
Johns Hopkins University, Dept. of Biostatistics Working Papers

4-8-2009

GENERALIZED LIQUID ASSOCIATION
Yen-Yi Ho
Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics, yho@jhsph.edu

Leslie Cope
The Johns Hopkins University School of Medicine, Oncology Bioinformatics

Thomas A. Louis
Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics

Giovanni Parmigiani
The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University & Department of Biostatistics, Johns Hopkins
Bloomberg School of Public Health

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Ho, Yen-Yi; Cope, Leslie; Louis, Thomas A.; and Parmigiani, Giovanni, "GENERALIZED LIQUID ASSOCIATION" (April 2009).
Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 183.
http://biostats.bepress.com/jhubiostat/paper183

http://biostats.bepress.com/jhubiostat


Generalized Liquid Association

Yen-Yi Ho, Leslie Cope, Thomas A. Louis, Giovanni Parmigiani

Abstract

The analysis of interactions among a group of genes is fundamental to fur-
ther our understanding of their biological interactions in a cell. Several studies
suggested that the co-expression relationship of two genes can be modulated by
a third controller gene. These controller genes and the corresponding modulated
co-expressed gene pairs are the subjects of interests in this study. This described
“controller-modulated genes” three-way interactions is referred as liquid associa-
tion in the literature. Analysis of gene expression data has suggested that these
interactions are present in many biological systems.

To quantify the magnitude of liquid association for a given gene triplet, we
proposed a statistical measure named generalized liquid association (GLA). To
estimate the value of GLA given the data, we propose two approaches: the direct
and the model-based estimation approach. For the model-based approach, we
introduce the conditional normal model (CNM). This is a generalization of the
tri-variate normal distribution that allows us to characterize means, variances,
as well as liquid association structures. We provide an approach based on gener-
alized estimation equations to estimate the parameters in the CNM. We validate
the proposed approaches through simulation studies and illustrate them in ex-
perimental data analysis. We also compare them with the three-product-moment
measure suggested by Li in various settings and discuss related computational
issues.
Key words: Higher-order interaction; Liquid association; Non-Gaussian multi-
variate distribution; Generalized estimating equations.

Introduction

Gene expression microarrays made it possible to measure the levels of thousands of RNA
transcripts at the same time. With this high throughput technology, it is possible to study
the interactions among genes and to further elucidate cellular biological networks. A natural
approach to study gene interactions is to group genes with similar profiles across samples and
to investigate these genes as functional modules [14]. However, research findings indicate
that gene co-expression relationships often exist specifically under certain biological condi-
tions [4], [2], [7]. Moreover, several studies suggested that sometimes the gene co-expression

1

Hosted by The Berkeley Electronic Press



relationship can be modulated by a third controller gene during a biological process [9], [10],
[8], [17].

These controller genes and the corresponding modulated co-expressed gene pairs are the
subjects of interests in this study. Because these “controller-modulated genes” triplets could
provide further information about their functional interactions and the mechanism to turn-on
or turn-off these interactions. One might also be interested in constructing genetic networks
considering these three-way “controller-modulated genes” interactions besides the traditional
two-way interactions [3]. This described interactions among “controller-modulated genes”
triplets is referred as “liquid association” in the literature.

Prior biological knowledge provides evident support for the observed liquid association
phenomenon. One example is from the regulation of the Wnt pathway and β-catenin [5].
When Wnt is present and binds to its receptor in the cell, the co-expression of β-catenin
and transcription factors can be expected. However, when Wnt is absent, co-expression
relationship would not be expected.

To identify these “controller-modulated genes” triplets through microarray experiments,
we need to quantify the magnitude of liquid association given the data of a gene triplet. For
this purpose, we propose a statistical measure, called generalized liquid association (GLA).
In GLA, we used the conditional correlation coefficient to capture the co-expression relation-
ship between two genes given the level of a third gene and measure the degree of modulation
of conditional correlation by the third gene. To estimate the value of GLA given the data,
we propose two approaches: the direct and the model-based estimation approach. For the
model-based approach, we introduce the conditional normal model (CNM). The CNM de-
scribes the joint distribution of the three genes, while considering the means, variances and
liquid association structures among them.

In this paper, we provide a generalized estimation equations (GEE)-based approach to
estimate the parameters in the CNM. We illustrate the proposed approaches through sim-
ulation studies and experimental data analysis. We also compare the two approaches with
the three-product-moment measure suggested by Li in various settings and discuss related
computational issues. The organization of the paper is as follows. In Section 2, we briefly
describe the three-product-moment measure proposed by Li, present related issues, and pro-
pose the GLA. In Section 3, we describe the CNM and its properties. In Section 4, we
introduce the estimation and hypothesis testing procedures. In section 5, we analyze a Sac-
charomyces cerevisiae data set for illustration. Conclusion and highlight of future research
directions are presented in Section 6. The proofs of theorems are in the Appendices.

1 Liquid Association

Li proposed the concept of liquid association and used the term “liquid”, in contrast with
“solid”, to describe how the coexpression pattern of two genes, X1 and X2, changes according
to the level of a third gene, X3. Consider the random variables X1, X2 and X3 to represent
the expression levels of three genes. Standardize these random variables to have mean 0 and
variance 1. Li uses E(X1X2 | X3) to measure the co-expression relationship between X1 and
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X2 given the value of X3, and derived the three-product-moment measure as follows:

g(X3) = E(X1X2 | X3),

LA(X1X2 | X3) = E(g′(X3)) = E(X1X2X3).

In the above equation, g′(x) denotes the derivative of g(x) with respect to x. Li proposed a
direct estimate for the liquid association given by

∑
i
X1iX2iX3i

n
, where n is the total number of

observations. However, when the conditional means and variances of X1 and X2 also depend
on X3, E(X1X2 | X3) depends on the conditional correlation as well as the conditional means
and variances. Specifically,

E(X1X2 | X3) = ρ(X1, X2 | X3)σ1(X1 | X3)σ2(X2 | X3) + E(X1 | X3)E(X2 | X3),

where σ2
1(X1 | X3) and σ2

2(X2 | X3) are the conditional variances of X1 and X2 given X3,
respectively, and ρ(X1, X2 | X3) is the conditional correlation of X1 and X2 given X3. As a
result, E(X1X2X3) also depends on the conditional mean and variance of X1 and X2:

E(X1X2X3) = E[X3ρ(X1, X2 | X3)σ1(X1 | X3)σ2(X2 | X3)] + E[X3E(X1 | X3)E(X2 | X3)].

When the conditional means and variances also depend on X3, then the three-product-
moment measure, as originally defined by Li for standardized variables, no longer captures
fully how the dependence between X1 and X2 is modulated by X3. This can be demon-
strated through the following example, where we show that E(X1X2X3) 6= 0 even when the
conditional correlation of X1 and X2 given X3 does not change with X3.
Example 1: Consider E(X1 | X3) = E(X2 | X3) = 0, σ2

1(X1 | X3) = σ2
2(X2 | X3) =

e−1/2+X3 . We assume the conditional correlation is constant. Specifically, let ρ(X1, X2 |
X3) = 0.5. It follows that E(X1X2 | X3) = 0.5e−1/2+X3 , and E(X1X2X3) = E[E(X1X2 |
X3)X3] = 0.5E(e−

1
2
+X3X3) = 0.5, which is not zero.

To measure liquid association when the conditional means and variances also depend on
X3, we propose using ρ(X1, X2 | X3) as the the coexpression measure of X1 and X2 given
X3 instead of E(X1X2 | X3):

h(X3) = ρ(X1, X2 | X3).

Following this definition, assuming X3 is distributed as N(0,1), the form of generalized liquid
association (GLA) is:

GLA(X1, X2 | X3) = E[h′(X3)] = E[ρ(X1, X2 | X3)X3], (1)

where h′(x) denotes the derivative of h(x) with respect to x. GLA represents the expected
value of the change of the conditional correlation with X3. Using the example described
above, the newly defined GLA measure is able to correctly conclude that the correlation of
X1 and X2 does not change with X3. That is, GLA(X1, X2 | X3) = E[ρ(X1, X2 | X3) X3] =
0.5E(X3) = 0. A direct estimate for GLA(X1X2 | X3) given the data is:∑M

i ρ̂iX̄3i

M
, (2)
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where M is a given number of grid points over X3, ρ̂i is the sample Pearson correlation
coefficient of X1 and X2 using only those observations with X3 in grid i, and X̄3i is the mean
of X3 in grid i. In addition, based on equation (1), the upper bound of GLA can be achieved
when ρ(X1, X2 | X3)X3 = |X3|, that is:

|GLA| ≤ E(|X3|) =

√
2

π
≈ 0.798.

Example 2: Assume X1, X2 and X3 follow the tri-variate Clayton copula with standard
normal marginals [12], [1]:

F (X1, X2, X3) = C(F1(X1), F2(X2), F3(X3)),

C(u1, u2, u3) = (u−θ1 + u−θ2 + u−θ3 − 2)−1/θ

and also assume that F1, F2 and F3 are all equal to the cumulative density function of a
standard normal. A three-dimensional scatter plot of X1, X2 and X3 with θ = 3 is shown
in Figure 1. In this example, the conditional means and variances of X1, and X2 depend
on X3, but not the conditional correlation of X1 and X2. We simulated 10,000 observations
of X1, X2 and X3 with various θ ranging from 0 to 3 and calculated the direct estimates
of GLA(X1, X2 | X3) and E(X1X2X3) using the simulated data. As a result, we observe
a large difference between the direct estimates of GLA(X1, X2 | X3) and E(X1X2X3) in
Figure 2. In this example, the GLA(X1, X2 | X3) estimate correctly captures that fact that
X3 does not modulate that relationship between X1 and X2, while E(X1X2X3) is misled by
the conditional means and variances.

We now present a theorem giving conditions for the equivalence between GLA and the
three-product-moment measure. We provide a detailed proof in the Appendix A.
Theorem 1: Let X1, X2 and X3 be standardized random variables with mean 0 and variance
1 such that
(i) X3 ∼ N(0, 1), and
(ii) E(X1 | X3) ⊥ X3 and E(X2 | X3) ⊥ X3,
(iii) σ1(X1 | X3) ⊥ X3 and σ2(X2 | X3) ⊥ X3,
If E[h′(X3)] and E(X1X2X3) exist, then GLA(X1, X2 | X3) = E(X1X2X3).

In the above theorem, (i) (ii), and (iii) are sufficient conditions for GLA(X1, X2 | X3) =
E(X1X2X3). Next, we also propose a model-based approach for GLA which allows us to
consider conditional mean, variance and liquid association simultaneously. In the following
sections, we introduce the CNM and compare the performances of the direct estimate and
model-based approaches.

2 The Conditional Normal Model

Consider three standardized random variables, X1, X2 and X3 with mean 0 and variance 1
and assume that X3 is distributed as N(0,1). Given X3, we assume that (X1, X2)

′ follows a
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bivariate normal distribution with conditional mean (µ1, µ2)
′ and variance Σ, that is:

X3 ∼ N(0, 1)(
X1

X2

)
| X3 ∼ N(

(
µ1

µ2

)
,Σ).

where Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. The conditional mean (µ1, µ2)

′ and covariance matrix Σ are

further specified as:

µ1 = β1X3,

µ2 = β2X3,

log σ2
1 = α3 + β3X3,

log σ2
2 = α4 + β4X3,

log

[
1 + ρ

1− ρ

]
= α5 + β5X3.

The marginal variances of X1 and X2 are both 1, therefore the parameters in CNM need

to satisfy the relations: eα3+
β2
3
2 + β2

1 = 1 and eα4+
β2
4
2 + β2

2 = 1 and the following inequalities:

|β1| < 1, |β2| < 1, α3 +
β2
3

2
< 0, α4 +

β2
4

2
< 0. In this model, we choose the log link function

for the variances (σ2
1, σ

2
2) and the rescaled Fishers Z-transformation for the correlation, ρ,

to ensure that the variances are positive and the correlation is within (-1, 1). The choice of
the link functions in CNM can also be modified for specific problems. Interested readers can
refer to [11], [13] for more discussion on this topic. Finally, the joint distribution of X1, X2

and X3, CN(X1, X2, X3), can be expressed as the product of the conditional distribution of
X1, X2 given X3, f(X1, X2 | X3), and the marginal distribution of X3, f(X3):

CN(X1, X2, X3) = f(X1, X2 | X3)f(X3).

The LA pattern of CNM can be demonstrated by examining the change of conditional
correlation of X1 and X2, given various levels of X3. In Figure 3, we simulate 105 observations
from the CNM with β5 = 0.5 and α3 = α4 = α5 = β1 = β2 = β3 = β4 = 0 and plot a panel
of conditional distributions of X1 and X2 given various levels of X3. In these figures, we
observe that ρ increases with X3, as the GLA is 0.236 in this simulation example.

The magnitude of GLA in the CNM is controlled by the values of α5 and β5. The relation
of β5 and GLA can be written as:

GLA =

∫
X3

ρ(X3) X3N(X3; 0, 1) dX3 =

∫
X3

eα5+β5X3 − 1

eα5+β5X3 + 1
X3N(X3; 0, 1) dX3.

This functional relation is plotted in Figure 4. It can be observed that GLA increases
monotonically with β5 and GLA has the same sign as β5.

The CNM is generally not symmetric in index. For example, CN(X1, X2, X3) 6= CN(X1, X3, X2).
Using the data simulated previously from CN(X1, X2, X3), we observed that the conditional
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correlation of X1 and X3 increases according to the level of X2 as shown in Figure 5. The
relation between GLA(X1, X2 | X3) and GLA(X1, X3 | X2) under CN(X1, X2, X3) with fixed
β1 = β2 = β3 = β4 = α3 = α4 = α5 = 0, and varied β5 is shown in Figure 6. In this plot,
we observed that GLA(X1, X2 | X3) is not equivalent to GLA(X1, X3 | X2) in this simplified
settings. This implies that in general GLA is not invariant to permutation of indexes in
CNM.

3 Estimation and Hypothesis Testing

We used the three-estimating-equations (3EE) approach by Yan [16] to estimate the param-
eters in the CNM. Three estimating equations were constructed for the mean, variances and
correlation coefficient parameters. The standard errors of the parameter estimates were ob-
tained through the sandwich estimators, referred to as san.se. Wald tests were performed for
each parameter estimate, to examine whether the parameters significantly differ from zero.
To verify the 3EE approach, we simulated data with 100 observations with true β5 = 0.5 and
repeated the simulation 1000 times. In this simulation, the 80 % confidence interval covered
the true β5 766 times (coverage rate = 76.6 %).

We consider four approaches to test for the existence of liquid association. The first
approach is based on the CNM, the second and the third approaches are based on the direct
estimates of GLA and E(X1X2X3), respectively. The fourth is the approach suggested by
Li [9].

When β5 = 0 in the CNM, the correlation of X1, X2 does not depend on X3, hence GLA
is 0. Thus, to test for the existence of LA in the CNM, the null hypothesis can be formulated
as:

H0 : β5 = 0.

The proposed statistic GEEb5, based on the Wald test, can be written as: GEEb5=
β̂5

SE(β̂5)
,

where SE(β̂5) is the standard error of β̂5 which can be computed through the sandwich esti-
mator using GEE. Also β̂5 can be estimated using the 3EE approach as described previously.
Notice that GEEb5 is applicable when the conditional means and variances also depend on
the third gene, because the CNM would be able to account for changes of conditional means
and variances with X3.

In more general settings that the CNM, the null hypothesis of no liquid association can
also be written as:

H0 : GLA(X1, X2 | X3) = 0

Motivated by this we defined a second test statistic as:

sGLA =
ĜLA

SE(ĜLA)
,

where ĜLA can be calculated using equation (2), and SE(ĜLA) is the standard error of ĜLA
and can be estimated using bootstrap. To obtain the distribution of sGLA under the null
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hypothesis, we consider two procedures. First, we obtained the null distribution of sGLA by
simulating data from the conditional normal model with β5 = 0. The second procedure is
to permute the observations of X3 and treat the permuted data as samples under the null
hypothesis [9].

When conditions in theorem 1 hold, we can also use E(X1X2X3) to test for the existence
of liquid association. A third test statistics is written as:

sLA =
̂E(X1X2X3)

SE( ̂E(X1X2X3))
.

where ̂E(X1X2X3) =
∑

i(X1iX2iX3i)/n and SE( ̂E(X1X2X3)) can be calculated using boot-
strap samples. Finally, a fourth testing procedure based on the direct estimate is proposed

by Li [9]; the test statistics can be written as uLA = ̂E(X1X2X3). The uLA is an unstan-
dardized measure.

4 Simulation Studies

To evaluate the performance of the four test statistics described above, we perform power
analyses under three scenarios. In the first scenario, we simulated 300 observations from
CNM with all parameters fixed at 0 except β5. For the model-based test statistic, we
evaluated the power of GEEb5 under two different null distribution approaches: (1) the
CNM with all parameters equal to 0, denoted as ‘CN’, and (2) the null distribution obtained
permuting X3 denoted as ‘perm’. For sGLA, we used bootstrap with 100 repetitions to

calculate SE(ĜLA). We evaluated the power of sGLA under the same null distribution
approaches as described above. Similar procedures were performed for sLA. We repeated
the procedure 100 times to get the alternative and null distribution of the four test statistics,
GEEb5, sGLA, sLA and uLA, and obtained the corresponding power.

In the second simulation scenario, we generated data by fixing all the parameters to 0,
except β1 = β2 = 0.5, and then varied β5 values. In this simulation scheme, the conditional
means depends on the value of X3. We used the same procedure as described above to obtain
the power of the three test statistics and the corresponding 95 % confidence intervals.

We also investigated the robustness of the model-based test statistics when data are not
generated from a CNM. A recent study suggested using copulas to model the dependence
structure in gene expression data [6]. Hence in the third scenario, we simulated data by
assuming that X1 and X2 follow a T copula with standard normal margins and 1 degree
of freedom. In addition, we assumed that the correlation of X1 and X2 in the T copula
depends on the level of X3 through the following relation: log(1+ρ

1−ρ) = βX3. An example of
the conditional distributions of X1 and X2 given X3 in this scenario is shown in Figure 9.

The results of our simulation studies are presented in Figures 8 and 10. For scenario 1, the
power of GEEb5, sGLA, sLA and uLA are almost the same under the two null distributions,
as shown in Figure 8 (left). For the second simulation scenario, shown in Figure 8 (right),
we observed that the model-based statistic GEEb5 outperforms sLA. This is because that
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the model-based estimator is able to account for the dependence of conditional means, and
gains better power to detect liquid association.

In addition, the uLA testing procedure proposed by Li demonstrated elevated type I
error rate in scenario 2 as indicated by the fact that the corresponding curve is above 0.05
at β5 = 0. This is because permuting X3 leaves it completely independent of the other 2
variables rather than selectively destroying the dependence between ρ(X1, X2) and X3. This

leads to an under-estimation of the variance of ̂E(X1X2X3). If one applies the unstandardized
test statistic proposed by [9], anti-conservative results might occur if the conditional means
or variances of X2 or X1 depend on X3. The results from the third simulation scenario are
shown in Figure 10, we find that the GEEb5 demonstrates robustness even when X1 and
X2 are not generated from bivariate normal distribution. GEEb5 achieves similar power as
sGLA in this scenario.

With regard to the issue of computational time, it took approximately 0.65 times longer
to obtain the estimates and their standard errors from the CNM compared to the time
required by calculating the direct-estimate, sGLA, and its bootstrap standard error (based
on 100 bootstrap iterations).

5 Experimental Data Analysis

We now use the proposed CNM and estimation procedure to analyze the Saccharomyces
cerevisiae cell-cycle dataset described in [15]. This dataset is available at http://genome-
www.stanford.edu/cellcycle. The dataset contains the RNA abundance measures for 6,178
genes under 73 conditions. After removing genes missing more than 30 % of measurements,
we identify 150 genes with variances larger than 0.5 in the remaining 5,721 genes.

We first performed the normal quantile transformation for each gene as described in Li [9]
so that marginally each gene expression intensity is symmetric. In addition, we also standard-
ized each gene so that they have mean 0 and variance 1. We calculated ˆGLA(X1, X2 | X3),

ˆGLA(X1, X3 | X2) and ˆGLA(X2, X3 | X1) for each 551,300 gene triplet combinations gen-
erated from the 150 genes. We identified 11 gene triplets with at least one | ˆGLA > 0.5|
and listed them in Table 1. According to the three direct GLA estimation results for a
given triplet, we noticed that the values GLAs are not exactly the same. The results from
experimental data analysis might suggest that GLA is not symmetric in index.

We ordered the gene triplets so that GLA is the largest of the three and applied CNM
to the 11 gene triplets. The results are shown in Table 2. Among these 11 triplets, the
conditional means and/or variances of triplet # 1, 2, 3, 4, 6, 7, and 8 depend on the third
gene. We show several scatter plot examples of the conditional mean and variances de-
pending on the third gene in Figure 11. In these cases, the original three-product-moment
measure, E(X1X2X3), can be misled by the conditional mean and variances as discussed
in Section 2. On the other hand, the proposed CNM is able to more accurately quantify
GLA by modeling conditional means and variances together. As examples, in triplet # 1,

a noticeable difference was observed two estimates, ĜLA = 0.534 (95 % bootstrap C.I.:
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0.311, 0.608) and ̂E(X1X2X3) = 0.465 (95 % bootstrap C.I.: 0.284, 0.631). In addition, in

triplet # 8, ĜLA = 0.522 (95 % bootstrap C.I.: 0.367, 0.595) and ̂E(X1X2X3) = 0.686 (95
% bootstrap C.I.: 0.451, 0.878). Comparing table 1 and 2, we observed the model-based
estimates (GEEb5) reached similar conclusions compared with the direct estimates, sGLA.
This suggests that the experimental data does not deviate dramatically from the conditional
normal model assumptions.
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6 Conclusion

In this article, we proposed methodologies for formal statistical inference on modulating
correlations, that is on bivariate correlation that vary with the level of a third variable. Our
discussion includes both exploratory and model based approaches. Our work was motivated
by the pioneering work of Li [9] on Liquid Association, a concept that we generalized here.
Among other advantages, our generalization overcomes a potential limitation of the three-
product-moment estimator, which arises when the means and variances of the two variables
studies, in addition to their correlation, depends on the third variable. This effect was
observed in a number of gene triplets in the experimental data analysis.

Specifically, we proposed a generalized metric for Liquid Association (GLA), and two
estimation procedures: the direct and the model-based estimation approaches. To address
GLA within a model-based approach, we introduced the conditional normal model (CNM).
This model quantifies liquid association, while also accommodating for dependence in the
conditional means and variances. We provided a GEE-based estimation procedure to esti-
mate the parameters in the CNM and introduced the model-based statistic, GEEb5, and the
sGLA statistic based on the direct-estimate, to test for the existence of liquid association.

We first compared the power of GEEb5 and sLA through simulation studies. When
the conditional means depend on the third gene, GEEb5 outperformed sLA. A disadvan-
tage of sLA, the three-product-moment-based approach, is that it is only applicable when
the conditions in theorem 1 hold. To investigate the robustness of GEEb5, we compare
GEEb5 and sGLA when the data were not generated from the CNM. The GEEb5 as a
model-based statistic has commensurable power compared with sGLA, the direct-estimate
based approach. Finally, a fourth statistic we examined is the unstandardized statistic pro-
posed by Li, denoted as uLA. The results from the simulation studies suggested that in
some situations, uLA showed elevated type-I error rate and is likely to give anti-conservative
conclusions in real data applications.

Although the model-based estimate demonstrated satisfying performance in simulations,
even when the data were not generated from CNM, the model assumptions in the CNM
might be a potential concern in real data applications, so we compared the model-based
estimates on gene expression data with those from direct-estimates. As the results in Table
1 and 2 show, the model-based estimates were comparable to direct estimates, suggesting
that the experimental data does not deviate dramatically from the conditional normal model
assumptions.

Finally, a direction for future research is to extend the CNM to higher dimensions (more
than three genes). One important issue is that the covariance matrix Σ is not guaranteed
to be positive definite if we consider more than three genes. The second topic for future
research is to incorporate the CNM into Bayesian network modeling so that we can consider
not only pairwise interactions but also three-way interactions in network analysis.
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Appendix A
Proof of Theorem 1

Using Stein’s lemma, with X3 ∼ N(0, 1)

GLA(X1, X2 | X3) = E[h′(X3)] = E[ρ(X1, X2 | X3)X3].

ρ(X1, X2 | X3) =
E(X1X2 | X3 = x3)− E(X1 | X3)E(X2 | X3)

σ1(X1 | X3)σ2(X2 | X3)
,

Notice that the marginal variance for example of X2 equals to:

σ2(X2) = V ar[E(X2 | X3)] + E[σ2(X2 | X3)].

Given that E(X2 | X3) ⊥ X3 and σ2(X2 | X3) ⊥ X3, we have V ar[E(X2 | X3)] = 0, and
σ2(X2 | X3) = σ2(X2) = 1. Similarly, σ1(X1 | X3) = σ1(X1) = 1.

E[ρ(X1, X2 | X3)X3] = E[X3E(X1X2 | X3 = x3)]−E(X1 | X3)E(X2 | X3)E(X3) = E(X1X2X3).

Appendix B

When β1 = β2 = β3 = β4 = α3 = α4 = α5 = 0, GLA(X1, X3 | X2) can be expressed as
follows:

GLA(X1, X3|X2) =

∫
X2

X2(X2 − µ2)·A(β5)√
[B(β5)(X2 − µ2)2 + C(β5)(X2 − µ2) +D(β5]

f(X2)dX2,

where A(β5), B(β5), C(β5) and D(β5) are functions of β5, and they are constant with respect

to X2. A(β5) =
∫
x3

eα5+β5X3−1
eα5+β5x3+1

(X3 − µ3)N(X3; 0, 1)dX3. We use N(X3; 0, 1) to denote the
standard normal density for random variable X3.
B(β5) =

∫
X3
N(X3; 0, 1)( e

α5+β5X3−1
eα5+β5x3+1

)2dX3 − [
∫
X3
N(X3; 0, 1) e

α5+β5X3−1
eα5+β5x3+1

dX3]
2,

C(β5) =
∫
X3
N(X3; 0, 1)· 2 eα5+β5X3−1

eα5+β5x3+1
dX3−2· [

∫
X3
N(X3; 0, 1)dX3][

∫
X3
N(X3; 0, 1) e

α5+β5X3−1
eα5+β5x3+1

dX3],

andD(β5) =
∫
X3
N(X3; 0, 1)(1−( e

α5+β5X3−1
eα5+β5x3+1

)2)dX3+{
∫
X3
N(X3; 0, 1)dX3−[

∫
X3
N(X3; 0, 1)dX3]

2}.
And f(X2) is the marginal distribution of X2. A detailed calculation is as follows.
By definition

corr(X1, X3|X2) =
E(X1X3|X2)− E(X1|X2)E(X3|X2)√

σ2
1(X1|X2)σ2

3(X3|X2)
.

where corr(X1, X3|X2) denotes conditional correlation between X1, X3 given X2. σ
2
1(X1|X2)

is the variance of X1 given X2, and σ2
3(X3|X2) is the variance of X3 given X2. To de-

rive corr(X1, X3|X2), we first calculated the distributions of X2 given X3, the distribution
of X1 given X2 and the distribution of X1 given X2 and X3, f(X2|X3), f(X1|X2), and
f(X1|X2, X3). Given that β1 = β2 = β3 = β4 = α3 = α4 = α5 = 0, hence µ1 = µ2 = µ3 = 0
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and σ1 = σ2 = σ3 = 1.

f(X2|X3) =

∫
X1

f(X1, X2|X3)dX1 =
1

2πσ1σ2

√
1− ρ2

∫ ∞
−∞

e
− 1

2(1−ρ2)
(u2+v2−2ρuv)

dv.

where u =
X2 − µ2

σ2

, v =
X1 − µ1

σ1

.

And u2 + v2 − 2ρuv = (v − ρu)2 + u2(1− ρ2).

f(X2|X3) =
1

2πσ1σ2

√
1− ρ2

e
−u2

2

∫ ∞
−∞

e
− 1

2(1−ρ2)
(v−ρu)2

dv.

integrate a normal with mean ρu and variance (1− ρ2).

=
1

2πσ1σ2

√
1− ρ2

e
−u2

2

√
2π
√

1− ρ2,

=
1√

2πσ2

e
−(X2−µ2)2

2σ2 ,

= N(X2;µ2, σ
2
2),

= N(X2; 0, 1).

f(X3|X2) can be written as follows:

f(X3|X2) =
f(X2, X3)

f(X2)

=

∫
X1
f(X1, X2|X3)dX1f(X3)∫

X3

∫
X1
f(X1, X2|X3)dX1f(X3)dX3

=
N(X2; 0, 1)N(X3; 0, 1)

N(X2; 0, 1)

= N(X3; 0, 1)

And f(X1|X2, X3) can be calculated as:

f(X1|X2, X3) =
f(X1X2|X3)

f(X2|X3)
= N(X1;µ1 + ρ

σ1

σ2

(X2 − µ2), σ
2
1(1− ρ2)).
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cov(X1, X3|X2) = E(X1·X3|X2)− E(X1|X2)E(X3|X2)

=

∫
X3

∫
X1

X1X3f(X1, X3|X2)dX1dX3 − E(X1|X2)E(X3|X2)

=

∫
X3

X3

∫
X1

[X1f(X1|X2, X3)dX1]f(X3|X2)dX3 − E(X1|X2)E(X3|X2)

=

∫
X3

X3[µ1 + ρ
σ1

σ2

(X2 − µ2)]f(X3|X2)− E(X1|X2)E(X3|X2)

= [µ1

∫
X3

X3f(X3|X2)dX3] + [(X2 − µ2)
σ1

σ2

∫
X3

eα+βX3 − 1

eα+βX3 + 1
X3f(X3|X2)dX3]

− E(X1|X2)E(X3|X2),

E(X1|X2) =

∫
X1

X1f(X1|X2)dX1

=

∫
X1

X1[

∫
X3

f(X1|X3, X2)f(X3|X2)dX3]dX1

=

∫
X3

∫
X1

{X1N [X1;µ1 + ρ
σ1

σ2

(X2 − µ2), σ
2
1(1− ρ2)]dX1}f(X3|X2)dX3

=

∫
X3

[µ1 + ρ
σ1

σ2

(X2 − µ2)]N(X3;µ3, σ
2
3)dX3

= µ1 +
σ1

σ2

(X2 − µ2)

∫
X3

eα+βX3 − 1

eα+βX3 + 1
N(X3;µ3, σ

2
3)dX3.

E(X3|X2) =

∫
X3

X3f(X3|X2)dX3

=

∫
X3

X3N(X3;µ3, σ
2
3)dX3

= µ3

cov(X1, X3|X2) = µ1µ3 + [(X2 − µ2)
σ1

σ2

∫
X3

eα+βX3 − 1

eα+βX3 + 1
X3N(X3;µ3, σ

2
3)dX3],

− µ3[µ1 +
σ1

σ2

(X2 − µ2)

∫
X3

eα+βX3 − 1

eα+βX3 + 1
N(X3;µ3, σ

2
3)dX3]

= (X2 − µ2)
σ1

σ2

∫
X3

eα+βX3 − 1

eα+βX3 + 1
(X3 − µ3)N(X3;µ3, σ

2
3).

cov(X1, X3|X2) = (X2 − µ2)
σ1

σ2

∫
X3

eα+βX3 − 1

eα+βX3 + 1
(X3 − µ3)N(X3;µ3, σ

2
3) = A(β5)(X2 − µ2).

where A(β5) =
∫
X3

eα+βX3−1
eα+βX3+1

(X3 − µ3)N(X3;µ3, σ
2
3)dX3 is a constant with respect to X2.

In the denominator of corr(X1X3|X2), we derive var(X1|X2) and var(X2|X2) as follows.

V (X1|X2) = E(X2
1 |X2)− [E(X1|X2)]

2.
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E(X2
1 |X2) =

∫
X1

X2
1f(X1|X2)dX1 =

∫
X1

X2
1 [

∫
X3

f(X1|X3, X2)f(X3|X2)dX3]dX1.

=

∫
X3

N(X3; 0, 1)

∫
X1

X2
1N [X1;µ

∗, σ∗2]dX1dX3.

where µ∗ = µ1 + ρ
σ1

σ2

(X2 − µ2), σ
∗2 = σ2

1(1− ρ2).

E(X2
1 |X2) =

∫
X3

N(X3; 0, 1){σ2
1(1− ρ2) + [µ1 + ρ

σ1

σ2

(X2 − µ2)]
2dX3},

=

∫
X3

N(X3; 0, 1)σ2
1(1− ρ2)dX3 +

∫
X3

N(X3; 0, 1)[µ1 + ρ
σ1

σ2

(X2 − µ2)]
2dX3.

=

∫
X3

N(X3; 0, 1)σ2
1(1− ρ2)dX3 +

∫
X3

N(X3; 0, 1)[µ2
1 + 2µ1ρ

σ1

σ2

(X2 − µ2)

+ ρ2σ
2
1

σ2
2

(X2 − µ2)
2]dX3.

=

∫
X3

N(X3; 0, 1)σ2
1(1− ρ2)dX3 +

∫
X3

µ2
1N(X3; 0, 1)dX3

+ (X2 − µ2)

∫
X3

N(X3; 0, 1)[2µ1ρ
σ1

σ2

]dX3

+ (X2 − µ2)
2

∫
X3

N(X3; 0, 1)(ρ2σ
2
1

σ2
2

)dX3.
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[E(X1|X2)]
2 = [

∫
X1

X1f(X1|X2)dX1]
2 = {

∫
X1

[

∫
X3

f(X1|X3, X2)f(X3|X2)dX3]dX1}2

= [

∫
X3

N(X3; 0, 1)(

∫
X1

f(X1|X2, X3)f(X3|X2)dX1)dX3]
2,

= [

∫
X3

N(X3; 0, 1)(

∫
X1

N [X1;µ
∗, σ∗2]dX1)dX3]

2

= {
∫
X3

N(X3; 0, 1)[µ1 + ρ
σ1

σ2

(X2 − µ2)]dX3}2

= {
∫
X3

N(X3; 0, 1)µ1dX3 +

∫
X3

N [X3]ρ
σ1

σ2

(X2 − µ2)dX3}2

= [

∫
X3

N(X3; 0, 1)µ1dX3]
2 + (X2 − µ2)· 2[

∫
X3

[N(X3; 0, 1)µ1dX3][

∫
X3

N(X3; 0, 1)ρ
σ1

σ2

dX3]]

+ (X2 − µ2)
2[

∫
X3

N(X3; 0, 1)ρ
σ1

σ2

dX3]
2.

V (X1|X2) = E(X2
1 |X2)− [E(X1|X2)]

2

=

∫
X3

N(X3; 0, 1)σ2
1(1− ρ2)dX3 + {

∫
X3

µ2
1N(X3; 0, 1)dX3 − [

∫
X3

µ1N(X3; 0, 1)dX3]
2}

+ (X2 − µ2){
∫
X3

N(X3; 0, 1)· 2µ1ρ
σ1

σ2

dX3

− 2· [
∫
X3

µ1N(X3; 0, 1)dX3][

∫
X3

N(X3; 0, 1)ρ
σ1

σ2

dX3]}

+ (X2 − µ2)
2{
∫
X3

N(X3; 0, 1)ρ2σ
2
1

σ2
2

dX3 − [

∫
X3

N(X3; 0, 1)ρ
σ1

σ2

dX3]
2}

= B(β5)(X2 − µ2)
2 + C(β5)(X2 − µ2) +D(β5).

where B(β5), C(β5) and D(β5) are functions of β5 and are constant with respect to X2.

corr(X1, X3|X2) =
cov(X1, X3|X2)√
V (X1|X2)V (X3|X2)

We have cov(X1, X3|X2) = (X2 − µ2)A(β5)

V (X1|X2) = B(β5)(X2 − µ2)
2 + C(β5)(X2 − µ2) +D(β5).

corr(X1, X3|X2) =
(X2 − µ2)·A(β5)√

σ2
3[B(β5)(X2 − µ2)2 + C(β5)(X2 − µ2) +D(β5)]

Finally, GLA(X1, X3 | X2) can be expressed as:

GLA(X1, X3|X2) = E[corr(X1, X3 | X2)X2],

=

∫
X2

X2(X2 − µ2)·A(β5)√
σ2

3[B(β5))(X2 − µ2)2 + C(β5))(X2 − µ2) +D(β5)]
f(X2)dX2.
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Figure 1: A three-dimensional scatter plot of data generated from Clayton copula with
standard normal marginals (θ = 3).
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Figure 3: Conditional distributions of (X1, X2|X3) for varying X3. Here β5 = 0.5, and
α3 = α4 = α5 = β1 = β2 = β3 = β4 = 0.
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Figure 5: Conditional distributions of (X1, X3 | X2) for varying X2.
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β3 = β4 = α3 = α4 = α5 = 0, and varied β5.
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Figure 8: The power of the test statistics under scenarios 2.
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Figure 9: Conditional distributions of (X1, X2|X3) for varying X3. Here X1 and X2 follows
T copula with standard normal margins with 1 degree of freedom, and β = 2.
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Figure 10: The power of GEEb5 and sGLA under T copula with 1 degree of freedom (scenario
3).
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Figure 11: Examples from triplet # 4 and 7 that show how conditional means and variances
can depend on the third gene (x-axis).
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