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Cross-validated Bagged Learning

Mark J. van der Laan, Sandra E. Sinisi, and Maya L. Petersen

Abstract

Many applications aim to learn a high dimensional parameter of a data generating
distribution based on a sample of independent and identically distributed obser-
vations. For example, the goal might be to estimate the conditional mean of an
outcome given a list of input variables. In this prediction context, Breiman (1996a)
introduced bootstrap aggregating (bagging) as a method to reduce the variance of
a given estimator at little cost to bias. Bagging involves applying the estimator to
multiple bootstrap samples, and averaging the result across bootstrap samples. In
order to deal with the curse of dimensionality, typical practice has been to apply
bagging to estimators which themselves use cross-validation, thereby using cross-
validation within a bootstrap sample to select fine-tuning parameters trading off
bias and variance of the bootstrap sample-specific candidate estimators. In this
article we point out that in order to achieve the correct bias variance trade-off for
the parameter of interest, one should apply the cross-validation selector externally
to candidate bagged estimators indexed by these fine-tuning parameters. In ad-
dition we define variable importance as a summary measure of the parameter of
interest, and present a novel bootstrap method to achieve statistical inference and
p-values based on the (externally) cross-validated bagged estimator. We illustrate
the new cross-validated bagging method with a data analysis and investigate the
performance of the variable importance measures in a small simulation study.
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1 Introduction and motivation.

Many applications aim to use a learning data set from a particular data gen-
erating distribution to construct a predictor of an outcome as a function of a
collection of input variables. One can define an optimal predictor as a param-
eter of the data generating distribution by defining it as the function of input
variables which minimizes the expectation of a particular loss function (of
the experimental unit and the candidate regression) with respect to the true
data generating distribution. If one selects the squared error loss function
(i.e., the square of the difference between the outcome and predicted value),
then this optimal predictor is the conditional mean of the outcome, given
the input variables. In the statistical literature such a location parameter of
the conditional distribution of the outcome given the input variables is often
referred to as a regression.

In many applications the number of input variables is very large. As
a consequence, assuming a fully parameterized regression model such as a
linear regression model with only main terms, and minimizing the empirical
mean of the loss function (e.g., the sum of squared residual errors in the
case of the squared error loss function) is likely to yield poor estimators,
since the number of main terms will typically be too large (thereby resulting
in over-fitting), and other functional forms of the input variables should be
considered. In other words, many current applications frequently demand
nonparametric regression estimators. Because of the curse of dimensionality,
minimizing the empirical mean of the loss function, i.e., the empirical risk,
over all allowed regression functions results in an over-fit of the data.

As a consequence, many estimators follow the sieve loss-based estimation
strategy. That is, a sequence of subspaces indexed by fine-tuning parame-
ters is selected, the empirical risk over each subspace is minimized or locally
minimized to obtain a subspace-specific (minimum empirical risk) estimator,
and the fine-tuning parameter (i.e., the subspace) is selected using an ap-
propriate method to trade off between bias and variance. Examples of fine-
tuning parameters indexing constraints on the space of regression functions
include initial dimension reduction, the number of terms in the regression
model, and the complexity of the allowed functional forms (e.g., basis func-
tions). Each specification of the fine-tuning parameters corresponds to a
candidate estimator of the true underlying regression. In order to select
among these candidate estimators (i.e., to select these fine-tuning parame-
ters), most algorithms either minimize a penalized empirical risk or minimize
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the cross-validated risk.
Application of such “machine learning” algorithms to a data set com-

monly results in a very low dimensional fit. For example in a recent HIV-
data application involving prediction of viral replication capacity based on
the mutation profile of the virus, in spite of the fact that the employed al-
gorithm searched over a high dimensional space of regression functions, a
linear regression with two main terms and a single interaction was selected
(Birkner et al., 2005). Although such an estimator is based on a sensible
trade off between bias and variance, the resulting fit is disappointing from
two perspectives. First, in many applications the true regression is believed
to be a function of almost all variables, with many variables making small
contributions. Second, a practitioner often wishes to obtain a measure of im-
portance for each variable considered, and such a low dimensional fit reflects
zero importance for all variables that do not appear in the estimator. It has
been common practice to address the second issue by reporting many of the
fits the algorithm has searched over, and to summarize these different fits in
a particular manner. Initially, we also followed this approach, but came to
the conclusion that the statistical interpretation of such a summary measure
is unclear.

Based on these concerns, the following statistical challenge can be formu-
lated: construction of nonparametric regression estimators that 1) are high
dimensional, so that the majority of variables contribute to the obtained re-
gression, and 2) still correspond with a sensible trade-off between bias and
variance (and thereby have good asymptotic convergence properties). In the
current article, we address this challenge. In order to construct high dimen-
sional learners (i.e., 1), we employ the existing machine learning method
“bootstrap aggregating” or “bagging” (or “aggregate prediction”), as intro-
duced by Breiman (1996a). However, in order to establish 2), we will provide
a fundamental improvement to the current practice of bagging by changing
the way cross-validation enters into the methodology.

Breiman suggested bagging as a method to stabilize (and thereby im-
prove upon) a given highly variable estimator. Specifically, given an estima-
tor, Breiman defined a corresponding bagged estimator as the average across
bootstrap samples of the bootstrap sample-specific estimators. Since differ-
ent bootstrap samples typically result in different regression fits, the bagged
estimator is typically a very high dimensional regression. Two applications
of bagging are provided in random forest and linear regression (Breiman,
2001a). In random forests, the bagged regression estimator is defined as an
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average of bootstrap-specific classification and regression tree (CART) es-
timators (Breiman et al., 1984), where in each bootstrap sample CART is
applied without cross-validation to obtain a fine partitioning. In the lin-
ear regression context, Breiman (1996a) proposed a bagged estimator as the
average of bootstrap-specific cross-validated regression estimators, such as
a linear regression estimator using forward selection and cross-validation to
data adaptively select the size of the model. To conclude, in the current
literature on bagging one either aggregates over-fitted regression estimators
or one aggregates cross-validated regression estimators.

We note that the latter type of cross-validation within a bootstrap sam-
ple provides the right trade-off between bias and variance for the single sam-
ple estimator applied to the bootstrap sample. However, since the bagging
operation reduces the variance and increases bias, it will typically result
in the wrong trade-off for the corresponding bootstrap aggregated estima-
tors. In this article we propose a cross-validated bagged estimator which 1)
acknowledges that each estimator indexed by fine-tuning parameters corre-
sponds with a bagged estimator, and 2) uses (external) cross-validation to
select among these candidate bagged estimators, and possibly between these
estimators and additional (e.g.) non-bagged estimators. By including non-
bagged estimators in the set of candidate estimators, this procedure data
adaptively selects between bagged and non-bagged estimators, which can be
useful in cases where it is unclear if bagging actually improves the prediction
performance: see our overview of some of the bagging literature below.

In order to assess the performance of the proposed cross-validated bagged
estimator, we propose the use of cross-validation again: that is, the cross-
validated bagged estimator is applied to a learning sample, and its fit is
evaluated on a test sample, across different splits of the data into learning and
test samples. The latter type of procedure involves double cross-validation.

The cross-validated bagged regression estimator maps into specific mea-
sures of variable importance for each variable. For example, one could define
the importance of a variable as the empirical mean of the variable-specific
partial derivative of the regression function, and the underlying true variable
importance as the expectation of the partial derivative of the true regres-
sion. Beyond reporting a list of estimates of the importance of each vari-
able, we also aim to provide an estimate of the variance of each variable
importance estimate and a corresponding p-value assessing its significance
relative to a null distribution. Since explicit calculations are hard to carry
out, it seems appropriate to propose a re-sampling based approach which
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involves estimating the true data generating distribution, and establishing
the Monte-Carlo variance of the variable importance estimates under this
estimated data generating distribution: that is, one might simply apply the
bootstrap method. Unfortunately, since the bagged estimators already re-
quire running a bootstrap simulation, this would involve bootstrapping a
bootstrap-based procedure, an extremely computer intensive proposal. For
example, if each bootstrap procedure involves 10,000 bootstrap samples, one
would need to calculate 10, 0002 bootstrap-specific estimators for each value
of the fine-tuning parameters.

In this article, we propose a bootstrap method which only requires car-
rying out a single Monte-Carlo simulation procedure for a) estimating the
variance of the variable importance for a given bagged estimator indexed by
a fixed value of the fine-tuning parameters, and b) obtaining a p-value.

The organization of this article is as follows. In the next section we present
our cross-validated bagged estimator, presented in the context of the general
unified loss-based estimation framework as introduced in van der Laan and
Dudoit (2003). That is, our estimator applies to any parameter which can
be represented as the minimizer over the parameter space of an expectation
of a loss function of the experimental unit at a parameter value, where we
allow the loss function to be indexed by an unknown nuisance parameter.
In particular, this general framework allows us to define the cross-validated
bagged estimator of a conditional density, conditional hazard, or conditional
location parameter (e.g., mean, median), based on censored and uncensored
data. For example, our framework includes prediction of a survival time
when the survival time is subject to right censoring. In Section 3 we define a
variable importance parameter, the corresponding estimate, and we present
our bootstrap method for obtaining a p-value and standard error estimate.
In Section 4 we apply our cross-validated bagged estimator to the Dele-
tion/Substitution/Addition Polynomial Regression algorithm introduced in
Sinisi and van der Laan (2004), and discuss the resulting new machine learn-
ing algorithm. We have implemented this algorithm in C, and it will be made
publicly available as an R-function in the near future. In Section 5, we apply
this algorithm to a HIV data set to build a predictor of change in plasma HIV
RNA level (viral load) based on characteristics of the HIV-infected patient,
the sequence of the HIV-virus, and a drug regimen. In addition, we map our
final fit into corresponding variable importance measures of the mutations of
the HIV-virus and the candidate drugs.
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1.1 Brief Review of Bagging.

Bagging, or bootstrap aggregating, was introduced by Breiman (1996a) as a
tool for reducing the variance of a predictor. The general idea is to generate
multiple versions of a predictor and then use these to get an aggregated
predictor. The multiple predictors are obtained by using bootstrap replicates
of the data, and bagging is meant to yield gains in accuracy. Whether or
not bagging will improve accuracy is related to the stability of the procedure
that constructs each predictor (Breiman, 1996a). Breiman (1996b) studied
instability and stated that k-nearest neighbor methods are stable, but that
neural networks, classification and regression trees, and subset selection in
linear regression were unstable methods. Breiman (1996a) found that bagging
works well for unstable methods.

Several approaches have been offered to combine different classifiers (LeBlanc
and Tibshirani, 1996; Breiman, 1996c; Hothorn and Lausen, 2003). In ad-
dition, the following modifications of bagging have been proposed: “nice”
bagging (Skurichina and Duin, 1998), sub-bagging or sub-sample aggregat-
ing (Buhlmann and Yu, 2002), and iterated bagging or de-biasing (Breiman,
2001b). We provide a brief overview of the various properties of bagging that
have been studied and the application of bagging to available algorithms in
the literature.

Friedman and Hall (2000) show that bagging reduces variability when
applied to highly nonlinear estimators such as decision trees and neural net-
works, and can also reduce bias for certain types of estimators. Breiman
(2001b) show that iterated bagging is effective in reducing both bias and
variance. Buja and Stuetzle (2002) look at bagging statistical functionals
and U -statistics and apply bagging to CART (Breiman et al., 1984). They
find that in the case of bagging CART, both variance and bias can be re-
duced. Buhlmann and Yu (2002) define the notion of instability and analyze
how bagging reduces variance in hard decision problems. Because hard de-
cisions create instability, bagging is helpful to smooth these out, yielding
smaller variance and mean squared error. They also look at the bagging
effect on piecewise linear spline functions in multivariate adaptive regression
splines (MARS) (Friedman, 1991) and find that bagging is unnecessary for
MARS. Borra and Ciaccio (2002) also apply bagging to MARS, as well as to
project pursuit regression (PPR) and local learning based on recursive cov-
ering (DART), and note that in most cases bagging reduces the variability of
these methods. Bagging has been viewed from its ability to reduce instability
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(Buhlmann and Yu, 2002), its success with nonlinear features of statistical
methods (Friedman and Hall, 2000; Buja and Stuetzle, 2002), and Hall and
Samworth (2005) address how performance depends on re-sample size.

Skurichina and Duin (1998) offers several conclusions about bagging for
linear classifiers; these include that bagging is not necessarily a stabilizing
technique where stabilization is defined for linear classifiers, the number of
bootstrap replicates should be limited (Breiman, 1996a; Skurichina and Duin,
1998), the usefulness of bagging can be determined by the instability of the
classifier, and that bagging improves the performance of a classifier when
the classifier is unstable. For computational considerations, it is helpful to
have a sense of how many bootstrap replicates are adequate. Breiman (1996a)
looked at as few as 10 replicates up to 100 and suggested that fewer replicates
are required when the outcome is numerical.

2 The general cross-validated bagged learner.

Suppose that one observes a sample of n i.i.d. observations on a random
variable O with data generating distribution P0, which is known to be an
element of a model M. Let ψ0 = Ψ(P0) be the parameter of interest of
the data generating distribution P0. We assume that the true parameter
(value) ψ0 can be defined in terms of a loss function, (O,ψ) → L(O,ψ), as
the minimizer of the expected loss, or risk. That is,

ψ0 = Ψ(P0) = arg min
ψ∈Ψ

∫
L(o, ψ)dP0(o),

where the minimum is taken over the parameter space Ψ ≡ {Ψ(P ) : P ∈M}.
In regression with a continuous outcome, a common loss function is the
squared error loss, L(O = (Y,W ), ψ) = (Y − ψ(W ))2, corresponding to the
conditional mean ψ0(W ) = E0[Y | W ], and if ψ0 = dP0/dµ is the actual den-
sity of O or a sub-vector of O, then L(O,ψ) = − logψ(O). As in the unified
loss based estimation approach presented in van der Laan and Dudoit (2003),
it is allowed that the loss function depends on a nuisance parameter Υ(P0):
that is L(O,ψ) = L(O,ψ | Υ(P0)). By allowing such unknown loss functions,
this framework includes most parameters. In particular, van der Laan and
Dudoit (2003) show that for estimation of regressions and densities based
on censored data one can use the Inverse Probability of Censoring Weighted
(IPCW) Mappings or Double Robust IPCW mapping as presented for gen-
eral censored data structures in van der Laan and Robins (2003) to map the
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full data loss function into an observed data loss function indexed by nuisance
parameters. Various applications of this unified loss-based cross-validation
methodology for estimator selection include selection among regression es-
timators (Dudoit and van der Laan, 2003), estimator selection with right
censored data (Keleş et al., 2003), likelihood-based cross-validation (van der
Laan et al., 2003), tree-based estimation and cross-validation with censored
data (Molinaro et al., 2003).

For the sake of notational convenience, we suppress the possible depen-
dence of the loss function on a nuisance parameter in the notation, but we will
point out at the appropriate places how this affects the proposed estimation
procedure.

Let Pn denote the empirical probability distribution of the sampleO1, . . . , On,
which puts mass 1/n on each observation. Consider now a collection of can-
didate estimators Pn → Ψ̂s(Pn) indexed by a fine tuning parameter s ranging
over a set An. For example, if ψ0(W ) = E(Y | W ), then Ψ̂s(Pn) might rep-
resent a particular learning algorithm for estimation of E(Y | W ) indexed by
fine tuning parameters s which are user supplied, such as a support-vector
machine algorithm, a forward step-wise algorithm, logic regression (Ruczinski
et al., 2003), the D/S/A-polynomial regression algorithm (Sinisi and van der
Laan, 2004), and so on. Another class of general examples is obtained by
defining

Ψ̂s(Pn) ≡ arg min
ψ∈Ψs

n∑
i=1

L(Oi, ψ)

as the minimizer of the empirical risk
∑
i L(Oi, ψ) over a sub-parameter space

Ψs ⊂ Ψ indexed by s, given a collection of subspaces Ψs, s ∈ An.
In the case that the loss function depends on a nuisance parameter Υ(P0),

one would estimate the nuisance parameter with an estimator Υ̂(Pn), and
minimize the empirical risk corresponding with the estimated loss function.
Most estimators can be considered as approximate minimizers of the empir-
ical risk, indexed by parameters defining the search algorithm, such as the
space the algorithm searches over and the depth to which it searches the
space. We note that we view the estimators as mappings Ψ̂s from data, Pn,
to the parameter space.

Given the empirical distribution Pn, let P#
n denote the empirical dis-

tribution of a sample of n i.i.d. observations O#
1 , . . . , O

#
n from Pn. Given

the s-specific estimator Ψ̂s we can define a corresponding s-specific bagged
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estimator as
Ψ̃s(Pn) ≡ E(Ψ̂s(P

#
n ) | Pn).

To evaluate the conditional expectation, given the data Pn, one needs to draw
many bootstrap samples P#

n from the empirical probability distribution Pn.
For each of these draws, P#

n1, . . ., P
#
nB, (of size n), the estimators Ψ̂s(P

#
nb)

based on the bootstrap sample P#
nb, b = 1, . . . , B, are calculated and averaged:

Ψ̃s(Pn) = lim
B→∞

1

B

B∑
b=1

Ψ̂s(P
#
nb).

This results in a set of candidate bagged estimators Ψ̃s(Pn) indexed by
s. Our goal is to data adaptively select the s which minimizes the risk of
Ψ̃s(Pn) over An. As such, we propose the cross-validated bagged estimator
defined as:

Ψ̂(Pn) = Ψ̂Ŝ(Pn)(Pn),

where Ŝ(Pn) is the cross-validation selector based on the loss function L(·, ·)
corresponding to a cross-validation scheme defined by a random n dimen-
sional vector Bn ∈ {0, 1}n. A realization of Bn = (Bn,1, . . . , Bn,n) defines a
particular split of the learning sample of n observations into a training set,
{i ∈ {1, . . . , n} : Bn,i = 0}, and a validation set, {i ∈ {1, . . . , n} : Bn,i = 1}.
We will denote the proportion of observations in the validation set with p.
The empirical distributions of the training and validation sets are denoted by
P 0
n,Bn

and P 1
n,Bn

, respectively. Formally, the cross-validation selector Ŝ(Pn)
is defined as:

Ŝ(Pn) = arg min
s∈An

EBnP
1
n,Bn

L(·, Ψ̃s(P
0
n,Bn

)) (1)

= arg min
s∈An

EBn

∑
i,Bn(i)=1

L(Oi, Ψ̃s(P
0
n,Bn

)).

At the first equality we used the notation Pf ≡
∫
f(o)dP (o). If the loss

function depends on an unknown nuisance parameter, then one estimates
the unknown loss function on the training sample: that is, one replaces in
(1) the loss function by L(·, Ψ̃s(P

0
n,Bn

) | Υ̂(P 0
n,Bn

)).
To calculate this selector of s, for each possible realization of the sample

split Bn and index s ∈ An, B bootstrap samples P 0#
n,Bn,b

of size n(1 − p)
are drawn from the training sample P 0

n,Bn
, b = 1, . . . , B. For each of these

9
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B bootstrap samples we compute the corresponding s-specific estimators
Ψ̂s(P

0#
n,Bn,b

) and average them to obtain:

Ψ̃s(P
0
n,Bn

) =
1

B

B∑
b=1

Ψ̂s(P
0#
n,Bn,b

).

The empirical risk of this estimator over the validation sample can now be
computed, and averaged over the different splits Bn, as in (1), which results
in the so called cross-validated risk of the estimator Ψ̃s(Pn). The cross-
validation selector is defined as the one which minimizes this cross-validated
risk over s ∈ An.

2.1 Contrasting cross-validated bagged learning with
bagged cross-validated learning.

It is of interest to contrast this estimator to the bagged cross-validated es-
timator as used in Breiman (1996a), and followed by other authors. In the
current approach, the selection of s via cross-validation is performed within
each bootstrap sample. Subsequently the B bootstrap-specific estimators
are averaged to arrive at the final estimator. Formally, within a bootstrap
sample P#

n the cross-validation selector of s can be defined as:

Ŝbr(P
#
n ) = arg min

s∈An

EBnP
1,#
n,Bn

L(·, Ψ̂s(P
0,#
n,Bn

)).

The corresponding estimator based on a single bootstrap sample P#
n is thus

defined as:
Ψ̂CV (P#

n ) = Ψ̂Ŝbr(P#
n )(P

#
n ).

Finally, the corresponding bagged estimator is the average over a large col-
lection of bootstrap-specific estimators:

Ψ̃br(Pn) = E(Ψ̂CV (P#
n ) | Pn).

Using cross-validation within a bootstrap sample provides the right selec-
tion among the estimators Ψ̂s(P

#
n ), s ∈ An regarding the trade off between

bias and variance. However, one would expect it not to perform the right
trade-off between bias and variance for the actual bagged estimators Ψ̃s(Pn).
The reason for this is that the bagged estimator should be less variable as
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a result of the averaging, and might be more biased due to the double sam-
pling. An increase in bias is due to two (probably cumulative) sources: first,
the bias introduced by applying an estimator to a bootstrap sample relative
to the empirical sample; and second, the bias introduced by applying the
estimator to the empirical sample relative to the truth. In general, the esti-
mators Ψ̂s, s ∈ An, and Ψ̃s, s ∈ An, are very different classes of estimators,
so that a good selector among the un-bagged estimators is not necessarily a
good selector among the corresponding bagged estimators.

2.2 Performance of the cross-validation selector.

Let d(ψ, ψ0) =
∫
L(o, ψ)dP0(o)−

∫
L(o, ψ0)dP0(o) denote the risk dissimilarity

between a candidate ψ and the true ψ0 implied by the loss function L(·, ·).
The results on the cross-validation selector (see van der Laan et al. (2003,
2004)) state that if the loss function is uniformly bounded in its arguments,
then the difference of the risk dissimilarity of the cross-validated selected
bagged estimator and the risk dissimilarity of the oracle selected bagged
estimator is of the order logK(n)/np plus possibly a term due to estimation
of the nuisance parameter in the loss function. The oracle selected bagged
estimator is defined as Ψ̂S̃n(1−p)(Pn)(Pn), where

S̃n(1−p)(Pn) = arg min
s
EBn

∫
L(o, Ψ̃s(P

0
n,Bn

))dP0(o).

Thus for a given data set the oracle selector S̃n(1−p)(Pn) selects the bagged
estimator (based on n(1− p) observations) closest to the truth w.r.t. to the
risk dissimilarity.

These results only rely on the loss function to be uniformly bounded in
the support of O and the parameter space. They imply that if the number
of candidate estimators is polynomial in sample size (and, in the case that
the loss function is unknown, that it can be estimated at a better rate than
the convergence rate of the oracle selected estimator), then either the cross-
validated selected estimator is asymptotically equivalent (up to the constant)
to the oracle selected estimator, or it achieves the essentially parametric rate
of convergence log n/n.

For most risk dissimilarities one can bound the risk dissimilarity between
the bagged estimator Ψ̃s(Pn) = 1/B

∑
b Ψ̂s(P

#
n,b) and ψ0 in terms of risk

dissimilarity of the un-bagged estimator. In particular, if d(ψ, ψ0) = ||ψ−ψ0||
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Hosted by The Berkeley Electronic Press



for some norm || · ||, then it follows from the triangle inequality that

d(Ψ̃s(Pn), ψ0) ≤ 1

B

B∑
b=1

||Ψ̂s(P
#
n,b)− Ψ̂s(Pn)||+ ||Ψ̂s(Pn)− ψ0||

=
1

B

B∑
b=1

d
(
Ψ̂s(P

#
n,b), Ψ̂s(Pn)

)
+ d(Ψ̂s(Pn), ψ0).

Since the first term on the right-hand side is only affected by the variance
of the estimator Ψ̂s at data generating distribution Pn, one would expect
that the second term d(Ψ̂s(Pn), ψ0) dominates, and thereby that the rate of
convergence of Ψ̂s(Pn) to ψ0 w.r.t. the norm || · || implies the same rate
of convergence for the corresponding bagged estimator. Thus asymptotic
consistency rate results in terms of risk dissimilarity for our proposed cross-
validated bagged estimator are implied by asymptotic consistency rate results
for the original estimator Ψ̂s. Of course, these calculations tell us little about
relative finite sample and asymptotic efficiency between an un-bagged and
corresponding bagged estimator.

2.3 Cross-validation selection of the degree of bagging.

In cases where there is a concern that the bagging operation might actually
worsen the estimator it is a good idea to let cross-validation select between
the original un-bagged estimator and the bagged estimator. In general, the
following method might be of interest. Define Ψ̃s,α = αΨ̃s+(1−α)Ψ̂s as the
weighted average between the bagged and un-bagged estimator, α ∈ [0, 1],
and use cross-validation to select (s, α). In this manner, the data are used
decide to what degree α the bagging operation should be used, and, by our
results establishing asymptotic equivalence with the oracle selector of (α, s),
our cross-validated selected estimator will perform asymptotically at least as
well as the non-bagged estimator and bagged estimator.

2.4 Assessing the performance of the cross-validated
bagged estimator.

One can estimate the risk
∫
L(o, Ψ̃(Pn))dP0(o) of the cross-validated bagged

estimator Ψ̃(Pn) with the cross-validated risk of the estimator Ψ̃(Pn) =
Ψ̃Ŝ(Pn)(Pn) using a cross-validation scheme defined by a random vector B∗n ∈
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{0, 1}n:
EB∗n

∑
i,B∗n(i)=1

L(Oi, Ψ̃(P 0
n,B∗n

)).

This procedure would require carrying out a Bn-specific cross-validation
scheme within each learning sample P 0

n,B∗n
, which is often referred to as double

cross-validation.

3 Variable importance, inference, and p-values.

Suppose that the parameter space Ψ consists of d-variate real valued func-
tions ψ : IRd → IR. We refer to these functions as functions of a d-dimensional
vector W , and we wish to define a measure of variable importance for each
variable Wj, j = 1, . . . , d. We define the following function of W and w, j:

W−j(w) ≡ (W1, . . . ,Wj−1,Wj = w,Wj+1, . . . ,Wd).

That is, W−j(w) equals W with its j-th component W (j) set equal to w. In
addition, let W−j = (W1, . . . ,Wj−1,Wj+1, . . . ,Wd) be the (d−1)-dimensional
vector with W (j) deleted. Given the true function ψ0, consider the following
variable importance function for variable j:

νj(P0)(w) ≡ d

dw
EW−j

ψ0(W−j(w)).

That is, νj(w | P0) is defined as the j-th partial derivative of ψ0 at w averaged
over the remaining variables W−j w.r.t. to some specified (e.g., user supplied)
probability distribution for W−j.

If Wj is a continuous variable, then the partial derivative is the usual
derivative, and if Wj ∈ {1, . . . , Kj} is an ordered categorical variable, then
the derivative at w = k just refers to the difference between ψ0 at Wj = k+1
and ψ0 at Wj = k. The variable importance νj(w | P0) is a function in w. It
can be summarized in a real valued number by averaging its absolute values
w.r.t. to some specified probability distribution G0 on the set of possible
values for the j-th variable Wj:

ν̄j(P0) ≡
∫
| d

dw
EW−j

ψ0(W−j(w)) | dG0(w).

These variable importance measures were proposed in Sinisi and van der
Laan (2004) in the context of prediction.
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These variable importance parameters can be straightforwardly general-
ized to importance parameters for a joint subset of variables by replacing the
single partial derivatives by joint first order partial derivatives.

The variable importance measure νj(P0)(w) measures the effect of a change
of Wj at w on ψ0. In particular, if ψ0(W ) = E(Y | W ), then this vari-
able importance corresponds to the so called G-computation formula for the
marginal causal effect of an intervention Wj = w to Wj = w + 1 (e.g., Wj

is categorical) on the outcome Y , assuming a causal counterfactual model:
see Sinisi and van der Laan (2004). The function νj(P0)(·) can be plotted to
observe any fluctuations in importance of variable Wj over its range. For il-
lustrations of this variable importance function in the context of classification
and regression trees we refer to Molinaro and van der Laan (2005).

The cross-validated bagged estimator Ψ̃(Pn) can be mapped into esti-
mates of these variable importance measures, by substitution:

ν̂j(Pn)(w) ≡ d

dw
EW−j

Ψ̃(Pn)(W−j(w)).

Since the cross-validated bagged estimator Ψ̃(Pn) will typically depend on
most of the d variables, this collection of estimators of variable importance
functions ν̂j(Pn), j = 1, . . . , d, provides an interesting list of output for a
data analysis. Alternative variable importance measures were originally in-
troduced in (Breiman, 2001a) for bagged prediction based on CART.

3.1 Bootstrap based inference for variable importance
measures.

In this subsection we will present a bootstrap method for assessing the stan-
dard error of the estimator

ν̂j,s(Pn)(w) ≡ d

dw
EW−j

Ψ̃s(Pn)(W−j(w)),

based on the s-specific bagged estimator Ψ̃s(Pn) ≡ E(Ψ̂s(P
#
n ) | Pn) for a

given s. We suggest reporting these inference results with s = Ŝ(Pn), where
we have to acknowledge that these results do not take into account that s
is selected data adaptively. Since variable importance is typically a much
smoother functional of the data generating distribution than ψ0, the vari-
ability due to data adaptive selection of s might be small relative to the
actual variance of the variable importance measure.
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Real valued linear summary measures of our parameter.

In order to simplify notation and to illustrate the generality, let Ṽs(Pn) repre-
sent a real valued linear summary measure of the bagged estimator Ψ̃s(Pn),
such as an evaluation or difference at a value w of ν̂j,s(Pn). Let V̂s(Pn)
represent the same real valued linear summary measure of the non-bagged
estimator Ψ̂s(Pn). We consider V̂s(Pn) as an estimator of the underlying real
valued linear summary measure V (P0) of the true ψ0. Due to the fact that
Ṽs(Pn) is a linear function of the bagged estimator Ψ̃s(Pn), we can represent
Ṽs(Pn) as an s-specific bagged estimator corresponding with the un-bagged
estimator V̂s(Pn):

Ṽs(Pn) = E(V̂s(P
#
n ) | Pn).

Estimation of the variance.

We are concerned with estimating the variance of Ṽs(Pn) with a particular
re-sampling method. Firstly, we note that bootstrapping the estimate Ṽs(Pn)
would require bootstrapping a procedure which itself requires bootstrapping.
Therefore, we are concerned with developing a bootstrap method which cir-
cumvents the use of this double bootstrap.

Our proposal is based on the Theorem of Pythagoras in the Hilbert space
of functions of (Pn, P

#
n ) endowed with inner product being the covariance op-

erator. In this Hilbert space the conditional expectation E(Y | X) represents
the projection of Y onto the subspace of functions of X, and the Theorem
of Pythagoras states

VAR(E(Y | X)) = VAR(Y )− EVAR(Y | X).

Application of this result with Y = V̂s(P
#
n ), and X = Pn, teaches us that

σ2 ≡ VARṼs(Pn) = VARV̂s(P
#
n )− EVAR(V̂s(P

#
n ) | Pn).

We will use this representation of the variance of our bagged estimator Ṽs(Pn)
to propose an estimator of this variance. First, we estimate EVAR(V̂s(P

#
n ) |

Pn) with VAR(V̂s(P
#
n ) | Pn), which can be directly computed as a by-product

of our computation of Ṽs(Pn), since the latter already involved sampling many
realizations V̂s(P

#
n ), conditional on the data Pn. It remains to present an

estimator of the marginal variance of V̂s(P
#
n ). We note that the experiment

defining the latter random variable is given by 1) sampling a sample Pn from
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the true data generating distribution P , 2) taking a sample P#
n from Pn,

and 3) evaluating V̂s(P
#
n ). Therefore, given an estimate P̃n of the true data

generating distribution P , the bootstrap version of this experiment is defined
by 1) sampling an empirical distribution P̃ ∗n of n observations from P̃n, 2)
sampling an empirical distribution P̃#

n from P̃ ∗n , and 3) evaluating V̂s(P̃
#
n ).

In order to avoid a very large number of ties in the double bootstrapped
empirical distribution P̃#

n , we propose to sample P̃ ∗n from a smooth P̃n, or use
a weighted (Bayesian) bootstrap in which one samples for each observation
Oi a weight from (e.g.) an exponential distribution with mean 1/n (Rubin,
1981). In this manner one guarantees that P̃ ∗n is a probability distribution
with support being the whole sample {O1, . . . , On}.

Given this bootstrap experiment, one can now estimate the variance
of V̂s(P

#
n ) by simply simulating a large number B of replicates V̂s(P̃

#
n,b),

j = 1, . . . , B. We note that the latter bootstrap method for estimating the
variance of V̂s(P

#
n ) is not more computer intensive than a single bootstrap

since it only involves calculating the estimator V̂s once for each draw of P̃#
n ,

and drawing P̃#
n is not more computer intensive than drawing P#

n .
We conclude that we can estimate σ2 with the following bootstrap-based

variance estimate:

σ2
n ≡

1

B

B∑
b=1

(
V̂s(P̃

#
n,b)− 1/B

B∑
b=1

V̂s(P̃
#
n,b)

)2

− 1

B

B∑
b=1

(
V̂s(P

#
n,b)− Ṽs(Pn)

)2
.

Recall that Ṽs(Pn) = 1/B
∑B
b=1 V̂s(P

#
n,b), P

#
n,b is a bootstrap sample from our

data Pn, and P̃#
n,b represents a draw from the randomly drawn P̃ ∗n .

To summarize, our variance estimator is calculated as follows:

• Sample B bootstrap samples P#
n,b from our data Pn, b = 1, . . . , B.

Calculate the corresponding x1 = (V̂s(P
#
n,b), b = 1, . . . , B).

• Sample a weighted empirical distribution P̃ ∗n,b corresponding with Pn
(Bayesian bootstrap) and, given P̃ ∗n,b, sample a standard empirical dis-

tribution P̃#
n,b from P̃ ∗n,b, b = 1, . . . , B. Calculate the corresponding

x2 = (V̂s(P̃
#
n,b) : b = 1, . . . , B).

• Given these two B dimensional vectors x1, x2, compute

σ2
n =

1

B

B∑
b=1

(x1(b)− x̄1)
2 − 1

B

B∑
b=1

(x2(b)− x̄2)
2 .
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3.2 Obtaining a P-value.

In this subsection we present the analogue of our bootstrap method described
above for obtaining a p-value for testing the null hypothesis H0 : V0 = 0.

Consider a null distribution P ∗n for which it is known that the parameter
V (P ∗n) = 0. For example, if ψ0(W ) = E(Y |W ), and V (P0) denotes a vari-
able importance parameter defined above, then one can set P ∗n equal to the
empirical distribution defined by 1) Y and W being independent, and 2) the
marginal distributions equal to the marginal empirical distributions of Y and
W , respectively. In this case, sampling n draws from P ∗n corresponds closely
to a sample from the permutation distribution, where a draw from the per-
mutation distribution corresponds to a sample (Xi, Yπ(i)), i = 1, . . . , n, where
(π(1), . . . , π(n)) is a permutation of (1, . . . , n). Therefore, in this regression
example one can view the permutation distribution as the null distribution
for the sample of n observations.

Let P 0
n be an empirical distribution of a sample of n i.i.d. observations

from P ∗n . We are concerned with evaluating the variance σ2(P ∗n) of Ṽs(P
0
n),

given P ∗n , with a particular re-sampling method. One can compute a p-value
for an observed value v of Ṽs(Pn) under the normal distribution N(0, σ̂2(P ∗n))
centered at zero as follows:

P-value(v) = Φ̄(v/σ(P ∗n)).

Here Φ̄ denotes the survivor function of the standard normal.
As in the previous subsection, application of the variance formula for

conditional expectations tells us that

σ2(P ∗n) ≡ VARP ∗n Ṽs(P
0
n)) = VARP ∗n V̂s(P

0#
n )− EP ∗nVAR(V̂s(P

0#
n ) | P 0

n),

where now the variance and expectation are w.r.t. to our null distribution
P ∗n .

As in the previous subsection, we can use this representation of the vari-
ance of our bagged estimator Ṽs(P

0
n) at data generating distribution P ∗n to

propose an evaluation of this variance σ2(P ∗n). First, VAR(V̂s(P
0#
n ) | P 0

n), can
be directly computed as a by-product of our computation of Ṽs(P

0
n), since the

latter already involved sampling many realizations V̂s(P
0#
n ), conditional on

the data P 0
n . In order to approximate EVAR(V̂s(P

0#
n ) | P 0

n) we could average
this P 0

n -specific conditional variance across a number of draws P 0
n from P ∗n .

The presentation of the evaluation of the marginal variance of V̂s(P
0#
n ) is the

complete analogue of the previous subsection and therefore is not repeated
here.
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Confidence interval.

Given an estimate of the bias (as presented below) and variance of our es-
timator Ṽs(Pn) of the true real valued parameter of interest V0, we could
obtain inference for V0 based on the normal working model

Ṽs(Pn) ∼ N(V0 + Biasn, σ
2
n).

Under this working model, we have that

Ṽs(Pn) +
Biasn
σn

± Z1−α/2σn

is a 1− α confidence interval for V0, where Z1−α/2 is the 1− α/2 quantile of
the standard normal distribution.

The appropriateness of assuming a normal distribution for the estimates
of variable importance needs to be theoretically investigated. However, we
note that the bagging provides a smoothness of the distribution of our esti-
mator of variable importance, which thereby makes the normal model more
appropriate than it would be without bagging.

Estimation of the bias.

It is of additional interest to estimate the bias of EṼs(Pn)− V0, where V0 =
V (ψ0) represents the true real valued linear summary measure of ψ0. We
note that this bias can also be represented as

Bias ≡ EV̂s(P
#
n )− V0.

Therefore, we could estimate this bias with the following estimator:

Biasn =
1

B

B∑
b=1

V̂s(P̃
#
n,b)− V (Ψ(P̃n)).

In order to estimate the true parameter value V (Ψ(P̃n)) in the world with the
true data generating distribution being P̃n, one could simply generate a very
large sample from P̃n and fit with our cross-validated bagged estimator the
true parameter Ψ(P̃n). In other words, Biasn simply denotes the actual bias
of V̂s(P

#
n ) (and thereby Ṽs(Pn)) at an estimated data generating distribution

P̃n.
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4 Cross-validated bagged regression based on

the DSA: Simulation and Data Analysis.

In this section we illustrate our proposed cross-validated bagged estimation
methodology to estimate a regression function E(Y | W ). In Figure 1 we
provide a graphical overview of the methodology.

Our candidate estimators Ψ̂s(Pn) are chosen to be the Deletion/Substitution/Addition
(D/S/A) polynomial regression estimators indexed by a three dimensional
integer vector s = (k0, k1, k2), as introduced and implemented in Sinisi and
van der Laan (2004). Given the three integer values (k0, k1, k2), this esti-
mator 1) computes for each of the d variables in W ∈ IRd the t-statistic for
the marginal regression on Y , 2) selects the top k0 variables ranked by this
t-statistic, 3) aims to minimize, using the D/S/A algorithm, the empirical
mean of squared errors over all linear regressions in maximally k1 tensor
products of polynomial powers in these selected k0 variables, where these
tensor products involve a product of maximally k2 terms. That is, this es-
timator maps into linear regressions in k1 polynomial basis functions, such
as w3w

2
4 and w1w5w7, where k0 indexes a data adaptive dimension reduction

and k2 indexes a bound on the allowed complexity of the basis functions. For
details about the actual minimization strategy the D/S/A algorithm follows,
we refer to Sinisi and van der Laan (2004).

4.1 Simulated Example.

A motivation for obtaining a bagged estimator is to gain information about
each variable in order to form a more suitable measure of variable importance,
but one cost of this is computing time. To look at the relative gain of
estimating variable importance measures from a bagged fit, we performed a
brief simulation. The following illustrates the D/S/A un-bagged and bagged
estimators on three simulated data sets. In each of the three settings, the
true model is: y =

∑
j

1
j
xj+ε where xj ∼ U(0, 1), ε ∼ N(0, σ2), j = 1, . . . , 20,

and n = 250. The fine-tuning parameters, k1 and k2, were chosen using 5-fold
cross-validation, the bagged estimate is based on 200 bootstrap replications,
and the simulations were repeated 10 times in each case. The variations of
the three simulations are:

1. σ2 = 1
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Deletion/Substitution/Addition (D/S/A): An aggressive search algorithm that estimates 
the conditional expectation of Y using linear regressions of k1 polynomial terms, 
where each term has a maximum k2 order of interactions

Training Sample Validation sample

Data

B1 B2 B1000

k1

k2

k1

k2

k1

k2

k1

k2

k1

k2

1. Split Data into training 
and validation samples

2. Draw 
1000
bootstrap
samples

3. For each B, 
use the D/S/A 
to fit the best 
model for each
k1, k2

4. Average 
each element in
the matrix 
across all
bootstrap 
samples

5. Evaluate the performance of 
candidate estimators on 
independent validation set

Matrix of optimal 
regression fits 

Matrix of averaged
optimal regression
fits (candidate 
estimators)

Matrix of MSE on
independent data

for optimal averaged 
regression fits 

6.Choose the k1, k2 =K*
of the estimator with the best 
performance (lowest MSE)

7. Using the entire dataset, run the boxed 
algorithm (steps 2-4) and report the corresponding 
estimator for the optimal  k1, k2 (K*)

Figure 1: Graphical representation of the cross-validated bagged D/S/A
learner
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2. σ2 = 0.25

3. σ2 = 0.25, and in addition to the 20 uniform variables that form the
true model, there are 5 additional noise variables, x ∼ N(1, 1)

In each setting, the maximal allowed order of interaction is one, meaning
that only main terms were allowed to enter the fits (k2 = 1). k1 ranges from 1
to 10 in the first two settings and from 1 to 15 in the third setting. Changing
k1 from 10 to 20 did not affect the results.

The results, across the 10 simulations, are summarized in Tables 1-6. In
Tables 1,3,5, the following quantities are reported: β represents the true
importance measure for the corresponding variable, the mean estimated im-
portance measure (averaged across the 10 simulations), the variance and bias
of the estimated importance measures, the mean squared error (MSE) of the
estimated importance measure, and the ratio of the bagged MSE to the un-
bagged MSE. The RSS, R2, and estimate of the true risk is computed for each
un-bagged and bagged fit and averaged across the 10 repeats and reported
in Tables 2,4,6.

It is clear that the un-bagged and bagged estimators are comparable in
terms of prediction, as in each case the bagged estimator has a slight improve-
ment in RSS and true risk over the un-bagged estimator. Our simulations
results for the MSE suggest that bagging provides a better estimate than the
un-bagged estimator of the variable importance measures (VIM) for variables
which have a high probability of not being included in an un-bagged fit. It is
also of interest to note that even for the pure noise variables X21, . . . , X25 in
simulation three, which have a true VIM of zero, the bagged estimator seems
to perform well relative to the un-bagged estimator. These results are based
on only 10 simulations, but we expect that these findings will hold under
more simulations. In the future, we will consider a more in-depth simulation
study where the number of repetitions is increased and the other fine-tuning
parameters (e.g., k2) are selected with cross-validation.

4.2 Data analysis example.

The data example is drawn from the Stanford University HIV Drug Resis-
tance Database (http://hivdb.stanford.edu/), which contains observational
clinical data from patients infected with HIV. The application has two goals:
1) Prediction: Construct a predictor of a patient’s change in plasma HIV
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RNA level (viral load) as a function of his/her treatment history, current drug
regimen, and mutations in the HIV virus infecting him/her. This predictor
would then allow identification of a treatment regimen likely to result in the
biggest decrease in a given patient’s viral load (best treatment response).
2) Variable Importance: Estimate variable importance measures for viral
mutations in the HIV strains infecting a patient. Under assumptions, these
variable importance measures can be interpreted as summaries of the effect
of mutations on clinical virologic response to specific antiretroviral drugs and
drug combinations.

Data structure.

The data has the following structure:

1. viral genotype, summarized as the presence or absence of each viral mu-
tation considered by the Stanford scoring system to have some effect on
virologic response to antiretroviral therapy (see http://hivdb.stanford.edu/)

2. treatment regimen initiated following assessment of viral genotype,
which might involve changing some or all of the drugs in a patient’s
previous regimen

3. change in viral load over baseline, measured at 11-36 weeks after be-
ginning the current treatment regimen and while still on this regimen

4. treatment history prior to initiating the current regimen

The observed data structure on a subject is written as (W,A,Z, Y ) where
W represents the treatment history and baseline viral load, A ∈ {0, 1}71

represents the binary mutation profile of the virus (genotype), Z ∈ {0, 1}22

is the treatment regimen assigned to the patient, and Y is the patient’s
change in log viral load.

The data were stratified based on individual drugs or common treatment
regimens. In particular, for this illustration we focus on a group of 295
patients who received the following three antiretroviral drugs exclusively: zi-
dovudine (AZT), lamivudine (3TC), and indinavir (IDV). The data structure
now reduces to (W,A, Y ) because Z is the same for these 295 patients. We
consider 16 baseline variables (W ) that are considered potential confounders
of the two drug classes in this particular regimen, Protease Inhibitors (PI)
and Nucleoside Reverse Transcriptase Inhibitors (NRTI), and 48 mutations
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(A) that are thought to affect viral resistance to at least one drug in either
of these two classes.

As described above, the D/S/A algorithm was used (Sinisi and van der
Laan, 2004) to estimate E(Y |W,A). The fine-tuning parameters (k0, k1, k2)
were set at (64,5,3), where k1 and k2 were selected via cross-validation, al-
lowing k1 to range between 1 and 5 and k2 to range between 1 and 3. The
bagged estimator was based on 1000 bootstrap replications.

Prediction.

In order to select the best model for the purpose of prediction, the bagged and
un-bagged estimators indexed by the choice of (k1, k2) corresponding to the
estimator with the lowest cross-validated risk were selected. The following
un-bagged estimator was selected: −2.6106+1.9015w6 (k0 = 64, k̂1 = 1, k̂2 =
1) where w6 denotes “PI.fail”. This fit had a low R2 = 0.043 and a cross-
validated risk of 176.7.

The cross-validated risks for the bagged estimators corresponding to dif-
ferent choices of k1 and k2 are given in Table 7. The cross validation-selected
bagged estimator corresponding to the choice of k̂1 = 1, k̂2 = 2 consisted of
the average across bootstrap replications of the best predictor of size one (and
maximum order of interactions two) in each bootstrap replication. This pro-
duced a rather low-dimensional aggregated predictor with 114 terms, an R2

of 0.056, and a cross validated risk of 176.9. Of note, the bagging procedure
did not result in an improvement in cross-validated risk.

The cross-validated risk can be used to provide a rough estimate of the
standard error of the predictor:

ˆs.e. =
√

cross-validated risk/size of validation set

=
√

176.9/59

= 1.7

Considering that the outcome (change in log viral load) ranges from −4.2
to 2.1, the cross-validated risk suggests that even the true optimal predictor,
E(Y |W,A), has little predictive power, due to large variance residuals. The
high variability of the residuals explains the selection of a low dimensional
k1, as the estimator is forced to reduce the large variance at a high cost to
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bias. Given the cross validated risk, as well as the low R2, we conclude that
prediction may not represent a reasonable goal to pursue with this data set.

Variable Importance.

An additional goal of this application is to identify mutations with effects on
virologic response and to estimate their variable importance. As discussed
above, cross validated risks were similarly poor across all combinations of k1

and k2. As a result, in choosing k1 and k2 to obtain estimates of variable im-
portance, we chose to use a more over-fitted bagged estimator corresponding
with k1 = 5, k2 = 3 for the following reasons: 1) As variable importance is
a much smoother parameter than E(Y |W,A), in estimation of variable im-
portance the variance of the predictor becomes less of a concern, while bias
becomes a greater concern. 2) Treatment history variables are included as
variables in the regression for this application not to improve prediction, but
because they have the potential to confound the effect of mutations on re-
sponse; past treatments can affect which mutations are observed at baseline,
and also have independent effects on virologic response (for example, as a re-
sult of archived mutations which are not measured but nonetheless contribute
to resistance). Control of this confounding requires that the multi-variable
regression fits contain more than one term each. 3) Use of a richer bagged
estimator allowed us to identify as many mutations with non-zero variable
importance as possible.

The final bagged estimator corresponding with k1 = 5, k2 = 3 has 1266
terms. The R2 for this predictor is 0.14. Several points regarding interpre-
tation of this estimator and the corresponding variable importance measures
deserve discussion.

Before considering the mutation effects on virologic response identified
by our estimator, it is worth noting the obvious, but nonetheless important,
fact that mutations must occur with reasonable frequency in the sample
for their effects on virologic response to be identified. Several major mu-
tations known to confer significant resistance to drugs in the regimen (for
example, the known AZT-resistance mutations Q151L/M and Y115F and
IDV-resistance mutations I84C and V82A/F/S/T) occur only once or not at
all in the sample. Consequently, several major resistance mutations do not
appear in the final bagged estimator and have variable importance measures
of zero. Table 8 shows the frequency of PI- and NRTI-associated mutations
in the sample.
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Table 9 shows the mutations and mutation interactions with the largest
effect on virologic response, as identified from the results of the final bagged
estimator after integrating out treatment history variables (ÊW (E(Y |A =
a,W )−E(Y |A = 0,W ))). Mutations with coefficients that have an absolute
value greater than 0.05 are shown. The coefficients can be interpreted as the
expected change in log viral load associated with the presence of the corre-
sponding mutation or mutation interaction. Note that a positive coefficient
implies that the corresponding mutation results in an increase in viral load
over its baseline level, or in other words, contributes to a poor treatment
response. The corresponding variable importance measures for mutations
identified by the bagged estimator are reported in Tables 10 and 11.

Several of the mutations known to confer significant resistance to at least
one of the three drugs with which the patients in the sample are treated are
identified by the bagged estimator and corresponding variable importance
measures. For example, both the L90M and M46I/L/V mutations confer
significant resistance to IDV, while others, such as L10F/I/R/V may act as
important accessory mutations, improving viral fitness and increasing resis-
tance to IDV in the presence of additional PI-associated mutations. Similarly,
the M184I/V mutation is the primary mutation conferring resistance to 3TC,
while D67E/G/N, K70R/G/E, L210W, and T215F/Y are thymidine analog
mutations, a class of mutations that contribute resistance to AZT.

However, while some of the mutations and interactions identified by the
bagged estimator and reflected in the variable importance measures are sup-
ported by previous research and mechanistic understanding, the significance
of others is less clear. While it is possible that some of these may repre-
sent effects on viral resistance to the AZT+3TC+IDV regimen that have
not previously been identified in the literature, there are several alternative
explanations that reflect the complexity of dealing with observational clinical
data.

1) The presence of viral mutations may be acting to some extent as a
surrogate marker for the ability of patients to adhere to prescribed regimens.
As adherent patients infected with resistant virus generally do better than
patients who do not take their drugs at all, resistance mutations in this con-
text may be associated with an improved virologic outcome. Unfortunately,
no data on patient adherence are currently available in this data-set.

2) Mutations can have complex effects on the virus; a given mutation may
simultaneously increase resistance and decrease viral fitness, contributing to
an escape from complete virologic suppression (and thus an increase in viral
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load) in some individuals, while resulting in an impaired ability of the virus
to replicate (and thus a slight decrease in viral load) in individuals with
ongoing viral replication.

3) There is a strong potential for selection bias in the sample. Specifi-
cally, in this observational database, clinicians assign patients to drug regi-
mens that they feel are likely to be effective, based on the patient’s current
viral mutation profile and treatment history. This has resulted in under-
representation of mutations known to cause resistance to the current regimen
of interest among patients treated with that regimen, limiting the ability of
these mutations to be detected, as discussed above. In addition, selective
assignment of drug regimen can cause bias in estimates of the effects of
well-represented mutations, if, for example, patients with a mutation and
expected to respond well are over-represented among the people receiving
the regimen, and patients with the mutation expected to respond poorly are
under-represented.

4) Finally, although summaries of treatment history were included in the
estimator, it is possible that residual confounding remains.

Due to these limitations, we believe the results presented should be in-
terpreted with extreme caution. In the future we plan to perform several
additional analyses aimed at addressing some of the issues raised. In addi-
tion, we hope to apply the algorithm to laboratory-based data with the aim
of predicting viral resistance (measured in vitro as drug-specific viral pheno-
type) based on viral mutations. While retaining the same general structure,
this related application would greatly simplify the identification of mutation
effects on resistance by eliminating the issues raised above. Nonetheless, the
current data example provides an illustration of the power of the algorithm
to data adaptively identify a high-dimensional estimator, with minimal a pri-
ori assumptions about which variables to include and about the appropriate
complexity of the component regression models.
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Table 1: Simulation One, un-bagged vs. bagged estimator, σ2 = 1

x β mean var bias MSE ratio
1 1 0.9015 0.7893 0.0471 0.0766 -0.0985 -0.2107 0.0521 0.1133 2.175
2 0.5 0.2894 0.3089 0.1492 0.0895 -0.2106 -0.1911 0.1787 0.1170 0.655
3 0.3333 0.0499 0.0771 0.0249 0.0053 -0.2834 -0.2562 0.1027 0.0704 0.685
4 0.25 0.0000 0.0812 0.0000 0.0142 -0.2500 -0.1688 0.0625 0.0413 0.661
5 0.2 0.0698 0.0994 0.0487 0.0332 -0.1302 -0.1006 0.0608 0.0400 0.658
6 0.1667 0.0000 0.0190 0.0000 0.0078 -0.1667 -0.1476 0.0278 0.0288 1.037
7 0.1429 0.0000 -0.0104 0.0000 0.0151 -0.1429 -0.1532 0.0204 0.0371 1.818
8 0.125 0.0000 0.0359 0.0000 0.0039 -0.1250 -0.0891 0.0156 0.0114 0.732
9 0.1111 0.0000 0.0070 0.0000 0.0021 -0.1111 -0.1041 0.0123 0.0127 1.032
10 0.1 0.0538 0.0304 0.0290 0.0113 -0.0462 -0.0696 0.0282 0.0150 0.533
11 0.0909 0.0450 0.0436 0.0202 0.0122 -0.0459 -0.0473 0.0203 0.0132 0.650
12 0.0833 0.0000 0.0489 0.0000 0.0057 -0.0833 -0.0344 0.0069 0.0063 0.908
13 0.0769 0.0000 0.0101 0.0000 0.0134 -0.0769 -0.0668 0.0059 0.0165 2.792
14 0.0714 0.0000 0.0161 0.0000 0.0018 -0.0714 -0.0553 0.0051 0.0047 0.924
15 0.0667 0.0000 0.0273 0.0000 0.0019 -0.0667 -0.0394 0.0044 0.0033 0.732
16 0.0625 0.0545 0.0238 0.0297 0.0078 -0.0080 -0.0387 0.0268 0.0085 0.319
17 0.0588 0.0000 0.0196 0.0000 0.0014 -0.0588 -0.0392 0.0035 0.0028 0.808
18 0.0556 0.0360 0.0152 0.0130 0.0022 -0.0196 -0.0404 0.0120 0.0036 0.299
19 0.0526 0.0000 0.0224 0.0000 0.0011 -0.0526 -0.0302 0.0028 0.0019 0.679
20 0.05 0.0578 0.0323 0.0334 0.0188 0.0078 -0.0177 0.0301 0.0172 0.571
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Table 2: Simulation One - Summary Measures
averages un-bagged bagged
RSS 254.5 247.1
R2 0.093 0.120

true risk est 1.059 1.049

Table 3: Simulation Two, un-bagged vs. bagged estimator, σ2 = 0.25

x β mean var bias MSE ratio
1 1 0.9752 0.9708 0.0067 0.0063 -0.0248 -0.0292 0.0066 0.0065 0.985
2 0.5 0.5171 0.5035 0.0137 0.0200 0.0171 0.0035 0.0126 0.0180 1.430
3 0.3333 0.2722 0.1962 0.0310 0.0259 -0.0612 -0.1372 0.0316 0.0422 1.334
4 0.25 0.1981 0.1922 0.0330 0.0247 -0.0519 -0.0578 0.0324 0.0256 0.789
5 0.2 0.1310 0.1171 0.0332 0.0270 -0.0690 -0.0829 0.0346 0.0312 0.901
6 0.1667 0.1531 0.1625 0.0424 0.0355 -0.0135 -0.0042 0.0383 0.0320 0.834
7 0.1429 0.0816 0.0675 0.0176 0.0077 -0.0613 -0.0754 0.0196 0.0126 0.646
8 0.125 0.0644 0.0675 0.0187 0.0124 -0.0606 -0.0575 0.0205 0.0145 0.708
9 0.1111 0.0789 0.0630 0.0165 0.0065 -0.0322 -0.0481 0.0159 0.0081 0.510
10 0.1 0.0547 0.0533 0.0133 0.0074 -0.0453 -0.0467 0.0140 0.0088 0.628
11 0.0909 0.0672 0.0552 0.0129 0.0062 -0.0237 -0.0357 0.0122 0.0068 0.561
12 0.0833 0.0530 0.0352 0.0144 0.0086 -0.0303 -0.0481 0.0139 0.0101 0.725
13 0.0769 0.0223 0.0274 0.0050 0.0024 -0.0546 -0.0495 0.0075 0.0046 0.620
14 0.0714 0.0000 0.0205 0.0000 0.0009 -0.0714 -0.0509 0.0051 0.0034 0.665
15 0.0667 0.0395 0.0333 0.0072 0.0018 -0.0272 -0.0334 0.0072 0.0027 0.375
16 0.0625 -0.0613 -0.0221 0.0191 0.0129 -0.1238 -0.0846 0.0325 0.0188 0.578
17 0.0588 0.0000 0.0071 0.0000 0.0017 -0.0588 -0.0518 0.0035 0.0042 1.216
18 0.0556 0.0261 0.0507 0.0068 0.0085 -0.0294 -0.0048 0.0070 0.0077 1.098
19 0.0526 0.0000 -0.0070 0.0000 0.0009 -0.0526 -0.0596 0.0028 0.0044 1.571
20 0.0500 0.0218 0.0235 0.0047 0.0018 -0.0282 -0.0265 0.0051 0.0023 0.451
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Table 4: Simulation Two - Summary Measures
averages un-bagged bagged
RSS 63.40 62.82
R2 0.353 0.358

true risk est 0.278 0.273

Table 5: Simulation Three, un-bagged vs. bagged estimator, σ2 = 0.25,
added 5 noise variables

x β mean var bias MSE ratio
1 1 1.0093 1.0156 0.0053 0.0056 0.0093 0.0156 0.0048 0.0053 1.088
2 0.5 0.4344 0.4001 0.0115 0.0210 -0.0656 -0.0999 0.0147 0.0289 1.973
3 0.3333 0.2496 0.2416 0.0365 0.0269 -0.0838 -0.0918 0.0398 0.0326 0.820
4 0.25 0.2234 0.2264 0.0432 0.0286 -0.0266 -0.0236 0.0396 0.0263 0.665
5 0.2 0.0736 0.0753 0.0145 0.0059 -0.1264 -0.1247 0.0290 0.0209 0.720
6 0.1667 0.1235 0.0925 0.0178 0.0107 -0.0431 -0.0742 0.0179 0.0151 0.847
7 0.1429 0.0766 0.0754 0.0156 0.0111 -0.0663 -0.0675 0.0184 0.0145 0.786
8 0.125 0.1009 0.0875 0.0179 0.0049 -0.0241 -0.0375 0.0167 0.0058 0.347
9 0.1111 0.0858 0.0606 0.0128 0.0037 -0.0253 -0.0505 0.0122 0.0058 0.481
10 0.1 0.0624 0.0492 0.0176 0.0129 -0.0376 -0.0508 0.0172 0.0142 0.826
11 0.0909 0.0273 0.0230 0.0074 0.0006 -0.0636 -0.0679 0.0107 0.0051 0.479
12 0.0833 0.0363 0.0435 0.0132 0.0096 -0.0470 -0.0398 0.0141 0.0102 0.723
13 0.0769 0.0594 0.0647 0.0159 0.0069 -0.0176 -0.0123 0.0146 0.0064 0.435
14 0.0714 0.0000 0.0068 0.0000 0.0009 -0.0714 -0.0647 0.0051 0.0050 0.973
15 0.0667 0.0448 0.0309 0.0089 0.0084 -0.0219 -0.0358 0.0085 0.0088 1.036
16 0.0625 0.0523 0.0505 0.0129 0.0074 -0.0102 -0.0120 0.0117 0.0068 0.579
17 0.0588 0.0656 0.0518 0.0267 0.0122 0.0068 -0.0070 0.0241 0.0110 0.457
18 0.0556 0.0000 0.0040 0.0000 0.0019 -0.0556 -0.0516 0.0031 0.0044 1.421
19 0.0526 0.0168 0.0142 0.0028 0.0010 -0.0358 -0.0384 0.0038 0.0024 0.616
20 0.05 0.0159 0.0180 0.0025 0.0012 -0.0341 -0.0320 0.0034 0.0021 0.616
21 0 0.0478 0.0363 0.0018 0.0010 0.0478 0.0363 0.0039 0.0022 0.564
22 0 0.0248 0.0209 0.0018 0.0008 0.0248 0.0209 0.0022 0.0011 0.504
23 0 0.0412 0.0376 0.0023 0.0010 0.0412 0.0376 0.0038 0.0023 0.616
24 0 0.0172 0.0239 0.0014 0.0007 0.0172 0.0239 0.0015 0.0012 0.795
25 0 0.0000 0.0074 0.0000 0.0001 0.0000 0.0074 0.0000 0.0002
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Table 6: Simulation Three - Summary Measures
averages un-bagged bagged
RSS 58.73 57.45
R2 0.391 0.404

true risk est 0.336 0.325

Table 7: Data Example - Cross-validated risks for bagged estimators

k1/k2 1 2 3
1 178.2 176.9 177.0
2 181.8 180.4 182.6
3 188.9 192.9 194.0
4 189.1 189.3 191.8
5 208.9 196.0 190.4
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Table 8: Mutation frequency in sample (patients treated with
AZT+3TC+IDV)

PI-associated Mutations Frequency NRTI-associated Mutations Frequency
L63P 193 T215F/Y 200
I93L 72 M41L 120
M36I/L/V 46 D67E/G/N 110
L10F/I/R/V 39 K70R/G/E 106
A71T/V/I 27 K219E/N/Q/R 87
K20I/M/R 13 L210W 86
L90M 6 V118I 51
M46I/L/V 4 T69D/N 42
N83I 4 T215C/D/E/I/V/S 38
G73C/S/T 3 E44A/D 38
F53L/Y 2 L74I/V 28
V82A/F/S/T 1 T69deletion/A/I/S 14
I84A/V 1 V75A/I/M/T/S 8
I54L/M/S/T/V 1 M184I/V 7
L33F 1 F116Y 2
I84C 0 Q151L/M 1
V32I 0 K65R 1
G48V 0 T69insertion 0
N88S 0 D67deletion 0
I54A 0 F77L 0
I47A/V 0 A62V 0
N88D/T 0 Y115F 0
L24I/F 0
D30N 0
I50V 0
I50L 0

34

http://biostats.bepress.com/ucbbiostat/paper182



Table 9: Estimated joint effects of mutations and mutation interactions on
virologic response

PI- and RT- associated Mutations Coefficient
L90M 0.329025
I93L * V75A/I/M/T/S 0.270962
L63P * D67E/G/N * V75A/I/M/T/S 0.224218
L10F/I/R/V * L63P 0.209222
I93L * D67E/G/N * V75A/I/M/T/S 0.164361
K20I/M/R * M36I/L/V 0.159395
L10F/I/R/V * M36I/L/V 0.150934
L10F/I/R/V 0.139267
D67E/G/N/ *V75A/I/M/T/S * K219E/N/Q/R 0.131429
K20I/M/R *K70R/G/E 0.118476
M184I/V 0.113037
D67E/G/N/ * V75A/I/M/T/S 0.107799
L63P * K70R/G/E * V75A/I/M/T/S 0.092744
L63P * T69D/N * V75A/I/M/T/S 0.090789
K20I/M/R 0.08876
T69D/N * V75A/I/M/T/S 0.088729
L10F/I/R/V * M41L 0.08825
K70R/G/E * V75A/I/M/T/S 0.084049
L10F/I/R/V * L63P * V118I 0.083536
M41L 0.08236
L10F/I/R/V * M36I/L/V * V118I 0.076455
M41L * D67E/G/N * M184I/V 0.070175
L63P * V75A/I/M/T/S 0.067187
M184I/V * L210W 0.0659
M41L * M184I/V 0.058845
T215F/Y 0.05381
M41L * K70R/G/E -0.05292
L74I/V -0.05579
A71T/V/I * I93L -0.05994
A71T/V/I -0.10026
T215C/D/E/I/V/S * K219E/N/Q/R -0.1028
L10F/I/R/V * T69 /A/I/S -0.1146
T69 /A/I/S -0.19919
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Table 10: Variable Importance Measures for PI-associated mutations

PI-associated Mutations Variable Importance
L10F/I/R/V 0.331854
L90M 0.329099
K20I/M/R 0.19375
A71T/V/I 0.124193
M36I/L/V 0.049674
L63P 0.045315
I93L 0.012281
L33F 0.009722
M46I/L/V 0.008582
N83I 0.006002
I84A/V 0.004401
G73C/S/T 0.003127
F53L/Y 0.00089

Table 11: Variable Importance Measures for NRTI-associated mutations

NRTI-associated Mutations Variable Importance
T69 /A/I/S 0.222174
M184I/V 0.186227
V75A/I/M/T/S 0.138039
T215C/D/E/I/V/S 0.091995
K219E/N/Q/R 0.082242
T215F/Y 0.068212
E44A/D 0.060438
L74I/V 0.057606
K70R/G/E 0.026778
T69D/N 0.023309
L210W 0.019655
D67E/G/N 0.017697
V118I 0.007738
F116Y 0.000406
M41L 0.000399
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