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Summary. In this article, we analyze the coronary artery calcium (CAC) score in the Multi-

Ethnic Study of Atherosclerosis (MESA), where about half of the CAC scores are zero and

the rest are continuously distributed. When the observed data has a mixture distribution,

two-part models can be the natural choice. With a two-part model, there are two covariate

effects, with one in each part of the model. Determination of whether the two covariate

effects are proportional can provide more insights into the process underlying development

and progression of CAC. In this study, we model the CAC score using a semiparametric

two-part model, and investigate the determination of proportionality of the covariate effects.

We propose penalized maximum likelihood estimation and using thin plate splines in prac-

tical data analysis, and establish asymptotic estimation properties. We propose a step-wise

hypothesis testing based approach to determine proportionality. Simulation studies suggest

satisfactory finite-sample performance of the proposed approach. Analysis of the MESA

data suggests that proportionality holds for all covariates except the LDL and HDL.

Key words: Two-part models; Proportionality; Semiparametric estimation; Splines.
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1. Introduction

Statistical development in this article has been motivated by analysis of the coronary artery

calcium (CAC) in the MESA (Multi-Ethnic Study of Atherosclerosis). The MESA is an

ongoing study of the prevalence, risk factors, and progression of subclinical cardiovascular

disease in a multi-ethnic cohort (Bild et al. 2002). In previous studies, the CAC has been

established as an important risk factor for the development of various coronary heart diseases.

Understanding the development of CAC can be valuable for clinical diagnosis and treatment

of multiple cardiovascular diseases. In the MESA, the CAC is measured with the Agatston

score, which is the amount of calcium at each lesion scaled by an attenuation factor and

summed over all lesions. We show the histogram of log(1 + CAC) in Figure 1. It is clear

that, the CAC has a mixture distribution: about half of the CAC scores are zero, and the

rest are continuously distributed.

In biomedical studies, data with mixture distributions are commonly encountered. De-

note Y as the response variable of interest. In this article, we consider a special form of

mixture distributions: for a subset of subjects, Y = c with a fixed c; and for the rest of the

subjects, Y ∼ ξ(Y ) where ξ is a continuous density function. Methodologies developed in

this article are applicable to other mixture distributions with minor modifications. When re-

sponses with mixture distributions are observed, two-part models can be the natural choice.

Two-part models have a long history in economic, statistical, and biomedical literature. On

a special note, two-part models have been suggested as the default models for describing the

CAC in MESA (http://mesa-nhlbi.org/).

For the type of data described above, we consider the following two-part models. Denote

X = (X1, X2, X3) as the covariate. In the first part of the model, we assume

φ−1(Pr(Y = c|X)) = h(X), (1)

where φ is a known monotone (increasing) transformation function, φ−1 is the inverse of φ,
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and h(X) is the unknown covariate effect. In the second part of the model, we assume

for Y 6= c : Y |X = h∗(X) + ε, (2)

where h∗(X) is the unknown covariate effect and ε is the random error with a known dis-

tribution. If h∗(X) = τh(X) with τ 6= 0, we conclude that the two covariate effects are

proportional. When the proportionality does not hold, there can be multiple scenarios. Con-

sider for example the additive covariate effects, where h(X) = h1(X1) + h2(X2) + h3(X3).

If h∗(X) = τ(h1(X1) + h2(X2) + h3(X3)) + h̃(X1) with h̃(X1) 6= 0 and τ 6= 0, we conclude

partial proportionality. That is, proportionality (of covariate effects) holds for X2 and X3,

but not for X1. Other partial proportionality scenarios can be defined in a similar man-

ner. For simplicity of notations, we assume three covariates. Proportionality can be defined

accordingly when there are more or fewer covariates.

Determination of proportionality with two-part models can be of critical interest. For

the CAC, if the covariate effects are proportional, then the same function of the predictors

determines if the CAC is zero as well as its actual level if nonzero. Such a result, if obtained,

can confirm the hypothesis that the change from a zero to a positive Agatston score and the

change from a lower to a higher Agatston score share the same underlying biological process.

If partial proportionality can be obtained, then covariates can be naturally separated into two

groups: proportional and non-proportional ones. Most likely, the two groups of covariates

determine the CAC levels via two separate processes.

Determination of proportionality with two-part models can be traced back to Cragg

(1971). Other examples include the zero-inflated Poisson regression model in Lambert (1992)

and Albert et al. (1997), and the logit-(log) gamma two part model in Moulton et al. (2002).

The most closely related study is Han and Kronmal (2006), where determination of propor-

tionality with parametric two-part models is investigated. Published studies suggest that

determination of proportionality can provide more insights into the biological mechanisms
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underlying (for example) disease developments. In addition, compared with models without

proportionality constraints, models with proportional (or partially proportional) covariate ef-

fects have fewer unknown parameters and thus can be more accurately estimated. A common

drawback of the aforementioned studies is that, parametric models with strong assumptions

have been used.

Semiparametric two-part models may be needed beyond parametric models. McClelland

et al. (2006) studied the CAC in MESA and showed that certain covariate effects are non-

linear. Semiparametric two-part models have been investigated in recent years. Examples

include Lam and Xue (2005), Ma (2009), and references therein, where semiparametric mod-

els for the density function ξ and covariate effect h∗ are considered. In those studies, the focus

has been semiparametric estimation and the forms of covariate effects have been assumed to

be known. With semiparametric two-part models, we expect that determination of propor-

tionality with respect to parametric covariate effects can be achieved using likelihood-based

hypothesis testing approaches, although such an aspect has not been investigated. On the

other hand, it is not clear how to determine proportionality with respect to nonparametric

covariate effects.

In this article, for semiparametric two-part models, we investigate determination of pro-

portionality of covariate effects. Our study has been motivated by analysis of the CAC in

MESA, although the proposed methodology is applicable to many other mixture distribu-

tions and other two-part models. Methodological development in this article contains two

major components: development of a hypothesis testing based approach for determining

proportionality and establishment of asymptotic estimation properties.

This study advances from published literature along the following aspects. First, com-

pared with existing proportionality studies of parametric two-part models, more flexible

semiparametric models are adopted, which can provide better descriptions of data. Second,
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the proposed hypothesis testing approach for determining proportionality advances from

published studies by studying more complicated semiparametric models, and adopting a

step-wise method that can accommodate multiple nonparametric and parametric covariate

effects. Third, this study advances from published analysis of semiparametric two-part mod-

els by investigating different models, rigorously establishing asymptotic properties, and more

importantly proposing an effective approach for determining proportionality. Last, a more

comprehensive analysis of the CAC is conducted, which can provide a deeper understanding

of the development of CAC and coronary heart diseases.

The rest of the article is organized as follows. The data and model setting is introduced

in Section 2. The proposed methodology is described in Section 3. We consider penalized

maximum likelihood estimation, and use thin plate splines with finite-sample data. We

propose a hypothesis testing approach for determination of proportionality, and establish

asymptotic estimation properties. Simulation studies are presented in Section 4. We analyze

the MESA data in Section 5. The article concludes with discussions in Section 6. Proofs are

provided in the Appendix.

2. Data and Model

Denote Y as the response of interest, where with a nonzero probability Y = c. In the analysis

of CAC, Y = log(1 + CAC) and c = 0. Denote X = (X1, X2, X3)
′ and Z = (Z1, Z2, Z3)

′

as covariates. The proposed methodology is straightforwardly applicable when there are a

different number of covariates.

In the first part of the two-part model, we assume that

φ−1(Pr(Y = 0|X,Z)) = β0 + β1X1 + β2X2 + β3X3 + f1(Z1) + f2(Z2) + f3(Z3)

= β′X̃ + f(Z), (3)

where φ is the known link function and φ−1 is the inverse of φ. Multiple link functions are
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available, with the logit link most extensively used. β = (β0, β1, β2, β3)
′, X̃ = (1, X ′)′, and

f(Z) = f1(Z1)+ f2(Z2)+ f3(Z3). In the second part of the model, we assume that for Y 6= 0

Y |X,Z = τ(β0 + β1X1 + β2X2 + β3X3 + f1(Z1) + f2(Z2) + f3(Z3))

+ α0 + α2X2 + α3X3 + g1(Z1) + g2(Z2) + g3(Z3) + ε

= τ(β′X̃ + f(Z)) + α′ ˜̃X + g(Z) + ε (4)

where α = (α0, α2, α3)
′, ˜̃X = (1, X2, X3)

′, g(Z) = g1(Z1)+g2(Z2)+g3(Z3), and ε has a known

distribution. Motivated by Figure 1, we assume N(0, σ2) distributed error with unknown σ.

In (3) and (4), α, β, τ and σ are the unknown parametric regression parameters. f and

g are the unknown nonparametric covariate effects. For simplicity of notations, we assume

additive covariate effects, which can be easily extended to more general cases. Motivated by

the findings in McClelland et al. (2006), we assume f and g are smooth functions.

In (4), proportionality holds if α = 0 and g = 0. Thus, determination of proportionality

(or partial proportionality) amounts to testing whether α and g (or their components) are

equal to zero. For identifiability, X1 is not included in ˜̃X, and will be referred to as the

“anchor” covariate. We also assume that τβ1 6= 0.

3. Penalized Estimation and Determination of Proportionality

3.1 Penalized estimation

For an observation with covariate (X, Z) and response Y , the log-likelihood function is

l(α, β, τ, σ, f, g|X,Z)

= I(Y 6= 0)

{
−1

2
log(2π)− 1

2
log(σ2)− (Y − τ(β′X̃ + f(Z))− α′ ˜̃X − g(Z))2

2σ2

}

+ I(Y 6= 0) log(1− φ(β′X̃ + f(Z))) + I(Y = 0) log(φ(β′X̃ + f(Z))). (5)

In what follows, we set φ as the logit link function. Assume there are n iid observations.

Under the assumption of smooth f and g, we consider the penalized maximum likelihood

6
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estimate (PMLE)

(α̂, β̂, τ̂ , σ̂, f̂ , ĝ) = argmax
{
Pnl − λ2

fJ
2(f)− λ2

gJ
2(g)

}
, (6)

where Pn is the empirical measure, λf and λg are the data-dependent tuning parameters, J

is the penalty on smoothness defined as J2(f) =
∑3

i=1 J2(fi) =
∑3

i=1

∫
(f

(s)
i )2dZi, and f

(s)
i is

the sth derivative of fi.

Penalized estimation has been extensively used with semiparametric models when un-

known smooth functions are present. An advantage of penalization estimation is that the

smoothness of estimates is directly controlled by the data-dependent tuning parameters. We

note that, other smoothing techniques, such as the local polynomials, can also be used.

3.2 Finite-sample estimation with thin plate splines

As shown in the Appendix, under assumptions described in Section 3.4, f̂ and ĝ are

splines. In practice, with finite-sample data, we estimate f and g with thin plate splines.

For a generic function m(x), its thin plate spline representation is

m(x) = d0 + d1x +
K∑

k=1

ck|x− pk|3, (7)

where d0, d1 and cks are the unknown regression coefficients and pks are the fixed knots.

For i = 1, 2, 3, at the design points, we have

fi(Zi) = Tidfi + Σicfi, gi(Zi) = Tidgi + Σicgi,

where Ti = (1, Zi), Σi = (|Zi−pi1|3, · · · , |Zi−piK |3), piks are the knots, and dfi = (d0fi, d1fi)
′,

dgi = (d0gi, d1gi)
′, cfi = (c1fi, · · · , cKfi)

′, cgi = (c1gi, · · · , cKgi)
′ are the regression coefficients.

In our study, selection of knots follows Wahba (1990). Denote

θ = (α0, α2, α3, β0, β1, β2, β3, τ, σ,d′f1,d
′
f2,d

′
f3,d

′
g1,d

′
g2,d

′
g3)

′

and b = (c′f1, c
′
f2, c

′
f3, c

′
g1, c

′
g2, c

′
g3)

′. With the proposed penalized estimation, once the knots

are chosen, penalization on the smoothness (i.e., J(f) and J(g)) is equivalent to penalization
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on the coefficients b. In practical data analysis, instead of using unified λf and λg for all

components of f and g, we can use different λfi and λgi for i = 1, 2, 3. With these notations,

the penalized log-likelihood function defined in (6) can be rewritten as

Pnl(Y |θ,b, σ2)−
3∑

i=1

λ2
fic

′
fiDicfi −

3∑
i=1

λ2
gic

′
giDicgi (8)

with l(Y |θ,b, σ2) = I(Y = 0)η1−log(1+exp(η1))−I(Y 6= 0)
(

1
2
log(2π) + 1

2
log σ2 +

(Y−η2)2

2σ2

)
,

η1 = β0 + β1X1 + β2X2 + β3X3 +
∑3

i=1(Tidfi + Σicfi), η2 = τη1 + α0 + α2X2 + α3X3 +
∑3

i=1(Tidgi + Σicgi), and Di = (|pik − pi1|3, · · · , |pik − piK |3)K
k=1.

Since the objective function defined in (8) is concave in both θ and b, maximization can

be achieved simply using the Newton-Raphson algorithm.

3.2.1 Tuning parameter selection For selection of the optimal tuning parameters, we

propose a Generalized Maximum Likelihood (GML) smoothing parameter selection ap-

proach, which has been motivated by the approach developed in Wahba (1990) for Gaussian

data. The GML criterion considers (8) as the joint likelihood of the response Y and the

following random effects:

cfi ∼ N(0, D+
i /λ2

fi), cgi ∼ N(0, D+
i /λ2

gi), i = 1, 2, 3, (9)

where D+
i is the Moore-Penrose inverse of Di.

If we assume a flat prior on θ, the GML criterion then estimates the smoothing parameters

and σ2 from the marginal density of Y , which is

L(Y |λf1, λf2, λf3, λg1, λg2, λg3, σ
2)

=

∫
exp

(
Pnl(Y |θ,b, σ2)−

3∑
i=1

l(cfi)−
3∑

i=1

l(cgi)

)
dθdcf1 · · · dcg3, (10)

where l(cfi) and l(cfi) are the log-likelihood functions of the normal distributions in (9).
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If l(Y |θ,b, σ2) were a normal likelihood, the GML criterion gives the REML estimates

of the tuning parameters, which are the inverse of the variance components in a mixed

effects model with cfis and cgis as the random effects. Under this mixed effects model

framework, alternatively, we can use a full marginal likelihood (ML) approach, which allows

us to estimate the fixed effect θ together with the variance components. Here, the full

marginal likelihood of Y is

L(Y |θ, λf1, λf2, λf3, λg1, λg2, λg3, σ
2)

=

∫
exp

(
Pnl(Y |θ,b, σ2)−

3∑
i=1

l(cfi)−
3∑

i=1

l(cgi)

)
dcf1 · · · dcg3. (11)

Of note, the REML and ML approaches are asymptotically equivalent, with the former

more efficient for estimating the variance components, and the latter more convenient for

inferences involving fixed effects. In this study, since estimation and testing of both fixed

effects and tuning parameters are of interest, the ML approach is adopted.

Numerically, we carry out the multivariate integration in (11) using the spherical-radial

quadrature algorithm, which is proposed by Monohan and Genz (1997) in the context of

Bayesian computation. For generalized linear mixed effects models, Clarkson and Zhan

(2002) showed that the spherical-radial multiple integration algorithm performs better than

the second-order Laplace approximations. In addition, it is computationally more affordable

than the Bayes sampling, while having comparable performances.

3.3 Determination of proportionality

Determination of proportionality with respect to Xi is equivalent to testing

H0 : αi = 0 vs H1 : αi 6= 0, i = 2, 3.

With Zi, determination of proportionality amounts to testing

H0 : dgi = 0, λgi = ∞ vs H1 : dgi 6= 0 or λgi 6= ∞, i = 1, 2, 3.

9
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When there is a single nonparametric covariate effect, similar hypothesis testing problems

have been considered for linear models (Wahba 1990) and generalized linear models (Liu et

al. 2005). The aforementioned studies demonstrate satisfactory performance of likelihood

ratio based approaches. Motivated by those studies as well as Guo (2002) and Crainiceanu

et al. (2005), for both parametric and nonparametric covariate effects, we propose using the

following likelihood ratio test statistic based on the ML defined in (11):

TML =
supH0

L(Y |θ, λf1, λf2, λf3, λg1, λg2, λg3, σ
2)

supH0∪H1
L(Y |θ, λf1, λf2, λf3, λg1, λg2, λg3, σ2)

. (12)

In our study, there are are multiple covariates, and multiple different scenarios of partial

proportionality. To fully determine the proportionality property, we consider the following

forward step-wise approach. Denote A, AP and AN as the index sets of all covariates, co-

variates with proportional effects, and covariates with non-proportional effects, respectively.

Denote CAP as the cardinality of AP .

1. Initialize AP = A;

2. For ∀a ∈ AP , fit an intermediate model, where covariates with index in AP −{a} have

proportional effects, and covariates with index in AN ∪ {a} have non-proportional ef-

fects. Compute the p-value for proportionality using the bootstrap approach described

below.

3. Repeat Step 2 over all a ∈ AP , and compare the CAP p-values so obtained. Denote

a∗ as index of the covariate with the smallest p-value. If the smallest p-value is not

significant, abort loop. Otherwise, update AP with AP −{a∗} and AN with AN ∪{a∗}.

4. If CAP = 0, abort loop. Otherwise, iterate Steps 2 and 3.

This step-wise approach starts with all covariate effects being proportional. In Step 2,

we only need to determine significance of proportionality with respect to one covariate effect
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at a time. With Step 3, at each iteration, the proportionality constraint on one covariate

effect is released. Iteration is terminated once AP cannot be further reduced.

For the parametric regression parameters, in theory, hypothesis testing can be based on

the asymptotic normality result established in Section 3.4 and a variance estimate. However,

our investigation shows that the asymptotic variance does not have a simple analytic form.

For the nonparametric covariate effects, Liu et al. (2005) showed that for models much

simpler than the proposed ones, bootstrap is needed for hypothesis testing. To compute the

p-values of proportionality, we propose the following bootstrap approach.

1. Fit the Null model;

2. With observed covariate values, generate random errors from the normal distribution

with mean zero and variance σ̂2;

3. Generate the binary I(Y 6= 0) using model (3) and dichotomizing the probabilities at

0.5; For those with Y 6= 0, generate the continuous Y values under the null model;

4. With the generated responses, estimate the model again; Compute the statistic TML;

5. Repeat Steps 2 to 5 B (e.g. 500) times. An empirical p-value can then be computed.

The proposed bootstrap approach shares similar spirits with Liu et al. (2005). We

investigate its empirical performance in Section 4. We note that, a byproduct of the above

procedure is the bootstrap confidence intervals for both the parametric and nonparametric

parameters, which can serve as basis for inference.

3.4 Asymptotic estimation properties

Although many intermediate models need to be fit in order to determine the proportion-

ality property, we are most interested in the “final models”, i.e., models with proportionality

11
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properly determined. In this section, for the final models, we establish asymptotic properties

of the PMLE defined in (6). First, we make the following assumptions.

(A1) The covariates X and Z are component-wise bounded. The true value of (α, β, τ, σ),

denoted as (αT , βT , τT , σT ), is an interior point of a compact set.

(A2) Denote fT and gT as the unknown true values of f and g, respectively. Component-

wise, fT and gT belong to the Sobolev space indexed by the order of derivative s. In

this study, we adopt the commonly assumed s = 2. For identifiability, we also assume

Pfi = Pgi = 0, where P is the expectation.

(A3) Define d2((α, β, τ, σ, f, g), (αT , βT , τT , σT , fT , gT )) = |α−αT |2+|β−βT |2+|τ−τT |2+|σ−
σT |2+

∫
(f−fT )2dX+

∫
(g−gT )2dZ. Assume P (l(α, β, τ, σ, f, g)−l(αT , βT , τT , σT , fT , gT )) ≤

−K1d
2((α, β, τ, σ, f, g), (αT , βT , τT , σT , fT , gT )) with a fixed constant K1 > 0.

(A4) λf , λg = Op(n
−s/(2s+1)).

For most practical data, the boundedness assumption A1 is satisfied. We make this

assumption for theoretical convenience only, and allow the actual bounds to remain unknown.

We assume the nonparametric covariate effects are spline functions in A2. We assume the

maximizer of the likelihood function is “well-separated” in A3. This assumption can be

satisfied under the boundedness assumptions A1 and A2 and the differentiability of the

likelihood function. If the tuning parameters λf , λg have the order as assumed in A4, the

optimal convergence rate can be obtained, as shown below. In practice, they will be chosen

using the approach described in Section 3.2.1.

For the final models, asymptotic properties of the PMLE can be summarized in the

following two lemmas.

12
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Lemma 1. Under assumptions A1-A4,

d((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT )) = Op(n
−s/(2s+1)).

In addition J(f̂), J(ĝ) = Op(1).

Lemma 1 establishes consistency of the PMLE. Furthermore, the estimates of nonpara-

metric covariate effects have the optimal convergence rate ns/(2s+1) (Wahba 1990). Lemma 1

also establishes that J(f̂), J(ĝ) = Op(1), i.e, f̂ and ĝ have the “right” order of smoothness.

The L2 consistency established in Lemma 1, together with the smoothness and bounded-

ness conditions, can lead to uniform consistency of f̂ and ĝ, i.e., sup |f̂ − fT | = oP (1) and

sup |ĝ − gT | = oP (1). Proof of Lemma 1 is provided in the Appendix. For the estimates of

parametric parameters, we have the following results.

Lemma 2. Under assumptions A1-A4 and additional assumptions provided in the Appendix,

√
n{(α̂, β̂, τ̂ , σ̂)− (αT , βT , τT , σT )} →D N(0, Σ),

with the format of Σ specified in the Appendix. Lemma 2 establishes that, despite of the slow

convergence rate of f̂ and ĝ, the estimates of parametric parameters are still
√

n consistent

and asymptotically normally distributed. Proof of Lemma 2 is provided in the Appendix.

4. Simulation Study

We conduct simulations to evaluate finite-sample performance of the proposed approach for

determination of proportionality and penalized estimation. We generate data from

Pr(Y = 0|X,Z) = logit(η1), and for Y > 0, Y |X, Z = η2 + ε, (13)

where η1 = −4 + 5X1 − 2.5X2 + 1.5X3 + 8sin(6Z1) + 7Z2 − 20(Z2 − 0.5)2, τ = 0.2 and

σ = 0.5. We assume the following covariate distributions: X1 = 0 or 1 with probability

1/2; X2 = 1, 2, 3 or 4 with probability 1/4; X3 ∼ N(0, 1); Z1 is equally spaced between 0

13
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and 1; and Z2 ∼ Unif [0, 1]. We set the sample size n = 1000. We define the “difference

function” as η2− τη1. Determination of (partial) proportionality then amounts to testing if

components of the difference function are equal to zero. As shown in Table 1, ten difference

functions are considered. We note that, although some difference functions are linear in

Zi, the corresponding covariate effects in both η1 and η2 are still nonlinear. In addition,

for a more lucid view, we omit the intercepts in Table 1, which are needed to satisfy the

identifiability assumption of Pfi = Pgi = 0. In the simulation, X1 is chosen as the anchor.

We first investigate the determination of proportionality. In Table 1, we present power

of detecting non-proportionality computed based on 1000 replicates. We can see that, (a)

in general, the proposed approach can correctly identify the proportionality structure. More

specifically, when proportionality holds for a specific covariate, the power is usually close

to zero, indicating a small error rate. When proportionality does not hold, the proposed

approach is capable of identifying the non-proportionality with a very high probability. Con-

sider, for example, the last scenario in Table 1 with difference function 0.1X3 + Z2. With

probabilities 0.80 and 0.99, the non-proportionality with respect to X3 and Z2 can be identi-

fied, respectively. The error rates of mistakenly identifying non-proportionality with respect

to X2 and Z1 are 0.066 and 0.032, respectively; and (b) when the regression coefficients in

difference functions (strengths of signals) increase, the power increases. Consider for exam-

ple scenarios 5 and 6 with difference functions X3/3 + 0.5Z2 and X3/3 + Z2, respectively.

When the regression coefficient of Z2 increases from 0.5 to 1, the power increases from 0.40

to 0.95. We have also conducted simulations with other difference functions and/or different

sample sizes. Similar satisfactory results are obtained.

For the final models with proportionality properly determined, we also evaluate the penal-

ized estimation results, where the bootstrap inference is based on the procedure described in

Section 3.3. We show a representative example of the estimation results in Figure 2, where the
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data is generated under simulation scenario 4 with difference function X3/3+5Z1+10Z2
1 +Z2.

For the covariates with nonparametric effects (Z1, Z2), we can see that the mean estimates

fit the unknown true functions very well. The 95% confidence intervals provide satisfactory

coverage. As expected, the confidence intervals become wider, when it is closer to the bound-

aries and there are fewer observations. Note that, for identifiability, it has been assumed

Pfi = Pgi = 0. We omit the intercepts (which are needed for the mean zero assumption

to be true) in Table 1. The intercepts have been added back in Figure 2, which explains

the “shifts” of nonparametric effects and their estimates. We have also examined estimation

results for parametric parameters and found negligible biases, satisfactory convergence rates,

marginal distributions close to normal, and satisfactory bootstrap coverage. More detailed

estimation results are available from the authors. Examination of estimation and inference

results with other simulation scenarios leads to similar conclusions.

5. Analysis of MESA Data

The MESA is a population based, multi-center study of subclinical cardiovascular diseases

(Bild et al. 2002). The study cohort consists of 6814 subjects with age ranging from 45 to 84

at the baseline. Subjects with missing measurements are removed, which leads to a sample

size of 6658 for downstream analysis. We refer to the MESA website http://mesa-nhlbi.org/

for more detailed descriptions of the study design and the cohort.

The distribution of CAC is highly skewed. We consider a simple transformation and

analyze log(1+CAC). As can be seen from Figure 1, log(1+CAC) has a mixture distribution

and the two-part model described in (3) and (4) is thus warranted. In the first part of the

two-part model, we assume the commonly used logit link function. In the second part of

the model, Figure 1 suggests that, it is reasonable to assume a normal distribution for the

nonzero log(1 + CAC) values.

Motivated by Han and Kronmal (2006) and McClelland et al. (2006), we consider the
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following predictors: gender (female is used as the reference group), race (Caucasian, African-

American, Chinese, and Hispanic; Caucasian is used as the reference group), former smoker

(binary indicator), current smoker (binary indicator), diabetes (binary indicator), SBP (sys-

tolic blood pressure), DBP (diastolic blood pressure), age, BMI (body mass index), LDL

cholesterol, and HDL cholesterol. Among the 13 covariates, 7 are binary, which naturally

correspond to parametric covariate effects. In addition, published studies and our prelimi-

nary analysis suggest linear effects for SBP and DBP. Thus, in the semiparametric models,

there are 9 parametric covariate effects and 4 nonparametric ones. Following Han and Kro-

nmal (2006), X3 is selected as the anchor.

We use the step-wise approach described in Section 3.3 to determine proportionality, and

show the results in Table 2. We first fit the model with all covariate effects being proportional.

For each covariate effect, we test its proportionality using the bootstrap approach described

in Section 3.3. As shown in the first column of Table 2, proportionality of the LDL effect has

a p-value < 0.001. Thus we release the proportionality constraint on LDL. At the second

step, for each covariate effect other than LDL, we test the proportionality, and present p-

values in the second column of Table 2. The HDL effect has a p-value of 0.012. We then fit a

model with the proportionality constraints on LDL and HDL released. At the third step, for

covariates other than LDL and HDL, we find that releasing the proportionality constraints

leads to insignificant p-values. We thus conclude that proportionality holds for all covariates

except LDL and HDL.

For the final model with proportionality constraints on all covariates expect LDL and

HDL, we present the estimates of parametric regression coefficients in Table 3 and estimates

of nonparametric covariate effects in Figure 3. The estimation and bootstrap inference results

in Table 3 suggest that the following risk factors are significantly associated with a higher

level of CAC: being male, being Caucasian, being a smoker (both former and current), having
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diabetes, and having a higher level of SBP. Decrease in DBP is associated with a higher level

of CAC, however, the effect is not significant. Those findings are consistent with McClelland

et al. (2006) and references therein.

We now examine the estimates of nonparametric covariate effects (Figure 3). For Age

and BMI, the covariate effects are proportional. Thus, for the two parts of the models

(logistic and linear), the covariate effects take the same shape and only differ by a scale

constant. It is interesting that the Age and BMI effects are almost linear, which suggests

that it may be possible to further simplify the model by assuming parametric Age and BMI

effects. Since the focus of this study is the determination of proportionality, we defer such

simplifications to future studies. The bootstrap confidence intervals suggest that both the

Age and BMI effects are significant. Increases in Age or BMI are associated with a higher

level of CAC, which is consistent with findings in the literature. For LDL and HDL, the

proportionality does not hold. The shapes of the covariate effects are significantly different

in the two parts of the model. For HDL, its covariate effects have an “U” shape. In the

literature, nonparametric modeling of HDL (especially in the context of studying CAC) has

not been well investigated. It is very interesting that the HDL effects demonstrate such a

shape. Implications of this finding need to be carefully pursued in future biomedical studies.

For LDL, it is interesting that the covariate effects are again close to linear. Increase in LDL

is associated with a higher probability of nonzero CAC, which is consistent with findings in

the literature. The bootstrap confidence intervals suggest significance of the LDL effect. For

nonzero CAC values, the LDL effect is negligible.

To provide a more comprehensive understanding of the proposed approach and MESA

data, we also fit the full model with no proportionality constraint. Estimation results for

the parametric and nonparametric covariate effects are shown in Table 3 and Figure 4,

respectively. Comparing estimates under the full and final models, we find that (a) estimates
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in the two models are not identical; (b) however, they are reasonably close. This is because

estimates under both models are asymptotically consistent; (c) in general, estimates in the

final model have smaller variances. In Table 3, all bootstrap standard errors (except for that

of X2 in η1) in the full model are larger than or equal to their counterparts in the final model.

This is intuitively reasonable, since fewer parameters are estimated in the final model. The

improved accuracy has also been observed in Han and Kronmal (2006).

6. Conclusions

In this article, we analyze the CAC in MESA, where it is critical to determine propor-

tionality of covariate effects in semiparametric two-part models. An effective approach,

which is composed of penalized maximum likelihood estimation and step-wise determination

of proportionality, has been developed. The proposed approach for determination of pro-

portionality advances from published studies by considering more sophisticated models, by

allowing for both parametric and nonparametric covariate effects, and by accommodating

multiple covariate effects. The proposed penalized estimation approach can accommodate

multiple parametric as well as nonparametric covariate effects, and has satisfactory asymp-

totic properties. Simulation studies and data analysis demonstrate satisfactory finite-sample

performance of the proposed approach.

Our analysis of the MESA data suggests that proportionality holds for all covariates

except HDL and LDL. Such a finding disproves the hypothesis that the change from a zero

to a positive Agaston score and the change from a lower to a higher Agaston score share the

same underlying biological process. In contrast, our analysis suggests that the risk factors

affect the CAC level via at least two different mechanisms, with the cholesterol having

a different mechanism from other risk factors. In addition, our semiparametric analysis

suggests that it may be proper to consider linear effects of Age, BMI and LDL in the

modeling of CAC. However, the HDL effect needs to be described in a nonparametric way.
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Since the reduction from nonlinear to linear covariate effects is not the focus of our study,

we defer such investigations to future studies. “Directions” of covariate effects (i.e., whether

they are positively or negatively associated with CAC) are consistent with the literature,

which further confirms published findings.

For a more lucid description of the methodology, we have made the simplified assumption

of additive nonparametric covariate effects. More general assumptions that allow “interac-

tions” among covariates can be assumed. We note that such assumptions may dramatically

increase the computational cost and will not be pursued. Motivated by previous studies, we

have assumed smooth covariate effects. It is possible to replace the smoothness assumption

with other (e.g. monotone) assumptions. Determination of proportionality requires select-

ing the anchor covariate. As a rule of thumb, we propose fitting marginal models with only

one covariate at a time, and selecting the covariate with the smallest marginal p-value. In

our data analysis, we select the same anchor as Han and Kronmal (2006). In this article,

a forward step-wise approach has been adopted. In other studies that involve selection of

covariate effects, it has been suggested that there are approaches more effective than the

forward step-wise approach. Our simulation studies suggest satisfactory performance of the

simple forward step-wise approach, although we note that it can be potentially improved.
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Table 1
Simulation study: power of testing non-proportionality with various difference functions.

Power
Difference function X2 X3 Z1 Z2

X3/3 0.045 1 0.021 0.054
5Z1 + Z2

1 + 0.9Z2 0.051 0.064 0.635 0.806
0.8X2 + 5Z1 + 2Z2

1 + 0.8Z2 0.900 0.046 0.820 0.620
X3/3 + 5Z1 + 10Z2

1 + Z2 0.076 0.980 1 0.920
X3/3 + 0.5Z2 0.062 1 0.033 0.400
X3/3 + Z2 0.079 1 0.048 0.950
0.3X2 + X3/3 0.220 1 0.042 0.051
0.5X2 + X3/3 0.560 1 0.035 0.050
0.05X3 + Z2 0.045 0.160 0.038 0.960
0.1X3 + Z2 0.066 0.800 0.032 0.990
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Table 2
Analysis of the CAC in MESA. Each column shows the p-values of proportionality for the

corresponding terms in the model at each step of the forward step-wise relaxation of
proportionality constraint. X3 has been selected as the anchor.

Relaxed predictor P-value
Gender: Male (X1) 0.800 0.607 0.610
Race: Chinese (X2) 0.014 0.214 0.233
Race: African-American (X3) – – –
Race: Hispanic (X4) 0.770 0.286 0.267
Former smoker (X5) 0.713 0.339 0.311
Current smoker (X6) 0.621 0.964 0.784
Diabetes (X7) 0.140 0.393 0.307
SBP (X8) 0.547 0.256 0.671
DBP (X9) 0.374 0.387 0.233
Age (Z1) 0.104 0.607 0.285
BMI (Z2) 0.612 0.440 0.767
LDL (Z3) <0.001
HDL (Z4) 0.025 0.012
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Table 3
Analysis of the CAC in MESA. Parametric regression coefficients in the full model (with no
proportionality constraint), and the final model (with proportionality properly determined).

Estimates (bootstrap standard errors) in the logistic (η1) and linear (η2) models.

Full model Final model
Predictor η1 η2 η1 η2

Gender: Male (X1) 0.945 (0.092) 0.618 (0.099) 0.960 (0.078) 0.651 (0.053)
Race: Chinese (X2) -0.119 (0.070) -0.285 (0.081) -0.211 (0.078) -0.143 (0.053)
Race: African-American (X3) -0.787 (0.071) -0.398 (0.085) -0.727 (0.063) -0.493 (0.047)
Race: Hispanic (X4) -0.628 (0.074) -0.358 (0.073) -0.594 (0.063) -0.402 (0.045)
Former smoker (X5) 0.370 (0.072) 0.213 (0.071) 0.354 (0.052) 0.240 (0.036)
Current smoker (X6) 0.609 (0.094) 0.328 (0.096) 0.573 (0.078) 0.388 (0.052)
Diabetes (X7) 0.243 (0.070) 0.275 (0.068) 0.299 (0.055) 0.203 (0.038)
SBP (X8) 0.009 (0.002) 0.004 (0.002) 0.008 (0.002) 0.005 (0.001)
DBP (X9) -0.0034 (0.004) 0.0032 (0.004) -0.0009 (0.004) -0.0006 (0.002)
τ 0.678 (0.037)
σ 1.677 (0.021) 1.680 (0.021)
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Figure 1. MESA data: Histogram of log(1 + CAC).
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Figure 2. Simulation study with difference function X3/3+5Z1+10Z2
1 +Z2: estimation and

inference results for nonparametric covariate effects. Solid black line: true covariate effect;
Red dashed line: mean estimates; Blue dash-dotted lines: mean 95% confidence intervals.
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Figure 3. Analysis of the CAC in MESA, final model with proportionality properly
determined. Estimated nonparametric covariate effects in both the logistic and linear parts
of the model. Solid black line: estimate; Red dashed line: mean estimate from bootstrap
samples; Blue dash-dotted lines: 95% confidence intervals.
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Figure 4. Analysis of the CAC in MESA, full model with no proportionality constraint.
Estimated nonparametric covariate effects in both the logistic and linear parts of the model.
Solid black line: estimate; Red dashed line: mean estimate from bootstrap samples; Blue
dash-dotted lines: 95% confidence intervals.
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Appendix

Proof of Lemma 1.

Definition (Bracketing number). Let (F, || · ||) be a subset of a normed space of real

function h on some set. Given two functions h1 and h2, the bracket [h1, h2] is the set of all

functions h with h1 ≤ h ≤ h2. An ε bracket is a bracket [h1, h2] with ||h1 − h2|| ≤ ε. The

bracketing number N[](ε,F, || · ||) is the minimum number of ε brackets needed to cover F.

The entropy with bracketing is the logarithm of the bracketing number.

van de Geer (2002) proves that for the functional class

H̃ = {h : [0, 1] → [0, 1]

∫
(h(s)(x))2dx < 1},

log N[](ε, H̃, L2(P )) ≤ K2ε
−1/s, for a fixed constant K2, s ≥ 1, and all ε.

Under the boundedness assumptions A1 and A2 and the differentiability of the log-

likelihood function, we have

log N[](ε, l(α, β, τ, σ, f, g), L2(P )) ≤ K3ε
−1/s, (14)

for a fixed constant K3.

Examination of the log-likelihood function suggests that if α̂, β̂, τ̂ , σ̂ → ∞, then Pnl →
−∞. Thus, we are able to focus on the set of bounded α̂, β̂, τ̂ , σ̂, although the actual

bound remains unknown. In addition, following Wahba (1990), it can be shown that under

assumption A2, f̂ and ĝ are spline functions. Specifically, suppose f̃ and g̃ maximize the

penalized log-likelihood function. Then there exist spline functions f̂ and ĝ, such that f̂(Z) =

f̃(Z) and ĝ(Z) = g̃(Z) at all the observed Z values and J(f̂) ≤ J(f̃) and J(ĝ) ≤ J(g̃).

From the definition of the PMLE, we have

Pnl(α̂, β̂, τ̂ , σ̂, f̂ , ĝ)− λ2
fJ

2(f̂)− λ2
gJ

2(ĝ) ≥ Pnl(αT , βT , τT , σT , fT , gT )− λ2
fJ

2(fT )− λ2
gJ

2(gT ).
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From the properties of the likelihood function, we have

Pl(α̂, β̂, τ̂ , σ̂, f̂ , ĝ) ≤ Pl(αT , βT , τT , σT , fT , gT ).

Combining the above two equations, we get

λ2
fJ

2(f̂) + λ2
gJ

2(ĝ) + P (l(αT , βT , τT , σT , fT , gT )− l(α̂, β̂, τ̂ , σ̂, f̂ , ĝ))

≤ λ2
fJ

2(fT ) + λ2
gJ

2(gT ) + (Pn − P )(l(α̂, β̂, τ̂ , σ̂, f̂ , ĝ)− l(αT , βT , τT , σT , fT , gT )). (15)

In addition, the entropy result in (14) implies that

(Pn − P )(l(αT , βT , τT , σT , fT , gT )− l(α̂, β̂, τ̂ , σ̂, f̂ , ĝ))

= oP (n−1/2)(1 + J(fT ) + J(gT ) + J(f̂) + J(ĝ)). (16)

Combining equations (15) and (16) with assumption A4, we have

λfJ(f̂) = oP (1) and λgJ(ĝ) = oP (1). (17)

Under assumption A3, equations (15) and (16) imply that

K1d
2((αT , βT , τT , σT , fT , gT ), (α̂, β̂, τ̂ , σ̂, f̂ , ĝ))

≤ oP (1) + oP (n−1/2)(1 + J(fT ) + J(gT ) + J(f̂) + J(ĝ)).

This equation and equation (17) lead to consistency of the PMLE. To prove the rate of

convergence, we use the following result.

(Theorem in van de Geer 2000). Consider a uniformly bounded class of functions Γ, with

supγ∈Γ |γ − γ0|∞ < ∞ and a fixed γ0 ∈ Γ, and log N[](ε, Γ, P ) ≤ K4ε
−b for all ε > 0, where

b ∈ (0, 2) and K4 is a fixed constant. Then for δn = n−1/(2+b),

sup
γ∈Γ

|(Pn − P )(γ − γ0)|
||γ − γ0||1−b/2

2 ∨√nδ2
n

= Op(n
−1/2), (18)

30

http://biostats.bepress.com/uwbiostat/paper341



where x ∨ y = max(x, y).

Under the compactness assumptions A1 and A2 and considering the differentiability of

the log-likelihood function, we have

K1d
2((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT )) ≤ P (l(αT , βT , τT , σT , fT , gT )− l(α̂, β̂, τ̂ , σ̂, f̂ , ĝ))

≤ K5d
2((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT )),

(19)

where K5 is a fixed constant. Combining (18) with b = 1
s
, equations (19), and (15), we have

λ2
fJ

2(f̂) + λ2
gJ

2(ĝ) + K1d
2((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT ))

≤ λ2
fJ

2(fT ) + λ2
gJ

2(gT ) + OP (n−1/2)(1 + J(fT ) + J(f̂) + J(gT ) + J(ĝ))

× {d1−1/2s((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT )) ∨ n
1−2s

2(2s+1)}. (20)

Note that all the three terms on the left hand side are positive. Compare each term with

the right hand side. Simple calculations give that

J(f̂) = OP (1) and J(ĝ) = OP (1),

d((α̂, β̂, τ̂ , σ̂, f̂ , ĝ), (αT , βT , τT , σT , fT , gT )) = OP (n−s/(2s+1)).

Proof of Lemma 2.

To prove the
√

n consistency and asymptotic normality result in Lemma 2, we apply

Theorem 1 in Ma and Kosorok (2005). Application of this theorem requires the following

conditions to hold: (a) consistency and rate of convergence, which has been established in

Lemma 1; (b) finite asymptotic variance, which is shown below; (c) stochastic equicontinu-

ity, which can be established using the entropy result and the consistency result; and (d)

smoothness of the model, which holds given the differentiability of the likelihood function.
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Thus, to prove Lemma 2, we only need to establish the non-singularity of the information

matrix. Denote l̇α, l̇β, l̇τ , l̇σ as the partial derivative of the log-likelihood function with respect

to α, β, τ, σ. For tf , tg ∼ 0, consider ft = f + tfξf and gt = g + tgξg, such that ft, gt still

satisfy assumption A2. Denote the space generated by ξf⊗ξg as B. The score operators for f

and g are l̇f [ξf ] = limtf→0
l(α,β,τ,σ,ft,g)−l(α,β,τ,σ,f,g)

tf
and l̇g[ξg] = limtg→0

l(α,β,τ,σ,f,gt)−l(α,β,τ,σ,f,g)
tg

.

Denote l̇1 = (l̇α, l̇β, l̇τ , l̇σ)′ as the score function for the parametric parameters and l̇f,g[ξf , ξg] =

(l̇f [ξf ], l̇g[ξg]) as the score operator for the nonparametric parameters.

Project l̇1 onto the space generated by l̇f,g[ξf , ξg] = (l̇f [ξf ], l̇g[ξg]). The efficient score for

(α, β, τ) is U = l̇1 − l̇f,g

[
P (l̇1)l̇f,g |Z
P (l̇⊗f,g |Z)

]
. We further assume

(A5). P (U ′U) is component-wise bounded and positive definite.

Then P (U ′U) is the information matrix, and Σ = P−1(U ′U) is the asymptotic variance

matrix.
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