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Abstract

High-throughput SNP arrays provide estimates of genotypes for up to one million loci, often used in

genome-wide association studies. While these estimates are typically very accurate, genotyping errors

do occur, which can influence in particular the most extreme test statistics and p-values. Estimates for

the genotype uncertainties are also available, although typically ignored. In this manuscript, we develop

a framework to incorporate these genotype uncertainties in case-control studies for any genetic model.

We verify that using the assumption of a “local alternative” in the score test is very reasonable for

effect sizes typically seen in SNP association studies, and show that the power of the score test is simply

a function of the correlation of the genotype probabilities with the true genotypes. We demonstrate

that the power to detect a true association can be substantially increased for difficult to call genotypes,

resulting in improved inference in association studies.
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1 Introduction

The technological advancements of high-throughput arrays have revolutionized many aspects in the

fields of statistical genetics and genomics. Some of the latest platforms, such as the Affymetrix Genome-

Wide Human SNP Array 6.0, allow for the simultaneous assessment of almost one million genotypes

at polymorphic loci (single nucleotide polymorphisms, SNPs) in human DNA. The estimates of these

genotypes, however, are subject to error. The frequency of these genotyping errors can depend on various

factors, such as the sample quality and the chemistry of the SNP probe. It has long been recognized that

statistical algorithms play a crucial role for the accuracy and precision of the genotype calls. In particular

for the Affymetrix platforms, originally described as a high-throughput assay for calling genotypes at

about ten thousand SNPs (Kennedy et al. (2003)), an extensive list of proposed algorithms has been

published (DM, Di et al. (2005); RLMM, Rabbee and Speed (2006); BRLMM, Affymetrix (2006);

CRLMM, Carvalho et al. (2007); SNiPer-HD, Hua et al. (2007); BirdSeed, Korn et al. (2008)). Similar

to gene expression technologies, pre-processing of probe-level data is a crucial consideration to account

for biases induced for example by fragment-length and sequence effects, possibly introduced by the

polymerase chain reaction (Carvalho et al. (2007)). Evaluating and comparing the overall performances

of the genotyping algorithms as well as the assessment of remaining batch and plate effects in those

algorithms is a very active research area (Lin et al. (2008); Hong et al. (2008); Nishida et al. (2008)).

Genotyping errors can lead to a variety of undesirable consequences. These include incorrect estimates

of parameters such as genetic distance (Goldstein et al. (1997)) and linkage disequilibrium between loci

(Akey et al. (2001)), and possibly even more worrisome, incorrect inference in linkage and association

studies (Buetow (1991); Abecasis et al. (2001); Kang et al. (2004d); Hao and Cawley (2007)), as well

as a general loss of power in hypothesis tests (Gordon et al. (1999, 2002, 2003); Rice and Holmans

(2003); Kang et al. (2004c,b)). Acknowledging the existence of such genotyping errors and accounting

for the genotype uncertainties accordingly can be essential, and has been proposed for many settings.

This includes haplotype estimation (Kang et al. (2004a); Zhu et al. (2007)) and linkage studies (Gordon

et al. (2001, 2004)), but most prominently, this pertains to SNP association studies. Gordon and Ott

(2001) propose a “reduced penetrance model method” that allows for errors in a case-control design,

deriving a contingency table based test statistic. Rice and Holmans (2003) propose association tests for
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settings when the overall genotyping error rate is known, for example from an external or pilot study, and

investigate the effects of the genotyping error rate on the type I error rate, the power, and the bias in

the odds ratio estimates. Hao and Wang (2004) employ weighted contingency table and likelihood ratio

tests to incorporate genotyping error rates, finding that the weighted contingency table test improves

the power to detect true associations more than the likelihood ratio test, while the latter is more useful

when the decrease in bias in the parameter estimates is of interest.

Population based case-control designs, considered in the above approaches, are typically more powerful

in detecting associations compared to family-based designs in the absence of population stratification.

If population stratification is a strong concern however, these family-based designs often do become

appealing. Genotyping errors must be specifically addressed in family based designs though, since these

can result in Mendelian inconsistencies in the data. Morris and Kaplan (2004) propose likelihood ratio

tests, applicable when testing for associations using case-parent designs, which incorporate additional

model parameters that account for genotyping errors. The EM algorithm is employed in the calculation

of the test statistic, and thus, no prior specification of the mechanism underlying the genotyping errors

is required. As a consequence, the proposed test is applicable for case-parent based association tests

even in the presence of Mendelian inconsistencies. Cheng and Lin (2007) offer an alternative approach,

addressing population stratification and genotyping errors simultaneously.

Instead of considering the overall error rate in association tests, many genotype calling algorithms such

as BRLMM (Affymetrix (2006)), CRLMM (Carvalho et al. (2007)) and BirdSeed (Korn et al. (2008))

also generate a measure of genotype uncertainty together with the estimate of the genotype, or actual

genotype probabilities, which allow for association tests taking individual, SNP-specific uncertainties

into account. By default, several of these algorithms do not produce a genotype call if the uncertainty is

larger than a pre-set threshold. Thus, the issue of genotype uncertainty can also be seen as a missing data

problem: a more stringent threshold on the genotype quality produces less genotyping errors but more

missing data, and vice versa. For example, Hao and Cawley (2007) investigate power and odds ratios

in population based case-control and family based association tests from a missing data perspective,

allowing for potentially different rates of missing data among homozygote and heterozygote genotypes.

The latter is particularly important, as the data typically are not missing at random. Heterozygote

genotypes, on average, are harder to call than homozygote genotypes (see Table 1 in Affymetrix (2006)
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for a particularly clear example). However, if the genotype estimates and their respective uncertainties

are quantified correctly, then they contain all the information available, and from a statistical perspective,

should be taken into account accordingly in the tests of association.

In particular, score tests represent a correct and efficient framework to approach such data. Plagnol

et al. (2007) propose score tests that incorporate “fuzzy” genotype calls, based on an additive model

under a logistic link. The main motivation in this approach was to address and properly account

for potential differences in genotype estimates due to differential data (DNA) sources, avoiding un-

necessarily high rates of false positives. The developed methods however are also perfectly applicable

to “fuzzy” genotype calls stemming from genotype calling algorithms such as CRLMM. An almost

identical approach is suggested by Marchini et al. (2007), addressing in particular genotype uncertainty

for unobserved, imputed SNPs (i. e. SNPs not represented by probes on the genotyping platform).

In this manuscript, we develop a framework for score tests based on arbitrary genetic models. We verify

the validity of the test, illustrate that the assumption of a “local alternative” is very reasonable for effect

sizes typically seen in SNP association studies, and show that the power of the score test is simply a

function of the correlation of the “fuzzy” genotype call with the true genotype. We demonstrate that

the power to detect a true association can be substantially increased for difficult to call genotypes.

2 Methods and Data

We derive the test statistic and its distribution under the null and alternative hypothesis for an arbitrary

genetic model. Let Yi be the binary disease status indicator for individual i ∈ {1, . . . , n}, and denote

the outcome vector for all n subjects by Y = (Y1, . . . , Yn). We assume that all SNPs are bi-allelic,

and code the SNPs as the number of variant alleles. Let gi be the actual genotype for subject i, with

gi ∈ {0, 1, 2}. We denote the vector of genotypes as g = (g1, . . . , gn), and let Gi be the random

variable taking on values gi = 0, 1, or 2. To make the analogy with a trend test for dose effects, we

let dg be the score assigned to genotype g. Without loss of generality, we set d0 = 0, and thus denote

d = (d1, d2). This encodes the genetic model assumed in the association study, and includes the most

commonly employed genetic models, for example the dominant model d = (1, 1), the recessive model

3
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d = (0, 1), and the additive model d = (1, 2). We derive the methods in this general framework, and

illustrate our findings using an additive model in the association test, also referred to as trend test.

Let πg be the probability of disease given genotype g, e. g., πg = Pr(Y = 1 | g) = H(µ + θdg). The

function H can for example encode a logistic model. We denote the derivative of H with respect to its

argument as h, e. g. H ′ = h. To quantify the effects of using different types of genotype information

available (for example, genotype probabilities versus genotype calls), we use the terms true and working

genotype probabilities. Let tij be the true genotype probabilities for subject i, e. g., Pr(gi = j) with

j ∈ {1, 2, 3}. Obviously 0 ≤ tij ≤ 1, and ti0 = 1 − ti1 − ti2, and thus, we summarize the information

in the true genotype probabilities as t = (t1, t2), where tj = (t1j , . . . , tnj). Note that we also set

d0 = 0. We further denote a genotype “average” as t̄j =
∑

i tij/n = t+j/n. We use the exact same

terminology for the working genotype probabilities wij = Pr(gi = j), namely w = (w1,w2), with

wj = (w1j , . . . , wnj), and w̄j =
∑

i wij/n = w+j/n.

We want to test the hypothesis of no association between genotype and disease, i. e. H0 : π0 = π1 =

π2 = π (or equivalently, θ = 0) using a score test that accounts for not knowing g. The test is

constructed using the w as the working probabilities, and we then evaluate the sample properties of

the test under the true probabilities t. In general, when dealing with incomplete data, the score test or

any other likelihood-based inference needs to use the conditional probabilities Pr(Gi = gi | Yi,w, µ, θ).

However, under H0 the Yi are un-informative, and hence we only need to use the w or t with no

conditioning on the outcome variable.

It is straightforward to show that under the null hypothesis of no genotype/phenotype association, the

genotype predictive probabilities in the score test produced by the incomplete data likelihood do not

depend on the phenotype. Therefore the trend test statistic based on the w is a one degree of freedom

test with statistic:

Z(w, d) =

∑

i(wi1d1 + wi2d2)(Yi − π̂)
√

n × Var(w1d1 + w2d2) × π̂(1 − π̂)
(1)

with π̂ = Ȳ = 1
n

∑

i Yi and Var(w1d1 +w2d2) = d2
1 ×Var(w1)+d2

2×Var(w2)+2d1d2 ×Cov(w1,w2).

In a score test, the variance term measures the statistical information, and larger is better. Further

4
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analysis of the variance term above shows the loss of information from not knowing the gi:

n × Var(w1d1 + w2d2)

=
2

∑

j=1

d2
j

{

w̄j(1 − w̄j) −
∑

i

wij(1 − wij)

}

+ n × 2d1d2 × Cov(w1,w2)

=

2
∑

j=1

d2
j w̄j(1 − w̄j) − n2d1d2w̄1w̄2 −





2
∑

j=1

d2
j

∑

i

wij(1 − wij) − 2d1d2

∑

i

wi1wi2



 . (2)

The first term in equation (2) is the variance when the gi are known, e.g., wij = 0 or 1, wi1wi2 = 0

and Pr(G = g) = w̄g. The term in the square brackets is non-negative and accounts for the loss

of information associated with not knowing the gi. This decomposition is a standard Variance =

E(conditional variance) + Var(conditional expectation), where the conditioning is on i. Note that if

w ≡ w̄ the variance is 0, and there is no information. If wi ∈ {0, 1}, there is no penalty. However, also

note that wi ∈ {0, 1} does not imply validity in general. In particular, if there are doubts about the

validity of the working genotype probabilities in general (i. e. , if methods are employed that generate

poor w’s), it may be better to use the actual genotype calls than relying on the fine details of the w’s.

Under H0, Z(w, d) ∼ N(0, 1), the null distribution is correct irrespective of the working probabilities

w. To calculate the distribution of the test statistic under the alternative, note that when the t are

the true calling probabilities (they could be the actual gi) with the test statistic computed under the

working probabilities w and for general πg, the expectation of the the numerator in equation (1) is

E

[

∑

i

(wi1d1 + wi2d2)(Yi − π̂)

]

= n(π1 − π0)[d1 × Cov(w1, t1) + d2 × Cov(w2, t1)] +

n(π2 − π0)[d1 × Cov(w1, t2) + d2 × Cov(w2, t2)] (3)

and

E(π̂) = π(t) = (1 − t̄1 − t̄2)π0 + t̄1π1 + t̄2π2. (4)
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In our mathematical analysis we consider only local alternatives (small θ), and so we have

πg − π0
.
= θdgh(µ),

E

[

∑

i

(wi1d1 + wi2d2)(Yi − π̂)

]

.
= nθh(µ) × [d2

1 × Cov(w1, t1) + d1d2 × Cov(w2, t1)

+ d1d2 × Cov(w1, t2) + d2
2 × Cov(w2, t2)]

= nθh(µ) × Cov(w1d1 + w2d2, t1d1 + t2d2),

π(t)
.
= H(µ) + θh(µ)[d1t̄1 + d2t̄2]. (5)

Combining this with the denominator of equation (1) and using µ = H−1(π(t)), we obtain

E(Z(w, d) | µ, θ, d,w, t)

= θ ×
√

n

π(t)(1 − π(t))
× h(µ) × Corr ({w1d1 + w2d2}, {t1d1 + t2d2}) ×

√

Var(t1d1 + t2d2)

=: m(µ, θ, d,w, t) (6)

Now, represent a small departure from H0 by writing θ = θ0/
√

n. From equation (5) we obtain

π(t) = H(µ) + O(1/
√

n), and π(t) in equation (4) can then be replaced by π̂. The local, non-null

variance of Z is equal to 1. The logistic model produces h(µ) = H(µ)(1 − H(µ)) = π(1 − π), and

using π̂ = Ȳ we obtain

Z ∼ N(m(µ, θ0, d,w, t), 1) (7)

with

m(µ, θ0, d,w, t)

= θ0 ×
√

π̂(1 − π̂) × Corr ({w1d1 + w2d2}, {t1d1 + t2d2}) ×
√

Var(t1d1 + t2d2). (8)

Squaring the Z-statistic produces a one degree of freedom, chi-square statistic with non-centrality

λ = m2(µ, θ0, d,w, t)/2.

6
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Note that if w = t, then the correlation is equal to 1 and the score test is fully efficient (within the context

of available information). Note from equation (2) that the first term in the variance is the variance

associated with knowing the gi (e.g., the true genotype) and the second term is the loss of information

associated with not knowing the genotype, even using valid t. Also, if the w are chosen very poorly

(w 6= t), it is possible that Corr ({w1d1 + w2d2}, {t1d1 + t2d2}) = 0, i. e. a non-null situation looks like

H0, and if they are chosen very, very poorly it is possible that Corr ({w1d1 + w2d2}, {t1d1 + t2d2}) < 0,

converting a risk genotype to a protective one. It is hard to imagine this ever happening in practice

though, except through a systematic mistake in the genotype annotation. More realistically, the working

probabilities w will have a high, positive correlation with t for most SNPs.

We demonstrate the potential benefits of our proposed approach via simulation studies using ge-

nomic data from the HapMap project (http://www.hapmap.org/). Launched in 2002, the International

HapMap Project periodically released data on selected SNPs in 269 individuals from four different pop-

ulations: 30 parent-child trios from Ibadan, Nigeria (YRI), 30 trios of U.S. residents of northern and

western European ancestry (CEU), 44 unrelated individuals from Tokyo, Japan (JPT) and 45 unrelated

Han Chinese individuals from Beijing, China (CHB). The genotype information used for the simulations

in this manuscripts were selected from these 269 HapMap phase 2 individuals (International HapMap

Consortium (2007)), specifically, the HapMap Public Release #22 mapped to NCBI build 36. To illus-

trate our points a subset of all of the known SNPs is certainly sufficient; the ones used in this manuscript

are the SNPs from the HIND sub-array of the Affymetrix 100K chip. We only focus on SNPs with com-

plete genotype information for all 269 subjects, and for which at least ten of these subjects have at least

one minor allele. This yields a total of 32,443 SNPs.

Since the HapMap genotypes have been verified across laboratories and platforms, they are considered

to be the true genotypes, and serve as the gold standard in the following comparisons. The data derived

using high-throughput arrays on the other hand are subject to experimental error and biases, and thus,

the resulting genotypes can be considered as estimates only. In this manuscript, we use two different

approaches for genotype estimation: the default algorithm recommended by the manufacturer for 100K

Affymetrix SNP chip arrays (BRLMM, Affymetrix (2006)), and an alternative approach (CRLMM,

Carvalho et al. (2007)). We emphasize that the point of the current research is not to demonstrate the

superiority of one algorithm over the other, but solely to demonstrate the effect of genotype uncertainty

7
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in SNP association studies.

As mentioned previously, the genotype estimates are derived from raw intensity patterns, and many

algorithms (such as BRLMM) do not produce a genotype call if the uncertainty is beyond a certain

threshold (which can be varied, up to the point were a genotype call is forced for every SNP in the

sample). The CRLMM method on the other hand produces a likelihood derived from both sense and

anti-sense strands for each possible genotype for each locus in a sample, and thus, “fuzzy” genotypes

such as the triple of posterior genotype probabilities can be calculated. In the reported research, we use

a flat prior, which is equivalent to calculating the normalized likelihoods. No statement of optimality for

this prior is made or implied. Certainly, in a homogeneous population with genotypes in Hardy-Weinberg

equilibrium (and possibly known minor allele frequencies) more informative priors could be used, but

again, the point of the reported research is not to delineate the most powerful genotyping method.

For our comparison we use four sets of genotype calls: the BRLMM genotype calls with missing data

when the uncertainty exceeded the default threshold, the BRLMM genotype calls where an estimate

was forced (and thus, no missing data are permitted), the CRLMM fuzzy genotype calls, and the

called CRLMM genotypes, i. e. the genotype chosen via the posterior mode. In the language of the

previous paragraphs, for the comparisons of efficiency we can use the HapMap gold standards as the

true genotype “probabilities” and the various estimates as working genotype “probabilities”, but also

use the CRLMM posterior probabilities as the true genotype probabilities and the posterior modes as

the working genotype probabilities.

3 Results

The accuracy with which SNPs are genotyped depends on various factors, including the quality of the

DNA used in the sample, and artifacts introduced in the amplification of the DNA. However, besides

those array-wide effects, there are also SNP specific effects due to different chemical properties of the

probes. This can be seen for example when the raw fluorescent intensities from the sense and anti-sense

strands of the DNA are plotted for a collection of individuals (Figure 1). For the majority of SNPs

the three genotype clusters separate well (such as the ones of rs1641760), however, for an appreciable
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proportion of SNPs this is not the case (such as the SNPs denoted by rs1665933, rs1678775, and

rs1659131). Thus, these SNPs are much more prone to genotyping error in genomic assays. Note that

the exact magnitude of separation for each SNP is still subject to systematic effects such as a laboratory

effect, however, this does not affect the overall qualitative nature (easy/difficult) of the SNP.

The uncertainty for a genotype call obviously depends on the separation of these clusters. Further, for

a newly typed sample, the location of the new spot (derived from the fluorescent pattern) within a

cluster also determines the genotype uncertainty (center of the cluster versus edge), as does the overall

quality of the sample. All of these pieces of information are included in the derivation of the genotype

probabilities in CRLMM (Carvalho et al. (2007)). Most genotyping algorithms do not return genotype

probabilities but make a genotype call and quantify the uncertainty associated with the call. Typically,

if the uncertainty exceeds a certain threshold, the genotype will be recorded as missing.

[ FIGURE 1 ABOUT HERE ]

If all of the available information is used and fuzzy genotype calls such as the CRLMM posterior

probabilities are employed in the score test (equation (1)), all samples contribute to the test as there

are no missing data. Thus, it is not too surprising that by properly taking the genotype uncertainty into

account one can improve the power to detect associations, particularly for hard to call SNPs. As an

illustration, we used the HapMap genotype data for SNP rs1678775 (second panel in Figure 1) from the

269 samples, and simulated an artificial case status via a logistic additive model with intercept µ = −1

(corresponding to a 27% probability of disease in non-carriers), and slope parameters θ = 0 (under the

null) and θ = 0.41 (under the alternative), corresponding to odds ratios of 1.0 and 1.5 respectively.

Using 10,000 replications under each scenario, we compare the theoretical and empirical cumulative

distribution functions (CDFs) for the score test statistics using the true genotypes, and the complete

BRLMM calls (i. e. , no missing data) and CRLMM probabilities (Figure 2). We note that the empirical

CDFs are indeed very close to the theoretical CDFs, in particular under the null. In this example, using

the CRLMM genotype probabilities results in a test with more power under the alternative than using

the BRLMM genotype calls, in fact, its cumulative distribution function is almost identical with the

one derived from the true genotypes. We note that the oscillation in some of the curves is due to the

9
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discrete nature of the data, and that the differences in magnitude of the oscillations in the lines for the

true genotypes and the BRLMM calls are a feature of this particular sample.

[ FIGURE 2 ABOUT HERE ]

In general, the power to detect associations can differ substantially depending on which approach is used

in the score test. The difference in power is virtually nil for easy to call genotypes such as SNP rs1641760

(Figure 3, right column). For difficult SNPs such as rs1665933, rs1678775, and rs1659131 (Figure 3,

columns 1-3) the difference in power between the three approaches can be substantial (rs1665933),

substantial for one particular approach (rs1678775), or relatively small (rs1659131). As we expected,

the true genotype always yields the largest power, and using the fuzzy CRLMM genotypes typically

yields improved power compared to the genotype calls from BRLMM.

[ FIGURE 3 ABOUT HERE ]

The efficiency of the score test is a function of the correlation of the true genotypes and the working

genotypes (equation (8)), and thus, the observed differences can simply be explained by the respective

correlations (Table 1). The SNPs in this illustration were deliberately chosen such that the fuzzy CRLMM

genotypes and the BRLMM genotype calls were weakly correlated to the true genotypes (rs1665933),

one was somewhat strongly correlated with the true genotypes but the other one was not (rs1678775),

both are somewhat strongly correlated with the true genotypes (rs1659131), and both are perfectly or

almost perfectly correlated with the true genotypes (rs1641760).

[ TABLE 1 ABOUT HERE ]

Assuming we have a homogeneous population and genotype data for a disease risk affecting SNP in

Hardy-Weinberg equilibrium (the HapMap data are not in Hardy-Weinberg equilibrium, as the samples

come from four diverse populations), then, for a fixed sample size, the power to detect the association

with the response depends on the minor allele frequency of the SNP, the effect size, and the correlation

of the working genotype (employed in the score test) with the true genotype. We find that, in general,
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the power diminishes rapidly with decreasing correlation (Figure 4). For example, assuming a minor

allele frequency of 0.5 and an odds ratio of 1.75 in a sample of 269 subjects, the power to detect the

association decreases from 92% to 74% if the correlation between the working genotype and the true

genotype decreases from 1.0 to 0.75.

[ FIGURE 4 ABOUT HERE ]

To demonstrate how this change in power can affect inferences in association studies, we carried out

a simulation study. We defined a pool of easy to call SNPs and a pool of difficult to call SNPs. The

difficulty of a SNP was defined as the BRLMM average confidence score across all 269 subjects. We

selected 100 easy to call genotypes (BRLMM average confidence scores between 0.005 and 0.009) and

100 difficult to call genotypes (BRLMM average confidence scores between 0.17 and 0.37). This resulted

in two sets of SNPs that differed substantially in the correlations of the estimated and the true genotypes

(Table 2).

[ TABLE 2 ABOUT HERE ]

In each replication of the simulation study (separately for the easy and the difficult SNPs), we randomly

picked a SNP from the respective pool to carry the signal. Using the true genotypes for the chosen SNP,

we simulated case-control outcomes using a logistic additive model with intercept µ = −1 (corresponding

to a 27% probability of disease in non-carries). The slopes were chosen to correspond to odds ratios

between 1 (the null) and 2 (strong signal), in increments of 0.1 units. Using 10,000 replications under

each scenario, we calculated the score test z-statistics for all 32,443 SNPs, using the true genotypes,

the fuzzy CRLMM genotype calls, the genotype calls derived as the modes from the CRLMM posterior

probabilities, all BRLMM genotypes regardless of the individual confidence scores, and the BRLMM

genotypes after dropping the uncertain genotypes. In each replication, we recorded the rank of the

causal SNP among all 32,443 SNPs. As expected, when comparing the 5 different flavors of genotypes,

we observe no differences in the ranks of the causal SNPs when the SNP is selected from the pool

of easy to call SNPs (Table 3, Figure 5). In essence, the genotype calls from BRLMM and the true

genotypes are virtually identical, and the CRLMM fuzzy genotype calls (i.e. the posterior probabilities)

are very close to binary in favor of the true genotype.
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[ TABLE 3 ABOUT HERE ]

[ FIGURE 5 ABOUT HERE ]

Matters are different, of course, for the difficult to call SNPs. Naturally, the best results are achieved

when the true genotype is used. The genotype calling methods yield different results in particular for

the intermediate effect sizes, where real improvements can be achieved. For small effect sizes the signal

is close to the null, and the truly associated SNP rarely floats to the top, regardless of the genotyping

method. When the effect size is large, the truly associated SNP almost always floats to the top, regardless

of the genotyping method. In the mid range, the improved genotype calling translates into improved

detection of the association (the CRLMM genotypes had a higher correlation to the true genotypes than

the BRLMM genotypes, Table 2). Further improvement (of a lesser magnitude) can be achieved using

the entire information available in the fuzzy CRLMM genotypes, compared to the CRLMM posterior

mode genotypes. The same pattern can be seen in the actual z-statistics (Table 4). We further note

that the variability in the z-statistics is close to unity, in particular for the small and intermediate effect

sizes that we would expect in real association studies, lending credibility to the assumption of a local

alternative in the score test. However, the variability in the z-statistics does increase with the effect

size. If this is a concern in the actual analysis, the departure from unity can be addressed by using a

second-order expansion of the variance in the derivation of the test statistic. The local non-null variance

used here is just for convenience in the evaluation and comparison of the different approaches.

[ TABLE 4 ABOUT HERE ]

When comparing the correlations of the true genotypes with the CRLMM fuzzy genotype probabilities

(across the 269 samples) to the correlations of the true genotypes with the BRLMM genotype calls

forcing complete data for all 32,443 SNPs, the histogram of the ratios shows a clear enrichment in the

right tail (Figure 6, upper panel), quantifying the efficiency gain in using CRLMM fuzzy calls versus

BRLMM forced genotype calls. A ratio larger than one for any particular SNP indicates more power in

the score test. A ratio less than one can arise if there is some uncertainty in the genotype estimates,

but BRLMM gets all genotype calls correct. However, the clear excess of ratios larger than one shows

the merit of using the CRLMM continuous genotype probabilities.
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For 662 SNPs, the correlation of the true genotypes with the CRLMM fuzzy genotype probabilities

exceeds the one of the true genotypes with the forced BRLMM calls by more than 5%, while the

reverse is only true for 56 SNPs. It should be emphasized that this enrichment is not the sole reason

to use fuzzy genotype calls: even when the above mentioned ratios are less than one, using those

genotype probabilities is the correct method to quantify the uncertainty in the data, and to properly

use all available information in the association tests. We further note that it is also beneficial not to

force the genotype calls in CRLMM, as a histogram of the correlation with the true genotype shows an

enrichment in favor of the fuzzy genotype calls (Figure 6, lower panel). While the magintude of this

effect is considerably smaller in this setting relative to the one in the previous comparison, there is still

a clear enrichment in the right tail. For example, for 258 SNPs, the correlation of the true genotypes

with the CRLMM fuzzy genotypes exceeds the one of the true genotypes with the forced CRLMM calls

by more than 1%, while the reverse is only true for 3 SNPs. In summary, using the fuzzy genotypes is

the correct way for testing associations as it properly quantifies all available information, and also tends

to increase the power to detect associations.

[ FIGURE 6 ABOUT HERE ]

4 Discussion

We demonstrate that using the available knowledge about the uncertainty in the genotype estimates

can lead to improved inference in association studies. We propose an easy to implement score test that

utilizes all the information available, and show that improved inference can be achieved using genotype

probabilities instead of genotype calls, since the latter often contain missing data. We use data from

Affymetrix SNP chips to illustrate our findings, since methods to quantify genotype uncertainty have

been predominantly developed for arrays from this manufacturer. If the genotype uncertainties can be

properly quantified, the score test can certainly be used for association tests using genomic data from

other platforms such as Illumina arrays as well.

Scalability and memory use have to be taken into account for any approach that utilizes high throughput

genomic data. In this paper, we provide a proof of principle, using 30,000+ SNPs. Some of the newer
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platforms such as the Affymetrix Genome-Wide Human SNP Array 6.0 contain probes for almost one

million SNPs. The size of one such CEL file that contains the raw fluorescent intensities is about 65Mb,

and given that a typical association study uses data from several thousand people, this poses an enor-

mous computational challenge. When actual genotype calls are used to test for associations instead of

genotype probabilities, much more efficient memory handling can be employed, as a single genotype can

be stored using only 2 bits. The most prominent example of such an efficient data handling approach

is PLINK (Purcell et al. (2007)), defined as a “free, open-source whole genome association analysis

toolset, designed to perform a range of basic, large-scale analyses in a computationally efficient man-

ner” (http://pngu.mgh.harvard.edu/∼purcell/plink/). Employing the here introduced score test for one

million SNPs would be somewhat of a challenge with regards to CPU time, and a very serious challenge

with regards to memory use. However, this is not necessary, as the genotypes for the vast majority of

SNPs are easy to call, yielding in essence identical inference for the different approaches considered in

this manuscript. Since the genotype uncertainties are available from the genotype processing algorithms,

we can readily identify the hard to call SNPs, and only run the analysis for these selected SNPs. This

strategy will not change the inference for the majority of the SNPs, and the difference in strength of

association assessed for some of the difficult to call SNPs might not be very substantial either (we

also note that when using the score test in association studies, the same pre-cautions with regards to

population stratification have to be employed, such as potential adjustments via principal components

or genomic control).

However, it is important to keep in mind that (unfortunately) the pre-dominant analytic approach for

genome-wide association studies is to calculate a p-value for each SNP, and report only those SNPs as

associated whose p-values withstand a Bonferroni-type correction (completely ignoring type II errors in

the process). Using the score test, the inference for a non-trivial number of SNPs will change, and it

is quite feasible that some of the SNPs previously declared non-significant will make the list of SNPs

declared significant. The reverse can also be true, though we have demonstrated that the score test

tends to increase the power to detect associations for some of the difficult to call SNPs. Further,

many SNPs are typically not even considered in the actual analysis: if genotype calls are made but the

uncertainty is beyond a pre-defined threshold, the data are reported as missing. If a certain number of

genotypes are missing for any particular SNP, the SNP is usually removed from the analysis altogether.
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In some instances, SNPs are even removed before the data are seen. Some SNPs are notoriously hard

to genotype, and at times, lists of well known trouble makers are assembled, to be removed a priori

from the analysis. However, when the genotype uncertainty is properly quantified we still have valid

information, and using the genotype probabilities is the correct way for testing associations, while taking

advantage of all information available. Moreover, this approach also avoids potential biases induced by

the informative missingness process.

The point of this paper is not to demonstrate the superiority of one genotyping algorithm over an other,

but solely to demonstrate the effect of genotype uncertainty in SNP association studies. Comparing

genotype algorithms in terms of accuracy and their capabilities to deal with artifacts such as batch or

plate effects is a very important issue, but is not considered here. We refer the interested reader to the

existing literature regarding the comparison of the performances of established genotyping algorithms

(e. g. Lin et al. (2008); Hong et al. (2008); Nishida et al. (2008)), and also note that an “alternative

allele calling” working group has been established within the Genetic Association Information Network

(GAIN, http://www.genome.gov/19518664) that carries out these comparisons. We also note that

most genotype calling algorithms do make use of (at least some of) the information available in the

HapMap data to train parameters etc., and thus, a completely fair comparison of the algorithms using

the HapMap data alone would not have been possible in the first place.

Similar comparisons as the ones stated above will be crucial in the near future when association studies

using copy number variants will hit the main stream (Korn et al. (2008); McCarroll (2008)). There is

evidence that the largest effects of inter laboratory variability might manifest itself in the total fluorescent

intensities (Carvalho et al. (2007)), which is the basis for gene copy number estimation. It seems likely

that obtaining accurate and precise estimates for gene copy numbers and their uncertainties will proof

much more challenging than the respective method developments for genotypes, making valid and

efficient statistical approaches imperative.
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SNP AA AB BB cor(g, t) cor(g,w) cor(w, t) cor(g,t)
cor(g,w) log (·)

rs1665933 2 28 239 0.72 0.49 0.72 1.47 0.38
rs1678775 204 57 8 0.94 0.64 0.68 1.47 0.38
rs1659131 2 38 229 0.91 0.87 0.95 1.05 0.04
rs1641760 133 111 25 1.00 1.00 1.00 1.00 0.00

Table 1: The true genotype distributions in the 269 HapMap samples for the four selected SNPs. Since
the subjects came from four distinct populations, we do not expect the SNPs to be in Hardy-Weinberg
equilibrium, and thus do not cite a minor allele frequency. For the genotype calls derived using BRLMM
(w) and CRLMM (t), we show the pairwise correlations with each other and the true genotype (g), and
the ratios and the log ratios of the correlations with the true genotype. Here, the BRLMM genotypes
were called regardless of confidence threshold, and thus, do not contain missing data.
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Pool of 100 difficult SNPs Pool 100 easy SNPs
mean median iqr mean median iqr

Missing BRLMM genotypes (%) 14.05 13.38 (11.15, 16.36) 0.00 0.00 (0.00, 0.00)

Genotype confidence Score 0.21 0.21 (0.19, 0.22) 0.01 0.01 (0.01, 0.01)

cor(gt) 0.92 0.97 (0.93, 1.00) 1.00 1.00 (1.00, 1.00)
cor(gw) 0.78 0.81 (0.72, 0.86) 1.00 1.00 (1.00, 1.00)
cor(wt) 0.81 0.83 (0.76, 0.89) 1.00 1.00 (1.00, 1.00)

log cor(gt)
cor(gw) 0.17 0.17 (0.10, 0.25) 0.00 0.00 (0.00, 0.00)

Table 2: Summary statistics shown as mean, median, and interquartile range, derived from the pools of
SNPs (100 easy and 100 difficult to call) used in in the simulation study. The difficulty to call a SNP
was defined by the average BRLMM confidence score across the 269 subjects. The true genotype is
denoted by g, and the BRLMM and CRLMM genotype estimates are denoted by w and t, respectively.
For the calculation of the correlations, all BRLMM genotypes were used. In parts of the simulation
study, BRLMM genotypes were also recorded as missing if the confidence score exceeded the default
threshold set by the algorithm.
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True genotype CRLMM-1 CRLMM-2 BRLMM-1 BRLMM-2
OR med iqr med iqr med iqr med iqr med iqr

Difficult SNPs
1.0 50.8 (25.1, 76.0) 50.5 (24.9, 76.2) 50.3 (25.2, 76.3) 51.1 (25.3, 75.9) 51.3 (24.9, 75.9)
1.1 64.0 (38.5, 85.5) 63.3 (37.5, 85.0) 63.0 (37.2, 84.9) 62.1 (35.7, 84.0) 61.6 (35.3, 83.6)
1.2 77.3 (52.7, 92.3) 76.0 (49.7, 91.9) 75.8 (49.5, 91.8) 72.7 (46.4, 89.8) 72.7 (46.9, 90.2)
1.3 85.8 (63.1, 96.2) 83.9 (60.9, 95.5) 83.7 (60.5, 95.5) 80.1 (55.1, 93.8) 80.0 (56.3, 93.9)
1.4 91.7 (73.8, 98.1) 90.3 (71.2, 97.8) 90.1 (70.7, 97.8) 86.2 (65.0, 96.4) 86.6 (65.6, 96.6)
1.5 95.2 (82.3, 99.2) 94.2 (79.2, 98.9) 94.0 (78.7, 98.9) 90.9 (72.5, 98.0) 91.1 (73.4, 98.1)
1.6 97.3 (87.7, 99.6) 96.4 (85.0, 99.5) 96.3 (84.5, 99.4) 93.4 (78.2, 98.9) 93.8 (78.9, 98.9)
1.7 98.5 (92.0, 99.8) 98.0 (89.3, 99.8) 97.9 (89.0, 99.7) 95.9 (83.2, 99.4) 96.2 (83.9, 99.4)
1.8 99.3 (94.8, 99.9) 98.9 (92.8, 99.9) 98.9 (92.6, 99.9) 97.3 (87.3, 99.7) 97.6 (88.4, 99.7)
1.9 99.6 (96.6, 100.0) 99.4 (95.0, 100.0) 99.4 (94.7, 100.0) 98.2 (90.3, 99.8) 98.4 (90.7, 99.8)
2.0 99.8 (97.8, 100.0) 99.7 (96.5, 100.0) 99.6 (96.2, 100.0) 98.8 (92.0, 99.9) 98.9 (93.0, 99.9)

Easy SNPs
1.0 49.8 (25.6, 74.0) 49.8 (25.6, 74.0) 49.7 (25.6, 74.0) 49.8 (25.5, 74.0) 49.8 (25.6, 74.0)
1.1 67.8 (41.0, 87.0) 67.7 (41.0, 87.0) 67.8 (41.0, 87.0) 67.8 (41.0, 87.0) 67.8 (41.0, 87.0)
1.2 81.7 (58.2, 94.4) 81.8 (58.3, 94.4) 81.8 (58.3, 94.4) 81.8 (58.3, 94.4) 81.8 (58.3, 94.4)
1.3 90.1 (71.4, 97.5) 90.1 (71.3, 97.5) 90.1 (71.3, 97.5) 90.0 (71.4, 97.5) 90.0 (71.4, 97.5)
1.4 95.4 (82.8, 99.1) 95.3 (82.9, 99.1) 95.3 (82.9, 99.1) 95.3 (82.8, 99.1) 95.4 (82.8, 99.1)
1.5 97.8 (90.1, 99.7) 97.8 (90.1, 99.7) 97.8 (90.1, 99.7) 97.8 (90.1, 99.7) 97.8 (90.1, 99.7)
1.6 99.1 (94.5, 99.9) 99.1 (94.5, 99.9) 99.1 (94.5, 99.9) 99.1 (94.5, 99.9) 99.1 (94.5, 99.9)
1.7 99.6 (96.9, 100.0) 99.6 (96.9, 100.0) 99.6 (96.9, 100.0) 99.6 (96.9, 100.0) 99.6 (96.9, 100.0)
1.8 99.8 (98.5, 100.0) 99.8 (98.5, 100.0) 99.8 (98.5, 100.0) 99.8 (98.5, 100.0) 99.8 (98.5, 100.0)
1.9 99.9 (99.1, 100.0) 99.9 (99.1, 100.0) 99.9 (99.1, 100.0) 99.9 (99.1, 100.0) 99.9 (99.1, 100.0)
2.0 100.0 (99.5, 100.0) 100.0 (99.5, 100.0) 100.0 (99.5, 100.0) 100.0 (99.5, 100.0) 100.0 (99.5, 100.0)

Table 3: The median and inter-quartile range for the association percentile rank of the sole causal
SNP among all other 32,442 non-associated SNPs (in truth), separate for easy and difficult to call
SNPs, and different degrees of associations (odds ratios, OR). The strongest statistical association
measured in each iteration of the simulation corresponds to the percentile rank 100. The results are
shown for the cases when the true genotypes are used to calculate the statistical association, the fuzzy
CRMM genotype calls (CRLMM-1), genotype calls derived as the modes from the CRLMM posterior
probabilities (CRLMM-2), all BRLMM genotypes regardless of confidence scores (BRLMM-1), and the
BRLMM genotypes after dropping the uncertain genotypes (BRLMM-2).
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True genotype CRLMM-1 CRLMM-2 BRLMM-1 BRLMM-2

OR mean sd mean sd mean sd mean sd mean sd

Difficult SNPs

1.0 0.01 (1.017) 0.01 (1.018) 0.01 (1.017) 0.01 (1.020) 0.01 (1.017)
1.1 0.38 (1.020) 0.36 (1.018) 0.35 (1.017) 0.31 (1.021) 0.30 (1.015)
1.2 0.75 (1.031) 0.71 (1.039) 0.70 (1.039) 0.60 (1.035) 0.61 (1.033)
1.3 1.07 (1.082) 1.00 (1.082) 0.99 (1.083) 0.86 (1.073) 0.86 (1.070)
1.4 1.40 (1.104) 1.31 (1.113) 1.30 (1.116) 1.12 (1.093) 1.13 (1.090)
1.5 1.70 (1.143) 1.60 (1.160) 1.58 (1.161) 1.37 (1.131) 1.39 (1.131)
1.6 1.97 (1.169) 1.85 (1.187) 1.83 (1.190) 1.58 (1.168) 1.60 (1.154)
1.7 2.25 (1.194) 2.10 (1.230) 2.08 (1.232) 1.80 (1.197) 1.83 (1.180)
1.8 2.51 (1.238) 2.35 (1.278) 2.33 (1.281) 2.01 (1.242) 2.04 (1.214)
1.9 2.74 (1.252) 2.58 (1.303) 2.55 (1.310) 2.19 (1.260) 2.22 (1.237)
2.0 2.95 (1.294) 2.78 (1.354) 2.75 (1.357) 2.37 (1.332) 2.41 (1.298)

Easy SNPs

1.0 0.00 (0.987) 0.00 (0.988) 0.00 (0.988) 0.00 (0.988) 0.00 (0.988)
1.1 0.45 (1.015) 0.45 (1.015) 0.45 (1.015) 0.45 (1.015) 0.45 (1.015)
1.2 0.91 (1.048) 0.91 (1.048) 0.91 (1.049) 0.91 (1.048) 0.91 (1.048)
1.3 1.30 (1.064) 1.30 (1.063) 1.30 (1.063) 1.30 (1.063) 1.30 (1.063)
1.4 1.70 (1.113) 1.70 (1.113) 1.70 (1.113) 1.70 (1.113) 1.70 (1.113)
1.5 2.08 (1.135) 2.08 (1.134) 2.08 (1.134) 2.08 (1.135) 2.08 (1.135)
1.6 2.42 (1.161) 2.42 (1.161) 2.42 (1.161) 2.42 (1.161) 2.42 (1.161)
1.7 2.72 (1.217) 2.72 (1.217) 2.72 (1.217) 2.72 (1.217) 2.72 (1.217)
1.8 3.02 (1.231) 3.02 (1.231) 3.02 (1.231) 3.02 (1.232) 3.02 (1.232)
1.9 3.30 (1.263) 3.30 (1.263) 3.30 (1.263) 3.30 (1.264) 3.30 (1.264)
2.0 3.56 (1.280) 3.55 (1.281) 3.55 (1.281) 3.55 (1.281) 3.55 (1.281)

Table 4: The sample mean and sample standard deviation of the z-scores of the causal SNP used in the
simulation, separate for the easy and difficult to call SNPs, and different degrees of association (odds
ratios, OR). The notation for the genotype methods employed is the same as in Table 3.
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rs1665933 rs1678775 rs1659131 rs1641760

sense

Figure 1: The raw fluorescence intensities from the sense (x-axis) and anti-sense (y-axis) strands for
the 269 HapMap phase II individuals, shown for 4 selected SNPs (rs numbers shown in the title of the
panels). The true genotypes for each individual are shown as dark grey (AA), white (AB), and light
grey (BB) dots in the respective panels. The three genotype clusters in rs1641760 separate well, and
thus, most subjects will be correctly genotyped at this variant in genomic assays. The separation of the
genotype clusters for the other three SNPs is less clear, and thus, future genotype estimates at these
loci are much more prone to error.
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Figure 2: Simulated distributions for the score test statistics for SNP rs1678775, using the true geno-
types (thick and light line), and the output from the genotype calling algorithms BRLMM (thin and dark
line) and CRLMM (intermediate thickness and color). The upper panels show the empirical cumulative
distribution functions, with the theoretical cumulative distribution functions underlying as thin smooth
curves. The lower panels show the differences between the empirical and theoretical cumulative distri-
bution functions. The left column shows the results under the null (OR = 1, θ = 0), the right column
under an alternative (OR = 1.5, θ = 0.41). In general, the theoretical cumulative distribution functions
match the respective empirical cumulative distribution functions well, lending credibility to the validity
of the test. The strong oscillation in some of the curves is due to the discrete nature of the data. Note
that the curve for the true genotypes is also oscillating, albeit with a much smaller magnitude, a feature
of this particular sample.
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Figure 3: The theoretical cumulative distribution functions for the score test statistics, for the four
selected SNPs (columns 1-4). Shown are results under the null (row 1, OR=1), and 4 different alter-
natives (rows 2-5). In each panel, the distributions for the true genotype, and the genotypes estimated
by BRLMM and CRLMM are compared. This allows for a comparison of the loss of power due to
genotyping uncertainties. Also indicated is the Normal (0,1) null distribution as a dashed line.
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Figure 4: The power to detect an association as a function of the correlation between the true genotype
and the output from a genotype calling algorithm, shown for three minor allele frequencies (panels 1-3),
and various effect sizes (lines within a panel), assuming a sample size of 269. In all instances, the power
diminishes rapidly with decreasing correlation.
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Figure 5: Simulation results using easy to call SNPs (left column) and hard to call SNPs (right column).
Shown are the median percentile ranks derived from 10,000 iterations, for increasing effect sizes. A SNP
was randomly selected from the set of easy or difficult SNPs respectively, and the signal was generated
using the indicated effect sizes for the selected SNP. The association test statistics were calculated for
all 32,443 SNPs, and for the signal carrier the percentile rank among all SNPs was calculated (100%
indicates the top selection). The procedure was repeated 10,000 times, and the median percentile
rank is shown in the upper rows using 5 different measures for the genotypes: the true genotypes
(open square), the CRLMM “fuzzy” continuous genotypes (light grey square), the CRLMM genotype
calls (light grey circle), the BRLMM genotype calls forcing complete data (dark grey square), and the
BRLMM genotype calls allowing for missing data, using the default cut-off of 0.5 for genotype call
confidence (dark grey circle). The lower panels show the differences in the results between the true
genotypes and the respective genotype measures. As expected, for easy to call SNPs no substantial
differences are observed. For difficult to call SNPs better results are achieved with an improved genotype
calling algorithm (CRLMM versus BRLMM), but further improvement can be achieved using the entire
information available in the continuous genotypes.
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Figure 6: [ Top ] For all 32,443 SNPs we calculated the correlations of the true genotypes with the
CRLMM fuzzy genotype probabilities, and the correlations of the true genotypes with the BRLMM
genotype calls, forcing complete data. The (logarithm of the) ratios of these correlations is shown as
a histogram. A ratio larger than one for any particular SNP indicates more power in the score test if
there is signal in the SNP. A ratio less than one can for example arise if there is uncertainty in the
genotype estimates, but BRLMM gets all genotype calls correct. However, the excess of ratios larger
than one clearly shows the merit of using the CRLMM genotype probabilities. For clarity, the histogram
was truncated at 100 counts. [ Bottom ] Histogram of the (log-) ratios of the correlations of the true
genotypes with the CRLMM genotype probabilities, and the correlations of the true genotypes with the
discrete CRLMM genotype calls (posterior modes). The excess of ratios larger than one shows the merit
of using the fuzzy CRLMM genotypes. This histogram was also truncated at 100 counts.
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