 

94.2 

93.8 

94.4 

94.4 

93.6 

94.4 

94.9 

95.0 

94.4 

95.3 

94.6 

95.2 

94.7 

95.2 

95.0 

94.7 

95.1 

94.8 

96.0 

95.3 

95.8 

94.6 

95.1 

94.6 

95.1 

95.1 

95.2 

94.6 

93.8 

94.7 
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Table 3: Results of simulations to evaluate the application of inference based on asymptotic 

distribution theory and bootstrap resampling to finite sample studies. Data were generated as 

described for Table 1. Shown are results for PEV, standardized total gain, TG  and AUC. 

 
  PEV=0.154 TG =0.383 AUC=0.760 

% Bias 
n=100  2.68 1.42 0.25 

n=500  1.24 0.48 0.16 

n=2000  -0.05 -0.02 0.02 

Standard deviation 
n=100 observed 

asymptotic 

Bootstrap 

0.078 

0.076 

0.078 

0.105 

0.120 

0.123 

0.061 

0.060 

0.058 

n=500 observed 

asymptotic 

bootstrap 

0.034 

0.034 

0.034 

0.048 

0.051 

0.053 

0.027 

0.026 

0.028 

n=2000 observed 

asymptotic 

bootstrap 

0.018 

0.017 

0.017 

0.025 

0.026 

0.026 

0.013 

0.013 

0.014 

95% coverage probability 
n=100 asymptotic 

bootstrap—N 

bootstrap—P 

91.8 

90.8 

93.4 

95.1 

96.8 

96.4 

92.5 

94.3 

93.6 

n=500 asymptotic 

bootstrap—N 

bootstrap—P 

93.9 

93.4 

93.6 

95.2 

95.8 

95.8 

94.4 

95.1 

94.7 

n=2000 asymptotic 

bootstrap—N 

bootstrap—P 

94.7 

95.4 

95.0 

95.5 

95.3 

95.6 

96.2 

95.7 

96.0 
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Table 4: Results of simulations to evaluate the application of inference based on asymptotic distribution theory and bootstrap 

resampling to finite sample studies. The study design employs case-control sampling from a parent cohort with prevalence 0.2. Marker 

data for controls are standard normally distributed and for cases is normally distributed with mean 1 and variance 1. The case-control 

subset is 1/5 the size of the parent cohort and is randomly selected. Shown are results for R(v), R
-1

(p), R(v(TPR)) and R(v(FPR)).  

 
  v=0.1 v=0.5 v=0.9 p=0.1 p=0.35 p=0.6 TPR=.9 TPR=.5 TPR=.1 FPR=.9 FPR=.5 FPR=.1 

   R(v)=   R
-1

(p)=  R(v(TPR))= R(v(FPR))= 

  0.045 0.154 0.427 0.321 0.839 0.972 0.103 0.292 0.598 0.040 0.132 0.353 

% Bias 
n=100  3.39 -1.55 0.86 0.72 0.35 -0.50 6.63 4.11 -0.19 8.72 -1.59 -3.77 

n=500  0.55 -0.29 0.38 0.35 0.03 -0.07 1.31 0.78 -0.08 1.95 -0.52 -0.72 

n=2000  0.09 -0.06 0.14 0.04 0.01 -0.02 0.37 0.17 0.01 0.67 -0.06 -0.19 

Standard deviation 

n=100 observed 

asymptotic 

bootstrap 

0.022 

0.021 

0.020 

0.027 

0.028 

0.022 

0.072 

0.071 

0.065 

0.099 

0.097 

0.094 

0.047 

0.050 

0.046 

0.026 

0.030 

0.028 

0.020 

0.018 

0.020 

0.058 

0.059 

0.057 

0.117 

0.119 

0.117 

0.022 

0.021 

0.020 

0.028 

0.030 

0.026 

0.045 

0.047 

0.044 

n=500 observed 

asymptotic 

bootstrap 

0.009 

0.009 

0.009 

0.012 

0.012 

0.011 

0.032 

0.031 

0.029 

0.045 

0.044 

0.042 

0.021 

0.021 

0.019 

0.012 

0.013 

0.012 

0.009 

0.008 

0.008 

0.025 

0.025 

0.022 

0.057 

0.056 

0.055 

0.009 

0.009 

0.009 

0.013 

0.013 

0.012 

0.021 

0.021 

0.019 

n=2000 observed 

asymptotic 

bootstrap 

0.005 

0.005 

0.005 

0.006 

0.006 

0.005 

0.015 

0.015 

0.014 

0.024 

0.022 

0.021 

0.011 

0.011 

0.010 

0.006 

0.006 

0.006 

0.004 

0.004 

0.004 

0.012 

0.012 

0.011 

0.028 

0.028 

0.028 

0.004 

0.005 

0.005 

0.006 

0.007 

0.006 

0.011 

0.011 

0.010 

95% coverage probability 
n=100 asymptotic 

bootstrap—N  

bootstrap—P  

91.7 

90.4 

93.6 

94.2 

88.2 

90.0 

94.0 

91.2 

92.4 

92.8 

91.2 

92.4 

94.9 

91.2 

93.4 

91.9 

92.4 

94.0 

88.0 

95.0 

96.4 

94.9 

93.6 

91.8 

90.8 

90.4 

93.4 

90.7 

90.4 

92.2 

94.1 

89.8 

93.6 

92.2 

93.2 

95.6 

n=500 asymptotic 

bootstrap—N  

bootstrap—P  

94.1 

93.3 

93.9 

95.4 

92.9 

93.1 

95.1 

93.5 

94.1 

93.8 

93.6 

94.7 

94.9 

94.0 

95.4 

94.9 

94.2 

94.8 

92.5 

91.4 

93.0 

95.0 

93.2 

91.6 

94.4 

93.0 

94.8 

94.3 

93.6 

94.6 

94.8 

93.8 

94.2 

94.2 

92.6 

93.8 

n=2000 asymptotic 

bootstrap—N  

bootstrap—P  

94.9 

94.4 

94.6 

95.2 

94.6 

95.4 

94.4 

94.2 

95.6 

94.8 

95.2 

95.2 

95.2 

95.4 

94.9 

95.2 

95.4 

95.4 

94.3 

93.2 

93.8 

94.6 

93.8 

94.8 

94.5 

93.6 

93.6 

94.7 

94.6 

94.6 

95.3 

94.8 

95.2 

94.5 

94.2 

94.8 
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Table 5: Results of simulations to evaluate the application of inference based on asymptotic distribution theory and bootstrap 

resampling to finite sample studies. Data are generated as described for Table 3. Shown are results for TPR(p), FPR(p), PPV(p) and 

NPV(p). 

 
  p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 p=0.1 p=0.35 p=0.6 

  TPR(p)= FPR(p)= PPV(p)= NPV(p)= 
  0.905 0.395 0.098 0.622 0.103 0.011 0.267 0.490 0.691 0.941 0.856 0.814 

% Bias 

n=100  0.22 -0.69 21.42 -0.52 -4.09 3.32 2.07 3.16 -18.73 -0.21 0.14 0.39 

n=500  0.05  -0.27 4.26 -0.22 -0.41 2.38 0.51 0.75 -0.11 -0.03 0.05 0.09 

n=2000  0.01 -0.19 1.18 -0.19 -0.26 0.79 0.09 0.11 0.66 0.00 0.01 0.02 

Standard deviation 
n=100 observed 

asymptotic 

bootstrap 

0.037 

0.039 

0.037 

0.117 

0.114 

0.110 

0.090 

0.091 

0.089 

0.120 

0.115 

0.112 

0.037 

0.041 

0.038 

0.019 

0.018 

0.016 

0.037 

0.037 

0.038 

0.101 

0.113 

0.112 

0.189 

0.205 

0.200 

0.032 

0.025 

0.028 

0.023 

0.022 

0.022 

0.020 

0.020 

0.018 

n=500 observed 

asymptotic 

bootstrap 

0.017 

0.016 

0.015 

0.053 

0.052 

0.050 

0.041 

0.042 

0.041 

0.054 

0.052 

0.050 

0.017 

0.017 

0.015 

0.007 

0.008 

0.007 

0.017 

0.016 

0.016 

0.042 

0.041 

0.045 

0.135 

0.141 

0.132 

0.010 

0.009 

0.011 

0.010 

0.010 

0.010 

0.009 

0.009 

0.008 

n=2000 observed 

asymptotic 

bootstrap 

0.008 

0.008 

0.007 

0.027 

0.026 

0.025 

0.021 

0.021 

0.020 

0.027 

0.026 

0.025 

0.008 

0.008 

0.008 

0.004 

0.004 

0.004 

0.008 

0.008 

0.008 

0.020 

0.020 

0.021 

0.065 

0.065 

0.066 

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

0.005 

95% coverage probability 
n=100 asymptotic 

bootstrap—N  

bootstrap—P  

92.9 

94.4 

97.4 

92.5 

90.6 

92.2 

89.2 

90.4 

93.2 

92.6 

91.0 

92.4 

96.7 

92.2 

92.6 

89.0 

86.0 

89.4 

94.2 

93.0 

92.8 

97.5 

97.2 

98.2 

95.8 

93.2 

90.5 

90.3 

94.2 

95.8 

93.3 

92.8 

93.6 

94.7 

92.4 

94.4 

n=500 asymptotic 

bootstrap—N  

bootstrap—P  

93.4 

92.0 

94.4 

94.1 

93.8 

94.2 

93.1 

92.2 

93.0 

93.7 

92.4 

93.4 

96.0 

93.4 

93.6 

94.2 

92.4 

94.0 

94.2 

93.2 

93.4 

95.3 

96.0 

97.4 

94.6 

95.2 

96.2 

92.8 

95.6 

96.8 

94.1 

92.2 

92.2 

94.9 

93.6 

94.8 

n=2000 asymptotic 

bootstrap—N  

bootstrap—P  

95.6 

95.8 

95.0 

93.7 

94.2 

94.8 

94.4 

93.4 

93.2 

94.2 

93.8 

94.2 

95.5 

94.7 

95.7 

95.1 

94.2 

95.7 

94.4 

95.0 

94.4 

95.3 

94.8 

96.6 

95.1 

96.2 

95.6 

94.0 

95.0 

96.4 

94.1 

94.2 

94.6 

94.8 

94.6 

95.2 
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Table 6: Results of simulations to evaluate the application of inference based on asymptotic 

distribution theory to finite sample studies. Data are generated as described for Table 3. Shown 

are results for PEV, standardized total gain, TG  and AUC. 

 
  PEV=0.154 TG =0.383 AUC=0.760 

% Bias 
n=100  7.09 0.97 0.05 

n=500  1.24 0.56 0.06 

n=2000  0.62 -0.13 -0.01 

Standard deviation 
n=100 observed 

asymptotic 

Bootstrap 

0.064 

0.071 

0.064 

0.092 

0.095 

0.096 

0.047 

0.047 

0.047 

n=500 observed 

asymptotic 

bootstrap 

0.029 

0.031 

0.028 

0.041 

0.042 

0.042 

0.021 

0.021 

0.021 

n=2000 observed 

asymptotic 

bootstrap 

0.015 

0.016 

0.016 

0.021 

0.021 

0.021 

0.011 

0.011 

0.011 

95% coverage probability 
n=100 asymptotic 

bootstrap—N 

bootstrap—P 

95.7 

93.2 

92.8 

94.8 

95.2 

96.8 

94.3 

93.0 

94.2 

n=500 asymptotic 

bootstrap—N 

bootstrap—P 

95.8 

95.4 

94.4 

95.0 

94.4 

94.2 

94.3 

95.0 

94.6 

n=2000 asymptotic 

bootstrap—N 

bootstrap—P 

96.5 

96.4 

95.4 

95.2 

94.6 

95.0 

94.8 

95.0 

95.0 
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Table 7: Point estimates and 95% confidence intervals for the summary indices using FEV1 and 

weight as markers of risk for subsequent pulmonary exacerbation in patients with cystic fibrosis. 

Results based on the entire cohort. 

 
  Standard 

deviation 

95% confidence interval  

 Estimate Asymptotic Asymptotic Percentile Bootstrap p-value 

R(0.9)      

FEV1 0.76 0.007 (0.745, 0.773) (0.746, 0.773) 

weight 0.52 0.006 (0.503, 0.537) (0.503, 0.527) 
<0.001 

R(0.1)      

FEV1 0.14 0.005 (0.129, 0.148) (0.129, 0.148) 

weight 0.24 0.007 (0.221, 0.251) (0.223, 0.252) 
<0.001 

R
-1

(0.25)      

FEV1 0.32 0.010 (0.305, 0.344) (0.303, 0.342) 

weight 0.11 0.009 (0.095, 0.131) (0.095, 0.134) 
<0.001 

R
-1

(0.75)      

FEV1 0.89 0.007 (0.875, 0.905) (0.874, 0.906) 

weight 1 0 (1, 1) (1, 1) 
<0.001 

R(�(TPR=0.85))      

FEV1 0.27 0.007 (0.253, 0.280) (0.254, 0.279) 

weight 0.32 0.007 (0.304, 0.330) (0.305, 0.332) 
<0.001 

R(�(TPR=0.55))      

FEV1 0.53 0.008 (0.511, 0.540) (0.512, 0.538) 

weight 0.47 0.005 (0.456, 0.477) (0.457, 0.477) 
<0.001 

R(�(FPR=0.15))      

FEV1 0.54 0.008 (0.525, 0.556) (0.524, 0.554) 

weight 0.51 0.006 (0.503, 0.527) (0.503, 0.527) 
<0.001 

R(�(FPR=0.45))      

FEV1 0.29 0.006 (0.282, 0.304) (0.283, 0.303) 

weight 0.43 0.005 (0.424, 0.443) (0.424, 0.443) 
<0.001 

TPR(0.25)      

FEV1 0.87 0.007 (0.853, 0.880) (0.852, 0.879) 

weight 0.93 0.007 (0.920, 0.947) (0.921, 0.946) 
<0.001 

TPR(0.75)      

FEV1 0.21 0.014 (0.185, 0.239) (0.186, 0.240) 

weight 0 0 (0, 0) (0, 0) 
<0.001 

FPR(0.25)      

FEV1 0.54 0.013 (0.517, 0.569) (0.519, 0.570) 

Weight 0.85 0.011 (0.832, 0.877) (0.831, 0.875) 
<0.001 

FPR(0.75)      

FEV1 0.039 0.004 (0.032, 0.046) (0.033, 0.045) 

weight 0 0 (0, 0) (0, 0) 
<0.001 

PPV(0.25)      

FEV1 0.53 0.005 (0.515, 0.535) (0.513, 0.536) 

weight 0.43 0.002 (0.427, 0.435) (0.428, 0.437) 
<0.001 

PPV(0.75)      

FEV1 0.79 0.011 (0.768, 0.811) (0.768, 0.814) 

weight 0 0 (0, 0) (0, 0) 
<0.001 

NPV(0.25)      

FEV1 0.83 0.005 (0.820, 0.842) (0.819, 0.840) 

Weight 0.76 0.011 (0.747, 0.780) (0.746, 0.778) 
<0.001 

NPV(0.75)      

FEV1 0.64 0.003 (0.630, 0.644) (0.630, 0.645) 

weight 0.59 0 (0.590, 0.590) (0.590, 0.590) 
<0.001 
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PEV      

FEV1 0.22 0.005 (0.202, 0.229) (0.203, 0.230) 

weight 0.05 0.003 (0.041, 0.056) (0.041, 0.056) 
<0.001 

TG      

FEV1 0.20 0.006 (0.189, 0.207) (0.186, 0.208) 

weight 0.09 0.005 (0.080, 0.099) (0.082, 0.101) 
<0.001 

TG       

FEV1 0.42 0.008 (0.407, 0.440) (0.407, 0.439) 

weight 0.20 0.009 (0.183, 0.218) (0.182, 0.218) 
<0.001 

AUC      

FEV1 0.77 0.004 (0.762, 0.779) (0.762, 0.780) 

weight 0.64 0.005 (0.630, 0.649) (0.630, 0.649) 
<0.001 

Hosted by The Berkeley Electronic Press



 80 

Table 8: Point estimates and 95% confidence intervals for the summary indices using FEV1 and 

weight as markers of risk for subsequent pulmonary exacerbation in patients with cystic fibrosis. 

Results are based on prevalence estimated from the entire cohort and marker data from a 

randomly selected case-control subset with 1,280 cases and 1,280 controls. 

 
  Standard 

deviation 

95% confidence interval  

 Estimate Asymptotic Asymptotic Percentile 

Bootstrap 

p-value 

R(0.9)      

FEV1 0.76 0.014 (0.731, 0.785) (0.735, 0.788) 

weight 0.52 0.011 (0.494, 0.535) (0.496, 0.534) 
<0.001 

R(0.1)      

FEV1 0.14 0.009 (0.119, 0.155) (0.117, 0.152) 

weight 0.23 0.015 (0.204, 0.263) (0.197, 0.253) 
<0.001 

R
-1

(0.25)      

FEV1 0.35 0.014 (0.318, 0.375) (0.314, 0.367) 

weight 0.12 0.020 (0.086, 0.157) (0.089, 0.151) 
<0.001 

R
-1

(0.75)      

FEV1 0.88 0.013 (0.850, 0.903) (0.850, 0.903) 

weight 1 0 (1, 1) (1, 1) 
<0.001 

R(�(TPR=0.85))      

FEV1 0.26 0.008 (0.247, 0.277) (0.250, 0.278) 

weight 0.31 0.008 (0.299, 0.330) (0.300, 0.331) 
<0.001 

R(�(TPR=0.55))      

FEV1 0.55 0.014 (0.518, 0.573) (0.522, 0.573) 

weight 0.47 0.009 (0.458, 0.492) (0.455, 0.490) 
<0.001 

R(�(FPR=0.15))      

FEV1 0.53 0.010 (0.513, 0.551) (0.517, 0.550) 

weight 0.52 0.011 (0.498, 0.541) (0.500, 0.543) 
0.332 

R(�(FPR=0.45))      

FEV1 0.29 0.010 (0.267, 0.308) (0.266, 0.306) 

weight 0.43 0.005 (0.420, 0.441) (0.421, 0.442) 
<0.001 

TPR(0.25)      

FEV1 0.86 0.006 (0.848, 0.875) (0.850, 0.874) 

weight 0.93 0.011 (0.911, 0.954) (0.915, 0.950) 
<0.001 

TPR(0.75)      

FEV1 0.25 0.027 (0.195, 0.306) (0.198, 0.310) 

weight 0 0 (0, 0) (0. 0) 
<0.001 

FPR(0.25)      

FEV1 0.51 0.021 (0.465, 0.552) (0.476, 0.568) 

Weight 0.84 0.027 (0.794, 0.888) (0.792, 0.885) 
<0.001 

FPR(0.75)      

FEV1 0.04 0.005 (0.025, 0.045) (0.027, 0.045) 

weight 0 0 (0, 0) (0, 0) 
<0.001 

PPV(0.25)      

FEV1 0.54 0.011 (0.519, 0.561) (0.517, 0.558) 

weight 0.43 0.007 (0.423, 0.447) (0.422, 0.445) 
<0.001 

PPV(0.75)      

FEV1 0.80 0.018 (0.796, 0.868) (0.792, 0.870) 

weight 0 0 (0, 0) (0, 0) 
<0.001 

NPV(0.25)      

FEV1 0.84 0.008 (0.819, 0.854) (0.819, 0.851) 

Weight 0.77 0.016 (0.739, 0.804) (0.738, 0.806) 
<0.001 

NPV(0.75)      
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FEV1 0.65 0.008 (0.633, 0.666) (0.633, 0.669) 

weight 0.59 0 (0.590, 0.590) (0.590, 0.590) 
<0.001 

PEV      

FEV1 0.21 0.017 (0.181, 0.248) (0.184, 0.245) 

weight 0.04 0.008 (0.022, 0.054) (0.025, 0.053) 
<0.001 

TG      

FEV1 0.20 0.009 (0.182, 0.216) (0.182, 0.216) 

weight 0.09 0.009 (0.069, 0.104) (0.070, 0.104) 
<0.001 

TG       

FEV1 0.41 0.019 (0.368, 0.442) (0.370, 0.444) 

weight 0.21 0.020 (0.171. 0.251) (0.171, 0.252) 
<0.001 

AUC      

FEV1 0.768 0.009 (0.749, 0.786) (0.750, 0.787) 

weight 0.649 0.011 (0.625, 0.669) (0.628, 0.670) 
<0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hosted by The Berkeley Electronic Press



 82 

Table 9: Point estimates and 95% confidence intervals for the summary indices using FEV1 and 

weight as markers of risk for subsequent pulmonary exacerbation in patients with cystic fibrosis. 

Results are based on prevalence estimated from the entire cohort and marker data from a 

randomly selected case-control subset with equal numbers of cases and controls. The total 

number of cases and controls is denoted by n. Confidence intervals and p-values were based on 

bootstrap resampling. 

 

Est. (95% CI)  

-FEV1 -weight 
p-value 

R(0.1) n=500 0.15 (0.100, 0.203) 0.28 (0.212, 0.371) <0.001 

 n=200 0.11 (0.049, 0.179) 0.22 (0.107, 0.335) 0.04 

 n=100 0.17 (0.077, 0.283) 0.16 (0.041, 0.299) 0.89 

     

R(0.9) n=500 0.80 (0.736, 0.862) 0.53 (0.470, 0.590) <0.001 

 n=200 0.69 (0.574, 0.795) 0.49 (0.401, 0.578) <0.001 

 n=100 0.66 (0.502, 0.835) 0.48 (0.337, 0.619) 0.004 

     

R
-1

(0.25) n=500 0.29 (0.173, 0.373) 0.12 (0.022, 0.216) <0.001 

 n=200 0.32 (0.125, 0.453) 0.14 (0, 0.286) 0.02 

 n=100 0.37 (0.126, 0.516) 0.10 (0, 0.331) 0.09 

     

R
-1

(0.75) n=500 0.87 (0.811, 0.934) 1 (1, 1) <0.001 

 n=200 0.85 (0.770, 0.960) 1 (1, 1) 0.005 

 n=100 0.86 (0.738, 0.966) 1 (0, 1) 0.61 

     

R(v(TPR=0.85)) n=500 0.25 (0.203, 0.304) 0.32 (0.283, 0.368) 0.002 

 n=200 0.27 (0.209, 0.346) 0.36 (0.273, 0.443) 0.008 

 n=100 0.25 (0.167, 0.366) 0.32 (0.227, 0.433) 0.10 

     

R(v(TPR=0.55)) n=500 0.53 (0.468, 0.614) 0.48 (0.426, 0.537) 0.04 

 n=200 0.56 (0.456, 0.702) 0.46 (0.375, 0.552) 0.05 

 n=100 0.61 (0.454, 0.828) 0.51 (0.387, 0.634) 0.16 

     

R(v(FPR=0.15)) n=500 0.58 (0.508, 0.626) 0.50 (0.439, 0.562) 0.006 

 n=200 0.55 (0.460, 0.632) 0.50 (0.414, 0.591) 0.25 

 n=100 0.48 (0.330, 0.607) 0.55 (0.404, 0.654) 0.42 

     

R(v(FPR=0.45)) n=500 0.28 (0.230, 0.344) 0.42 (0.379, 0.472) <0.001 

 n=200 0.29 (0.204, 0.378) 0.43 (0.357, 0.500) <0.001 

 n=100 0.33 (0.211, 0.444) 0.44 (0.327, 0.539) 0.03 

     

TPR(0.25) n=500 0.89 (0.837, 0.922) 0.93 (0.865, 0.974) 0.09 

 n=200 0.90 (0.845, 0.972) 1 (0, 1) 0.58 

 n=100 0.88 (0.731, 1.000) 0.96 (0, 1) 0.81 

     

TPR(0.75) n=500 0.20 (0.092, 0.320) 0 (0, 0) <0.001 

 n=200 0.26 (0.027, 0.460) 0 (0, 0) 0.08 

 n=100 0.22 (0, 0.451) 0 (0, 1) 0.44 

     

FPR(0.25) n=500 0.58 (0.474, 0.807) 0.82 (0.695, 0.956) 0.003 
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 n=200 0.57 (0.386, 0.816) 0.83 (0.553, 0.990) 0.03 

 n=100 0.72 (0.384, 0.980) 1 (0, 1) 0.53 

     

FPR(0.75) n=500 0.05 (0.023, 0.072) 0 (0, 0) <0.001 

 n=200 0.05 (0.004, 0.096) 0 (0, 0) 0.32 

 n=100 0.06 (0, 0.128) 0 (0, 1) 0.74 

     

PPV(0.25) n=500 0.50 (0.454, 0.543) 0.44 (0.408, 0.461) 0.01 

 n=200 0.49 (0.437, 0.575) 0.43 (0.409, 0.461) 0.05 

 n=100 0.46 (0.410, 0.613) 0.40 (0.396, 0.501) 0.29 

     

PPV(0.75) n=500 0.76 (0.626, 0.857) 0 (0, 0) <0.001 

 n=200 0.72 (0.563, 0.917) 0 (0, 0) <0.001 

 n=100 0.76 (0.555, 0.943) 0 (0, 0) <0.001 

     

NPV(0.25) n=500 0.85 (0.807, 0.885) 0.76 (0.696, 0.840) 0.02 

 n=200 0.85 (0.753, 0.909) 0.76 (0.448, 0.865) 0.42 

 n=100 0.80 (0.598, 0.907) 0.74 (0, 0.859) 0.77 

     

NPV(0.75) n=500 0.62 (0.593, 0.653) 0.59 (0.590, 0.590) 0.11 

 n=200 0.62 (0.590, 0.675) 0.59 (0.590, 0.590) 0.21 

 n=100 0.60 (0.587, 0.681) 0.59 (0.590, 0.590) 0.83 

     

PEV n=500 0.22 (0.158, 0.293) 0.04 (0.016, 0.082) <0.001 

 n=200 0.22 (0.119, 0.337) 0.07 (0.020, 0.148) 0.004 

 n=100 0.31 (0.163, 0.480) 0.08 (0.012, 0.215) 0.006 

     

TG n=500 0.19 (0.142, 0.222) 0.08 (0.030, 0.111) <0.001 

 n=200 0.23 (0.159, 0.281) 0.09 (0, 0.150) 0.001 

 n=100 0.29 (0.181, 0.353) 0.09 (-0.007, 0.198) 0.002 

     

TG  n=500 0.45 (0.39, 0.54) 0.21 (0.12, 0.29) <0.001 

 n=200 0.48 (0.35, 0.59) 0.25 (0.11, 0.37) 0.004 

 n=100 0.56 (0.38, 0.74) 0.24 (0.06, 0.42) 0.004 

     

AUC n=500 0.76 (0.72, 0.80) 0.63 (0.58, 0.68) <0.001 

 n=200 0.76 (0.69, 0.82) 0.64 (0.56, 0.71) 0.002 

 n=100 0.83 (0.75, 0.91) 0.70 (0.61, 0.79) 0.02 
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Figure 1: Predictiveness curves for FEV1 (solid curve) and weight (dashed curve) as predictors of the risk of having at least one 

pulmonary exacerbation in the following year in children with cystic fibrosis. The horizontal line indicates the overall proportion of 

the population with an event, ρ= 41%.  Using the low risk threshold, pL = 0.25, 11% of subjects are classified as low risk according to 

weight while 32% are classified as low risk according to FEV1.  

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

risk percentile

ri
s
k
 o

f 
d

is
e

a
s
e

0.75

0.11 0.32 0.89

-FEV1

-weight

 

 

 

 

 

 

 

http://biostats.bepress.com/uwbiostat/paper342



 85 

Figure 2: Cumulative distributions of risk based on FEV1 and weight in predicting the risk of having at least one pulmonary 

exacerbation in the following year in children with cystic fibrosis. Distributions are shown separately for subjects who had events 

(cases, solid curve) and for subjects who did not (controls, dashed curve). According to FEV1, 13% of cases and 46% of controls are 

classified as low risk, while only 7% of cases and 15% of controls are assigned low risk status according to weight.  
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Figure 3: ROC curves for FEV1 (solid curve) and weight (dashed curve) as predictors of risk of having at least one pulmonary 

exacerbation in the following year in children with cystic fibrosis. The solid and filled circles are the true and false positive rates 

corresponding to the low risk threshold pL = 0.25. The areas under the ROC curve are 0.771 for FEV1 and 0.639 for weight.  
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Figure 4: Relationship between the proportion of explained variation, PEV, and the prevalence ρ . A linear logistic risk model with 

controls standard normally distributed and cases normally distributed with mean 1 and variance 1 was used to generate the data. 

Maximum PEV occurs at ρ=0.5. 
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Figure 5: Association between )}()({ pFPRpTPR − and p. A linear logistic risk model with controls standard normally distributed and 

cases normally distributed with mean 1 and variance 1 was used to generate the data. Overall prevalence of event ρ=0.2. Maximum 

value, also known as the Kolmogorov-Smirnov distance, occurs at p= ρ . 
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