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G-computation Estimation of Nonparametric
Causal Effects on Time-Dependent Mean

Outcomes in Longitudinal Studies

Romain Neugebauer and Mark J. van der Laan

Abstract

Two approaches to Causal Inference based on Marginal Structural Models (MSM)
have been proposed. They provide different representations of causal effects with
distinct causal parameters. Initially, a parametric MSM approach to Causal In-
ference was developed: it relies on correct specification of a parametric MSM.
Recently, a new approach based on nonparametric MSM was introduced. This
later approach does not require the assumption of a correctly specified MSM and
thus is more realistic if one believes that correct specification of a parametric
MSM is unlikely in practice. However, this approach was described only for
investigating causal effects on mean outcomes collected at the end of longitudi-
nal studies. In this paper we first generalize the nonparametric MSM approach
to the investigation of causal effects on time-dependent outcomes, i.e. for out-
comes collected throughout longitudinal studies. This article then develops the
G-computation estimation of the corresponding nonparametric MSM parameters
and compares its implementation to its analogue in the parametric MSM approach.
Finally, we propose new algorithms to address an important computing limitation
independent of the MSM approach chosen but inherent to the implementation
of the G-computation estimator a) with continuous treatment and/or b) in longi-
tudinal studies with long follow-up and time dependent outcomes. These new
algorithms for the implementation of the G-computation estimator lead to a gen-
eralization of nonparametric causal effects and should allow broader application
of these methodologies in real life studies. Results are illustrated with two simu-
lation studies.



1 Introduction

1.1 Data structure and question of interest

For more details on the statistical framework used in this paper, see chapter 6 of van der
Laan and Robins (2002) [5].

For all experimental units in a random population sample of size n, we observe a
treatment regimen (A(0), . . . , A(K)) over time t = 0, . . . , K and a covariate process
(L(0), . . . , L(K + 1)) measured at baseline and after a new treatment is assigned. The
covariate L(t) is measured after A(t− 1) and before A(t). Note that K +1 represents the
length of the treatment regimen in the appropriate unit of time and n the sample size.

In the formal counterfactual framework for longitudinal study [5], the data are repre-
sented as n independent and identically distributed (i.i.d.) realizations of:

O = (L(0), A(0), L(1), A(1), . . . , L(K), A(K), L(K + 1)) = (Ā(K), L̄(K + 1)) ∼ P,

where P represents the distribution of the stochastic process O, referred to as the observed
data, and the general notation ·̄(t) represents the history of the variable · between time 0
and t: a) ·̄(t) = (·(0), . . . , ·(t)) if t ≥ 0 and b) ·̄(t) = ∅ (empty) if t < 0.

We define W as the smallest subset of baseline covariates, W ⊂ L(0), such that the
support of g(ā(K) | L(0)) only depends on W and we denote this support with AW (K).

We define V as a subset of the baseline covariates containing W , V ⊂ L(0) and W ⊂ V .
We denote the time-dependent outcome with Y (t). We have Y (t) ∈ L(t) for t ∈ T , where
T denotes the set of time points t such that the outcome, Y (t + 1), is of interest. We
have T ⊂ {0, . . . , K}. Typically T = {0, . . . , K} except when one is interested in the
outcome collected at the end of the study only, i.e. when T = {K}. This later case has
been treated in previous work from which this manuscript is inspired [2]. However, the
focus is now on cases where Card(T ) > 1, where Card(·) denotes the cardinal of a set
·. In addition, we adopt the following conventional notation, ·i, to represent any random
variable · associated with a given experimental unit i.

The question of interest is to investigate the causal effect of the treatment on the
time-dependent outcomes of interest. In the literature, this problem has been addressed
with MSMs. In MSM-based Causal Inference, the investigation of the causal relationship
of interest relies on a representation of the effects of the treatment history Ā(t) on the
time-dependent outcome, Y (t + 1) ∈ L(t + 1), for all t ∈ T .

1.2 Assumptions

Existence of counterfactuals: we assume the existence of the following treatment-
specific processes, also referred to as counterfactual processes, L̄ā(K)(K + 1) for every
treatment regimen ā(K) = (a(0), . . . , a(K)) ∈ AV (K) where AV (K) designates all pos-
sible treatment regimens between time points 0 and K for an experimental unit char-
acterized by the baseline covariate V, i.e. the support of the conditional distribution of
Ā(K) given V , g(Ā(K) | V ). Note that we have AV (K) = AW (K). See Rubin (1976) [4]
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for details on the concept of counterfactuals. We denote the so-called full data process

with X =
(
V, (L̄ā(K)(K +1))ā(K)∈AV (K)

)
and its distribution with FX . Note that W ⊂ V

implies that X is indeed well defined.
Note that the existence of the counterfactual process L̄ā(K)(K +1) for every treatment

regimen ā(K) ∈ AV (K) implies the existence of the counterfactual processes L̄ā(t)(t+1) ≡
L̄ā(t),A(t+1),...,A(K)(t + 1) ⊂ X for every t = 0, . . . , K − 1 and every treatment regimen
ā(t) = (a(0), . . . , a(t)) ∈ AV (t) where AV (t) designates all possible treatment regimens
between time points 0 and t, i.e. the support of the conditional distribution of Ā(t)
given V , g(Ā(t) | V ). We have A(t) = {ā(t) : ∃ ā

′
(K) ∈ AV (K) ā(t) = ā

′
(t)} for

t = 0, . . . , K − 1 and A(t) is thus entirely defined by A(K).

Consistency assumption: at any time point t, we assume the following link between
the observed data and the counterfactuals: L(t) = LĀ(K)(t). Under this assumption, we
have: O = (Ā(K), L̄Ā(K)(K + 1)) ≡ φ(Ā(K), X), where φ is a specified function of the
full data process X. This notation indicates that the problem can be treated as a missing
data problem. Only the counterfactual associated with the observed treatment Ā(K) is
observed; the others are missing.

Temporal Ordering assumption: at any time point t, we assume that any treat-
ment specific variable can only be affected by past treatments: Lā(K)(t) = Lā(t−1)(t) for
t = 0, . . . , K + 1, where Lā(−1)(0) = L(0). This assumption is typically implied by the
data collection procedure: the covariate L(t) is measured after A(t− 1) and before A(t).

Sequential Randomization Assumption (SRA): at any time point t, we assume that
the observed treatment is independent of the full data given the data observed up to time
point t: A(t) ⊥ X | Ā(t − 1), L̄(t). Under the SRA, the treatment mechanism, i.e. the
conditional density or probability of Ā(K) given X: g(Ā(K) | X), becomes:

g(Ā(K) | X) =
K∏

t=0

g(A(t) | Ā(t− 1), X)
SRA
=

K∏
t=0

g(A(t) | Ā(t− 1), L̄(t)).

The SRA implies coarsening at random [1] and thus the likelihood of the observed data
factorizes into two parts: a so-called FX and g part. The FX part of the likelihood only
depends on the full data process distribution, and the g part of the likelihood only depends
on the treatment mechanism. As a consequence of this factorization of the likelihood
under the SRA, we now denote the distribution of the observed data with PFX ,g and the
likelihood of O is:

L(O)
SRA
=

FX part︷ ︸︸ ︷
f(L(0))

K+1∏
t=1

f(L(t) | L̄(t− 1), Ā(t− 1))

︸ ︷︷ ︸
QFX

g part︷ ︸︸ ︷
g(Ā(K) | X) .
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In addition, we denote the set of conditional densities or probabilities that define the FX

part of the likelihood, except for f(L(0)) with QFX
.

1.3 Marginal structural model and parameter of interest

An MSM is a full data model which defines a parameter of interest based on a feature
of the marginal distribution of the counterfactual outcomes of interest, Yā(t)(t + 1) condi-
tionally on V . This parameter of interest represents the causal effect of interest and can
thus be interpreted causally. Typically and specifically in this paper, one is interested in
average causal effects which can be represented by causal parameters defined by MSMs
of EFX

(Yā(t)(t + 1) | V ) for t ∈ T . We denote a causal parameter defined by an MSM
with βt(FX | ·) to indicate that it is a mapping from the space of full data distribution
FX to the space of real numbers and that this mapping is a function of modeling assump-
tions represented for now by ·. Under the assumptions presented in the previous section,
the causal parameter, βt(FX | ·), can be consistently estimated with the observed data
based on three estimators: the Inverse Probability of Treatment Weighted (IPTW), the
G-computation (G-comp) and Double Robust (DR) estimators.

Two approaches to Causal Inference based on MSM have been proposed. They pro-
vide different representations of causal effects with distinct causal parameters. Initially, a
parametric MSM approach to Causal Inference was developed: it relies on correct specifi-
cation of a parametric MSM. Recently, a new approach based on nonparametric MSM was
introduced. This later approach does not require the assumption of a correctly specified
MSM and thus is more realistic if one believes that correct specification of a parametric
MSM is unlikely in practice.

Unlike the parametric MSM approach, the nonparametric MSM approach was only de-
veloped for longitudinal studies where the outcome of interest is collected at the end of the
study, i.e. for investigation of the causal effect defined by an MSM of E(Yā(K)(K+1) | V ).
We first address the generalization of the nonparametric MSM approach to longitudinal
studies with time-dependent outcomes. We then define the G-computation estimators of
the corresponding nonparametric MSM parameters and compare them to their analogues
in the parametric MSM approach. Finally, we propose new algorithms to address an im-
portant computing limitation independent of the MSM approach chosen but inherent to
the implementation of the G-computation estimator a) with continuous treatment and/or
b) in longitudinal studies with long follow-up and time-dependent outcomes. These new
algorithms for the implementation of the G-computation estimator lead us to further gen-
eralize the definition of nonparametric causal effects before illustrating the results and
concepts introduced in this manuscript with two simulation studies.

Note that all results and procedures are developed for the case where the treatment is
discrete and AV (K) is finite (sections 2 through 4). In section 5, we extend these results
and procedures to problems with bounded continuous treatments.
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2 Generalization of the nonparametric MSM approach

to time-dependent outcomes

The nonparametric MSM approach relies on a working model, also referred to as the
causal model (CM), which is the analog of the parametric MSM in the parametric MSM
approach. Thus, we will adopt a common notation to represent a CM and a parametric
MSM of E(Yā(t)(t + 1) | V ) and use the general word “model” to designate either the CM
or the parametric MSM interchangeably or when the context leaves no ambiguity about
which object is considered.

Independently of the two alternative MSM approaches available, the investigation of
causal effects on time-dependent outcomes can be based on two different analyses, each
corresponding with a different model: a stratified or a pooled analysis. We generalize the
nonparametric MSM approach to time-dependent outcomes for both of these analyses.

2.1 Stratified analysis

In this analysis, causal effects are modelled separately for each time point t ∈ T ,
i.e., one separately investigates the causal effects on the outcomes of interest, Y (t + 1)
for t ∈ T , through the estimation of distinct causal parameters βt(FX | ·) for t ∈ T
defined based on l = Card(T ) distinct models mt for t ∈ T .

Under this model, the investigation of the causal effects of interest based on the para-
metric MSM approach to causal inference corresponds to the estimation of the l distinct
causal parameters βt ≡ βt(FX | mt) defined such that:

EFX
(Yā(t)(t + 1) | V ) = mt(ā(t), V | βt) for t ∈ T .

The generalization of the nonparametric MSM approach to time-dependent outcomes
in such a stratified analysis is derived directly from the application of the nonparametric
MSM methodology proposed in [2] to each outcome, Y (t+1) for t ∈ T , separately since
each Y (t + 1) can be viewed as the outcome at the end of a longitudinal study where the
corresponding observed data are: O(t) = (Ā(t), L̄(t + 1)). The investigation of the causal
effects on the time-dependent outcomes can thus be conducted as proposed in [2] through
the estimation of the following l distinct causal parameters

βt(FX | mt, λt) ≡ argmin
β∈IRk

EFX

[ ∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−mt(ā(t), V | β))2 ×

λt(ā(t), V )
]
, (1)

for t ∈ T , where λt are user-specified weighting functions referred to as causal kernel
smoothers (CKSs). The definition and interpretation of βt(FX | mt, λt) are detailed in
[2]. In short, these parameters are analogous to smoothing parameters in conventional
analyses. They represent smoothed versions of the causal effects of Ā(t) on Y (t + 1) for
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t ∈ T , i.e. approximations of the true causal effects, where each smoothing is controlled
by the choice of 1) a CM, mt, and 2) a CKS, λt, such that the CM approximates the true
causal effect best over ranges of the data where λt(ā(t), V ) are larger.

Note that for each t ∈ T , the parameters of interest, βt, defined in both the parametric
and nonparametric MSM approach are identical if mt is correctly specified (i.e. if there
exists a value for β such that: EFX

(Yā(t)(t+1) | V ) = mt(ā(t), V | β). If mt is misspecified,
the parameter of interest is not defined in the parametric MSM approach. Thus, the
nonparametric MSM approach is more general that the parametric MSM approach.

In practice and regardless of the MSM approach chosen, it may be reasonable to
represent all causal effects of Ā(t) on Y (t+1) for t ∈ T with a unique choice of model, m.
The choice of a single model common to each outcome of interest motivates the following
approach to more efficiency estimate a single parameter (representing all causal effects)
by pooling data across time.

2.2 Pooled analysis

In this analysis, causal effects are modelled simultaneously for each time point
t ∈ T , i.e. the change of the causal effect on the outcome over time is represented by a
smooth function of time: one simultaneously investigates the causal effects on Y (t) for
all t ∈ T through the estimation of a single causal parameter β(FX | ·) defined based
on a single model m(t, ā(t), V | β).

Under this model, the investigation of the causal effects of interest based on the para-
metric MSM approach to causal inference corresponds to the estimation of the single
parameter β ≡ β(FX | m) defined such that:

EFX
(Yā(t)(t + 1) | V ) = m(t, ā(t), V | β) for all t ∈ T .

The generalization of the nonparametric MSM approach to time-dependent outcomes
in such a pooled analysis is derived from the application of the nonparametric MSM
methodology proposed in [2] to each outcome, Y (t + 1) for t ∈ T , simultaneously. The
nonparametric MSM parameter can be defined such that it simultaneously minimizes

EFX

[ ∑
ā(t)∈AV (t)(Yā(t)(t + 1) − m(ā(t), V, t | β))2

]
for all t ∈ T , where the importance

of the minimization of this expectation for each t can be controlled by a use-specified
weighting function γ. In other words, the parameter of interest can be defined as:

β(FX | m, (λt)t∈T , γ) = argmin
β∈IRk

EFX

[ ∑
t∈T

( ∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

λt(ā(t), V )
)
γ(t)

]
,

where 1) every function λt(ā(t), V ) can be interpreted as a weighting function which
separately controls the importance of the goodness of fit of the CM to the causal curve
E(Yā(t)(t + 1) | V ) across the different regions (ā(t), V ) and 2) γ can be interpreted as
a weighting function which controls the importance of the overall goodness of fit of the

5

Hosted by The Berkeley Electronic Press



CM to each causal curve of interest, E(Yā(t)(t+ 1) | V ) for t ∈ T across the different time
points t. We now define ξ(t, ā(t), V ) ≡ λt(ā(t), V )γ(t) and refer to it as the CKS in this
pooled analysis, it generalizes the definition of the CKSs, λt, since it controls not only the
smoothing of the causal effects at each time point but also the smoothing of the causal
effects over time. The investigation of the causal effects on the time-dependent outcomes
can thus be conducted through the estimation of the following single causal parameter

β(FX | m, ξ) ≡ argmin
β∈IRk

EFX

[∑
t∈T

∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )
]
. (2)

In practice, a natural choice for the CKS, ξ, is ξ(t, ā(t), V ) =
1

Card(AV (t))
since it cor-

responds to allocating the same importance to the goodness of fit of the CM, m, to all
causal curves E(Yā(t)(t + 1) | V ). Indeed, it seems natural that one would use the strati-
fied approach described earlier if one is more specifically interested in some causal curves
E(Yā(t)(t + 1) | V ) among all causal curves E(Yā(t)(t + 1) | V ) for t ∈ T .

Note that 1) the parameters of interest, β, defined in both the parametric and non-
parametric MSM approach in a pooled analysis are identical if m is correctly specified,
and 2) the parametric MSM parameter is not defined when the CM, m, is misspecified.

Finally, it is essential to notice that definition (2) of the nonparameteric MSM param-
eter is typically different from the following definition:

β(FX | m, ξ) ≡ argmin
β∈IRk

EFX

[ ∑
t∈T

∑

ā(K)∈AV (K)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )
]

= argmin
β∈IRk

EFX

[ ∑
t∈T

∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )Card(A+
V,ā(t)(t + 1))

]
, (3)

where A+
V,ā(t)(t+1) represents the set of all possible treatment histories between time t+1

and K after assignment of treatment history ā(t), i.e. the support of g(A(t+1), . . . , A(K) |
Ā(t) = ā(t), V ). Note that: Card(A+

V,ā(t)(t + 1)) = Card({ā′(K) ∈ AV (K) : ā
′
(t) = ā(t)})

for t = 0, . . . , K − 1 and Card(A+
V,ā(K)(K + 1)) ≡ 1 by convention.

We now propose a procedure for implementing the G-computation estimator of the
nonparametric MSM causal parameters as previously defined in both the stratified and
pooled analysis. We compare it to the G-computation estimation procedure developed
for the parametric MSM approach.
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3 G-computation estimation

For a stratified analysis, the implementation of the G-computation estimator of nonpara-
metric MSM parameter, βt as defined by (1), can easily be derived from the G-computation
estimation procedure for parametric MSM parameters. The later relies on a least squares
regression whereas the former relies on a weighted least squares regression with weights
defined by the CKS, λt. This straightforward generalization of the implementation of
the G-computation estimator for nonparametric causal effects was introduced and devel-
oped in [2]. For a pooled analysis, the implementation of the G-computation estimator of
nonparametric MSM parameter, β as defined by (2), is introduced in this section.

Before developing this later estimation procedure, we first remind the reader of the
G-computation estimation procedure proposed for 1) MSM causal effects (parametric and
nonparametric) in a stratified analysis and 2) parametric MSM causal effect in a pooled
analysis. The description of the G-computation estimation procedures for parametric
MSM causal effects and its generalization to nonparametric causal effect will allow a direct
comparison of both implementations and underline the danger of a hasty generalization
in a pooled analysis setting.

3.1 G-computation estimation of MSM causal effects in a strat-
ified analysis

We summarize the G-computation estimation procedure for nonparametric causal effect
in a stratified analysis (see [2] for details) as follows:

Estimate QFX
with QFX ,n.

Repeat the following for each t ∈ T seperately
{

Repeat the following N times:
{
Randomly draw an observation of L(0) based on its empirical
distribution and store the observation of V ⊂ L(0).
for(ā(t) ∈ AV (t))
{

Based on the observation of L(0) and QFX ,n, generate an observation of
L̄ā(t)(t + 1) by Monte Carlo simulation.
Store ā(t) and the observation of Yā(t)(t + 1).

}
}
Using weighted least squares regression and the data previously generated, regress Yā(t)(t+
1) on ā(t) and V with the CM mt and weights defined by λt(ā(t), V ).

}

Note that this estimation procedure is a direct generalization of the G-computation
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estimation procedure for parametric MSM causal effects [5, 3, 2] in which the least squares
regression is simply replaced by a weighted least squares regression.

3.2 G-computation estimation of parametric MSM causal ef-
fects in a pooled analysis

Based on an estimate QFX ,n of the QFX
part of the likelihood and Monte Carlo simulations,

one simulates N (e.g. 10,000) observations of the counterfactual process (L̄ā(K)(K + 1))
for each ā(K) ∈ AV (K) . All counterfactual processes are stored and used in a least
squares regression to estimate the parameter of interest, β(FX | m), defined by the as-
sumed MSM. In details, the following algorithm was proposed [5] :

Estimate QFX
with QFX ,n.

Repeat the following N times:
{

Randomly draw an observation of L(0) based on its empirical
distribution and store the observation of V ⊂ L(0).
for(ā(K) ∈ AV (K))
{

Based on the observation of L(0) and QFX ,n, generate an observation of
L̄ā(K)(K + 1) by Monte Carlo simulation.
For t ∈ T , store t, ā(t) and the observation of Yā(t)(t + 1) = Yā(K)(t + 1).

}
}
Using least squares regression and the data previously generated, regress Yā(t)(t + 1) on
ā(t), V and t with the assumed MSM m.

Note that this procedure corresponds with minimizing for β an approximation of:

EFX

[ ∑
t∈T

∑

ā(K)∈AV (K)

(Yā(t)(t)−m(ā(t), V, t | β))2
]
.

The consistency of this estimation procedure relies on consistent estimation of the QFX

part of the likelihood.
Note that the number of observations in this regression is random:

Ng = Card(T )
N∑

i=1

Card(AVi
(K)). (4)

For most longitudinal studies with long follow-up (i.e. K large), the number of ob-
servations (4) will be too large to be successfully handled with the computing resources
commonly available today to most investigators . We propose new procedures in section 4
to overcome a similar computing limitation of the nonparametric MSM approach to causal
inference. These procedures can easily be adapted for the parametric MSM approach to
causal inference.

8
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3.3 G-computation estimation of nonparametric MSM causal
effects in a pooled analysis

Note first that a naive generalization of the previously described procedure where the least
squares regression is simply replaced by a weighted least squares regression with weights
defined as ξ(t, ā(t), V ) cannot provide consistent estimation of β(FX | m,λt, γ) as defined
by equation (2). Instead, such a naive generalization would typically provide consistent
estimation of a different parameter of interest that is defined by equation (3).

A correct generalization would be to utilize the procedure previously described where
the least squares regression is replaced by a weighted least squares regression with weights
defined as

ξ(t, ā(t), V )

Card(A+
V,ā(t)(t + 1))

.

Note that such weights will typically be constant and equal to 1

Card(AV (K))
if ξ(t, ā(t), V ) =

1

Card(AV (t))
. Typically, the weighted least squares regression will thus be equivalent to

the original unweighted regression. In addition, note that this protocol suffers from the
same computing limitation described above. The number of observations in the weighted
regression is also:

Ng = Card(T )
N∑

i=1

Card(AVi
(K)),

i.e. this procedure often requires an amount of computer memory that is not available to
most investigators.

4 G-computation estimation procedures to overcome

computing limitations

To decrease the computer memory requirements, a very similar estimation procedure
could be used in which not all elements of the counterfactual processes, (L̄ā(K)(K + 1)),
are stored for all ā(K) ∈ AV (K). Instead, for each of the N observations obtained by
Monte Carlo simulation, Yā(t)(t + 1) = Yā(K)(t + 1) will be stored only for unique ā(t). In
details, this algorithm goes as follows:

We denote the support of g(A(t) | Ā(t−1) = ā(t−1), V ) with AV,ā(t−1)(t) for t = 0, . . . , K.
Estimate QFX

with QFX ,n.
Repeat the following N times:
{

Randomly draw an observation of Lā(K)(0) = L(0) based on its empirical
distribution and store the observation of V ⊂ L(0).
for(a(0) ∈ AV (0))
{

Based on the observation of Lā(K)(0) and QFX ,n, generate Lā(K)(1) = Lā(0)(1)

9
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by Monte Carlo simulation.
...
. . . for(a(i) ∈ AV,ā(i−1)(i))

{
Based on the observations of L̄ā(K)(i) and QFX ,n, generate
Lā(K)(i + 1) = Lā(i)(i + 1) by Monte Carlo simulation.
...
. . . for(a(K) ∈ AV,ā(K−1)(K))

{
Based on the observations of L̄ā(K)(K) and QFX ,n, generate
Lā(K)(K + 1) by Monte Carlo simulation.
If K ∈ T then store t = K, ā(K) and the observation of
Yā(K)(K + 1).

}
...
If i ∈ T then store t = i, ā(i) and the observation of
Yā(i)(i + 1) = Yā(K)(i + 1).

}
...
If 0 ∈ T then store t = 0, ā(0) and the observation of Yā(0)(1) = Yā(K)(1).

}
}
Using weighted least squares regression and the data previously generated, regress Yā(t)(t+
1) on ā(t), V and t with the CM m and weights defined by ξ(t, ā(t), V ).

Note that this procedure corresponds with minimizing for β an approximation of:

EFX

∑
t∈T

∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2ξ(t, ā(t), V ).

The consistency of this estimation procedure relies on consistent estimation of the QFX

part of the likelihood.
Note that the number of observations in this weighted regression is also random:

Ng =
N∑

i=1

∑
t∈T

Card(AVi
(t)) (5)

< Card(T )
N∑

i=1

Card(AVi
(K)),

i.e. the number of observations needed in this procedure is typically much smaller than
the number of observations required in the procedure previously described.
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Computer memory limitations may nevertheless still not allow implementation of the
latter procedure described above for the more complex real life applications. To allow
implementation of the G-computation estimator for even the more complex applications,
we propose below two new procedures to significantly decrease the amount of computer
memory required in practice. More importantly, both procedures allow investigators to
customize each of the proposed algorithms such that the corresponding memory require-
ments fit the computing resources available to them.

Proposed procedure 1. For each of the N experimental units, instead of simulating
by Monte Carlo simulations all its counterfactual processes, i.e. L̄ā(K)(K + 1) for all
ā(K) ∈ AV (K), we propose to only simulate a random subset of all its counterfactual
processes, i.e. Lā(t)(t + 1) = Lā(K)(t + 1) for p elements (t, ā(K)) ∈ T ×AV (K).

One first simulates N (user-specified) independent observations of L(0) before simu-
lating by Monte Carlo simulation a subset of p elements of all its counterfactual processes,
i.e. (L̄ā(t)(t+1) = L̄ā(K)(t+1)) for p observations, (t, ā(K)), of (T, Ā(K)) where 1) T and
Ā(K) are uniformly distributed over T and AV (K) respectively, and 2) T is independent
of Ā(K). For each experimental unit represented by a draw of L(0), only p corresponding
counterfactuals Yā(t)(t+1) are stored and used in the weighted regression of Yā(t)(t+1) on
the treatment histories ā(t), baseline covariate V , and time variable t with the CM m and

the weights defined by ξ(t,ā(t),V )

Card(A+
V,ā(t)

(t+1))
. The estimator implemented in this procedure is

asymptotically linear.
Note that the number of observations in this regression is user-specified (i.e, not ran-

dom) Ng = pN and that the G-computation estimate obtained only relies on subset of
the full data, i.e. a limited number, p, of counterfactuals among the set of all possible
counterfactuals for a given unit characterized by V . For a given V , the number of possi-
ble counterfactuals is

∑
t∈T Card(AV (t)) and note that p <<

∑
t∈T Card(AV (t)). We can

however use the asymptotic linearity of the estimator to obtain a more efficient estimator
that relies on a larger set of counterfactuals. This is done by repeating the estimation
procedure described above R times. The average of the corresponding R estimates ob-
tained correspond with the G-computation estimate. In details, this algorithm goes as
follows:

Estimate QFX
with QFX ,n.

Repeat the following R times:
{

Repeat the following N times:
{

Randomly draw an observation of L(0) based on its empirical distribution and
store the observation of V ⊂ L(0).
Repeat the following p times:
{

Draw (t, ā(K)) from independent uniform distributions of T and Ā(K)
over T and AV (K) conditionally on V respectively.

11
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Simulate by Monte Carlo simulation the process (L̄ā(t)(t + 1) = L̄ā(K)(t + 1)).
Store ā(t), t and Yā(t)(t + 1) = Yā(K)(t + 1).

}
}
Using weighted least squares regression and the data previously generated,
regress Yā(t)(t + 1) on ā(t), V and t based on the CM m and with weights

ξ(t,ā(t),V )

Card(A+
V,ā(t)

(t+1))
and store the estimate obtained.

}
The average of the R estimates obtained is the G-computation estimate.

Note that the regressions in this procedure corresponds with minimizing for β an
approximation of EFX ,U(D(T, Ā(K), L̄Ā(K)(T + 1) | β)), where:

D(T, Ā(K), L̄Ā(K)(T +1) | β) = (YĀ(T )(T +1)−m(Ā(T ), V, T | β))2 ξ(T, Ā(T ), V )

Card(A+
V,ā(T )(T + 1))

,

and U is the joint distribution of (T, Ā(K)) defined by the two independent marginal
uniform distributions of T and Ā(K) conditional on V over T and AV (K) respectively.
We have:

P (T = t | V ) = P (T = t) =
I(t ∈ T )

Card(T )
and P (Ā(K) = ā(K) | V ) =

I(ā(K) ∈ AV (K))

Card(AV (K))
(6)

The causal parameter minimizing this quantity is indeed β(FX | m, ξ, γ) as defined by (2)
since we have:

EFX ,U

[
D(T, Ā(K), L̄Ā(K)(T + 1) | β)

]

= EFX
EU

[
D(T, Ā(K), L̄Ā(K)(T + 1)) | X

]

= EFX

∑
t∈T

∑

ā(K)∈AV (K)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )

Card(A+
V,ā(t)(t + 1))

1

Card(T )

1

Card(AV (K))

=
1

Card(T )Card(AV (K))
EFX

∑
t∈T

∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V ),

Proposed procedure 2. The previous procedure overcomes limitations due to re-
stricted computer memory however it does not optimize the computation time as for each
draw of (t, ā(K)), only the counterfactual outcome, Yā(t)(t + 1), is used to derive the
G-computation estimate in this procedure, i.e. all intermediate outcomes remain unused
even though they are required to be simulated in the Monte Carlo simulation and could
be used towards fitting the CM. That is why we propose the following procedure that
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should minimize not only the computer memory requirement but also improve the com-
putation time by making use of every intermediate outcomes obtained from the Monte
Carlo simulation:

Estimate QFX
with QFX ,n.

Repeat the following R times:
{

Repeat the following N times:
{

Randomly draw an observation of L(0) based on its empirical distribution and
store the observation of V ⊂ L(0).
Repeat the following q times:
{

Draw (t, ā(K)) from independent uniform distributions of T and Ā(K)
over T and AV (K) conditionally on V respectively.
Simulate by Monte Carlo simulation the process (L̄ā(t)(t + 1) = L̄ā(K)(t + 1)).
Store ā(j), j and Yā(j)(j + 1) = Yā(K)(j + 1) for j ∈ T and j ≤ t.

}
}
Using weighted least squares regression and the data previously generated,
regress Yā(j)(j + 1) on ā(j), V and j based on the CM m and with weights

ξ(j,ā(j),V )

Card(A+
V,ā(j)

(j+1))Card({j′∈T :j
′≥j}) and store the estimate obtained.

}
The average of the R estimates obtained is the G-computation estimate.

Note that the weighted regressions in this procedure correspond with minimizing for
β an approximation of EFX ,U(D(T, Ā(K), L̄Ā(K)(K + 1) | β)), where:

D(T, Ā(K), L̄Ā(K)(K + 1) | β) =
∑

j∈T :j≤T

(YĀ(j)(j + 1)−m(Ā(j), V, j | β))2 ×

ξ(j, Ā(j), V )

Card(A+
V,ā(j)(j + 1))Card({j ′ ∈ T : j ′ ≥ j}) ,

and U is the joint distribution of (T, Ā(K)) defined by the two independent marginal
uniform distributions (6) of T and Ā(K) conditional on V over T and AV (K) respectively.
The causal parameter minimizing this quantity is indeed β(FX | m, ξ, γ) as defined by (2)
since we have:

EFX ,U

[
D(T, Ā(K), L̄Ā(K)(T + 1) | β)

]

= EFX
EU

[
D(T, Ā(K), L̄Ā(K)(T + 1)) | X

]

= EFX

∑

ā(K)∈AV (K)

∑
t∈T

∑
j∈T :j≤t

(Yā(j)(j + 1)−m(ā(j), V, j | β))2 ×
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ξ(j, ā(j), V )

Card(A+
V,ā(j)(j + 1))Card({j ′ ∈ T : j ′ ≥ j})

1

Card(AV (K))

1

Card(T )

=
1

Card(AV (K))Card(T )
EFX

∑

ā(K)∈AV (K)

∑
t∈T

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )

Card(A+
V,ā(t)(t + 1))

=
1

Card(AV (K))Card(T )
EFX

∑
t∈T

∑

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V ),

Note that the number of observations in each regression is random: Ng = q
∑N

i=1 Card({j ∈
T : j ≤ Ti}) ≤ qNCard(T ) and that the asymptotical linearity of the estimation pro-
cedure implemented is also used to obtain a more efficient estimator by iterating the
estimation procedure R times.

5 Generalization

We now generalize the methodology proposed in this paper to bounded continuous treat-
ments.

In a stratified analysis, the nonparametric MSM approach corresponds to the estima-
tion of the following l causal parameters:

βt(FX | mt, gt) ≡ argmin
β∈IRk

EFX

[ ∫

ā(t)∈AV (t)

(Yā(t)(t + 1)−mt(ā(t), V | β))2 ×

gt(ā(t) | V )dµ(ā(t))
]
, (7)

where 1) gt represents a conditional distribution of the treatment history Ā(t) conditional
on the baseline covariate V and 2) dµ(ā(t)) represents the denominating measure of the
cumulative distribution function gt which is typically the Lebesque measure when A is
continuous, i.e. dµ(ā(t)) = da(0) . . . , da(t). The function gt is the analogue to λt in
definition (1) of the causal parameter of interest in the discrete case. Definition (7) is
thus the analogue to definition (1) for bounded continuous treatments.

In a pooled analysis, the nonparametric MSM approach corresponds to the estimation
of the following causal parameters:

β(FX | m, ξ) ≡ argmin
β∈IRk

EFX

[ ∑
t∈T

∫

ā(t)∈AV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )dµ(ā(t))
]
, (8)

where 1) ξ(t, ā(t), V ) ≡ gt(ā(t) | V )γ(t) is the analogue to the CKS introduced in section
2.2 and 2) γ is the analogue to the weighting function. Definition (8) is thus the ana-
logue to definition (2) for bounded continuous treatments. In practice and similar to the
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discrete case, note that a natural choice for the CKS, ξ, is ξ(t, ā(t), V ) = 1R
ā(t)∈AV (t) dµ(ā(t))

since it corresponds with allocating the same importance to the goodness of fit of the CM,
m, to all causal curves E(Yā(t)(t + 1) | V ).

The G-computation estimation procedures described in the discrete case can be gen-
eralized to the continuous case. However such procedures require the simulation of coun-
terfactuals for all treatment histories in AV (t), for t ∈ T . Note that the sets of possible
treatment histories are infinite in the continuous case and thus the G-computation estima-
tion procedures described in the discrete case are not directly practicable. To overcome
this practical issue, we propose to approximate the set of possible treatment histories
by discretization. Based on treatment discretization, one can obtain G-computation es-
timates with any of the procedures described for the discrete case but applied to the
discretized treatments. Note that the sets of possible treatments, AV (t), being infinite,
an acceptable approximation of these sets by discretization will typically involve finite
sets, Ad,u

V (t) characterized by large cardinals such that only the proposed G-computation
estimation procedure 1 and 2 will typically be practicable in the continuous case. That
is why we only provide generalization of these two procedures to the continuous case in
this manuscript.

We propose the following methodology for discretizing continuous treatments and
using the resulting discretization for G-computation estimation of nonparametric MSM
parameters with procedures 1 and 2 described in the previous section. Note that this
methodology is easily generalizable to the estimation of parametric MSM parameters by
replacing the weighted least squares regressions in the last steps of procedures 1 and 2
with simple least squares regressions.

Based on a consistent estimate, gn(Ā(K) | V ), of the conditional distribution of
Ā(K) given V , g(Ā(K) | V ), one can approximate the set of possible treatment his-
tories AV (K) with the finite set Ad

V (K) ≡ {ād
1(K), . . . , ād

nd
(K)} consisting of nd draws,

ād
i (K), from the conditional distribution gn(Ā(K) | V ). We denote the set of unique

elements of Ad
V (K) with Ad,u

V (K). Note that this discretizing procedure implies that
limnd−→+∞Ad,u

V (K) = AV (K) if gn(Ā(K) | V ) is a consistent estimator of g(Ā(K) | V ).
In practice, nd should be chosen very large to ensure proper representation of AV (K)
with Ad,u

V (K), e.g. nd = 10, 000. Based on this discretization and lemma A.1, we can
generalize the procedures 1 and 2 proposed in the previous section as follows:

Procecure 1

Estimate g(Ā(K) | V )with gn(Ā(K) | V ).
Discretize AV (K) with nd draws, ād

i (K), from gn(Ā(K) | V ):
Ad

V (K) ≡ {ād
1(K), . . . , ād

nd
(K)}.

Ad,u
V (K) represents the set of unique elements of Ad

V (K).
Estimate QFX

with QFX ,n.
Repeat the following R times:
{
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Repeat the following N times:
{

Randomly draw an observation of L(0) based on its empirical distribution and
store the observation of V ⊂ L(0).
Repeat the following p times:
{

Independently draw: 1) t from the uniform distribution of T over T , and 2) ād(K)
from the following discrete distribution of Ād(K) over Ad,u

V (K) conditionally
on V :

P (Ād(K) = ād(K) | V ) = I(ād(K) ∈ Ad,u
V (K))

nd∑
i=1

I(ād
i (K)=ād(K))

gn(ād
i (K)|V )∑nd

i=1
1

gn(ād
i (K)|V )

. (9)

Simulate by Monte Carlo simulation the process (L̄ād(t)(t + 1) = L̄ād(K)(t + 1))
Store Yād(t)(t + 1) = Yād(K)(t + 1).

}
}
Using weighted least squares regression and the data previously generated,
regress Yād(t)(t + 1) on ād(t), V and t based on the CM m and with weights

ξ(t,ād(t),V )

Card(Ad,u+

V,ād(t)
(t+1))

, where Ad,u+
V,ād(t)(t+1) is defined as: {ā(t+1, K) ≡ (a(t+1), . . . ,

a(K)) : ∃ ād
′
(K) ∈ Ad,u

V (K) ād
′
(t) = ād(t) & ād

′
(t + 1, K) = ā(t + 1, K)}.

Store the estimate obtained.
}
The average of the R estimates obtained is the G-computation estimate.

Procecure 2

Estimate g(Ā(K) | V )with gn(Ā(K) | V ).
Discretize AV (K) with nd draws, ād

i (K), from gn(Ā(K) | V ):
Ad

V (K) ≡ {ād
1(K), . . . , ād

nd
(K)}.

Ad,u
V (K) represents the set of unique elements of Ad

V (K).
Estimate QFX

with QFX ,n.
Repeat the following R times:
{

Repeat the following N times:
{

Randomly draw an observation of L(0) based on its empirical distribution and
store the observation of V ⊂ L(0).
Repeat the following q times:
{

Independently draw: 1) t from the uniform distribution of T over T , and 2) ād(K)
from the following discrete distribution of Ād(K) over Ad,u

V (K) conditionally
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on V :

P (Ād(K) = ād(K) | V ) = I(ād(K) ∈ Ad,u
V (K))

nd∑
i=1

I(ād
i (K)=ād(K))

gn(ād
i (K)|V )∑nd

i=1
1

gn(ād
i (K)|V )

.

Simulate by Monte Carlo simulation the process (L̄ād(t)(t + 1) = L̄ād(K)(t + 1)).
Store j and Yād(j)(j + 1) = Yād(K)(j + 1) for j ∈ T and j ≤ t.

}
}
Using weighted least squares regression and the data previously generated,
regress Yād(j)(j + 1) on ād(j), V and j based on the CM m and with weights

ξ(j,ād(j),V )

Card(Ad,u+

V,ād(j)
(j+1))Card({j′∈T :j′≥j}) . Store the estimate obtained.

}
The average of the R estimates obtained is the G-computation estimate.

Note that these two procedures rely on correct specification of a model for g(Ā(K) | V )
to ensure that treatment discretization provides an accurate approximation of AV (K). If
the model is misspecified, it is possible that limnd−→+∞Ad,u

V (K) = A′
V (K) whereA′

V (K) 6=
AV (K). In such a situation the G-computation estimator implemented in both procedures
is inconsistent for the estimation of β(FX | m, ξ) as defined by (8). Instead the two
procedures implement the consistent G-computation estimator of the following parameter:

β
′
(FX | m, ξ) ≡ argmin

β∈IRk
EFX

[ ∑
t∈T

∫

ā(t)∈A′V (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )dµ(ā(t))
]
.

In practice, g(Ā(K) | V ) is unknown and thus proper interpretation of estimates obtained
from the procedure described above relies on correct specification of an assumed model for
g(Ā(K) | V ). In light of this remark, we propose to generalize the parameter of interest
developed in this manuscript to allow the investigator to better control the interpretation
of the estimates obtained from the procedures described in this manuscript. In a stratified
analysis, the proposed generalized nonparametric MSM parameter of interest is:

βt(FX | mt, λt, (SV (K))) ≡ argmin
β∈IRk

EFX

[ ∑

ā(t)∈SV (t)

(Yā(t)(t + 1)−mt(ā(t), V | β))2 ×

λt(ā(t) | V )
]
, (10)

where (SV (K)) is a user-specified set of V -specific sets of treatment histories Ā(K) (pos-
sibly infinite) for which the investigator wishes to study the causal effect on the outcome
of interest. Note that SV (t) for t = 0, . . . , K are defined from SV (K): SV (t) = {ā(t) :
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∃ ā
′
(K) ∈ SV (K) ā

′
(t) = ā(t)}. In a pooled analysis, the proposed generalized nonpara-

metric MSM parameter of interest is:

β(FX | m, ξ, (SV (K))) ≡ argmin
β∈IRk

EFX

[ ∑
t∈T

∑

ā(t)∈SV (t)

(Yā(t)(t + 1)−m(ā(t), V, t | β))2 ×

ξ(t, ā(t), V )
]
. (11)

We now illustrate the concepts and results introduced in this manuscript with two simu-
lation studies.

6 Illustration with simulations

6.1 Simulation study with longitudinal data

6.2 Aims and protocol

This simulation study illustrates the importance and validity of the two new algorithms
proposed in section 4. It underlines the computing limitations inherent to G-computation
estimation in longitudinal studies with long follow-up and illustrates how the two pro-
posed procedures overcome these implementation problems. This simulation study also
illustrates the validity of the two proposed procedures generalized to bounded continuous
treatments as described in section 5.

The observed data in this simulation are n i.i.d. observations of the treatment pro-
cess Ā(K) = (Ā1(K), Ā2(K)) and the covariate process L̄(K), where A1 is a categorical
variables, A2 and L are binary variables, and L(0) = ∅ (i.e. V = ∅). The observed data
generating distribution is defined by the following g and FX parts of the likelihood:

• P (A1(0) = k | X) = P (A1(0) = k) as defined in table i.

k 1 2 3 4 5
P (A1(0) = k) 0.2 0.2 0.4 0.2 0.2

Table i: Marginal distribution of A1(0).

• P (A2(0) = k | X, A1(0)) = P (A2(0) = k) as defined in table ii.

k 0 1
P (A2(0) = k) 0.8 0.2

Table ii: Marginal distribution of A2(0).
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• P (L(1) = 1 | A1(0), A2(0)) = 1

1+exp

(
−(α0+α1A1(0)+α2A2(0))

)

• P (A1(t) = k | X, Ā(t− 1)) = P (A1(t) = k | A1(t− 1)) for t = 1, . . . , K as defined in
table iii.

k 1 2 3 4 5
P (A1(t) = k | A1(t− 1) = 1) 0.4 0.2 0.2 0.1 0.1
P (A1(t) = k | A1(t− 1) = 2) 0.2 0.4 0.2 0.1 0.1
P (A1(t) = k | A1(t− 1) = 3) 0.1 0.2 0.4 0.2 0.1
P (A1(t) = k | A1(t− 1) = 4) 0.1 0.1 0.2 0.4 0.2
P (A1(t) = k | A1(t− 1) = 5) 0.1 0.1 0.2 0.2 0.4

Table iii: Distribution of A1(t) conditional on A1(t− 1) for t = 0, . . . , K.

• P (A2(t) = k | X, Ā(t− 1), A1(t)) = P (A2(t) = k | L(t)) as defined in table iv.

k 0 1
P (A2(t) = k | L(t) = 0) 0.8 0.2
P (A2(t) = k | L(t) = 1) 0.2 0.8

Table iv: Distribution of A2(t) conditional on L(t) for t = 0, . . . , K.

• For t = 2, . . . , K + 1:

P (L(t) = 1 | L̄(t− 1), Ā(t− 1))

= P (L(t) = 1 | A1(t− 2), A1(t− 1), A2(t− 2), A2(t− 1), L(t− 1))

=
1

1 + exp
(
− (γ0 + γ1MA1(t− 1) + γ2tMA1(t− 1) + γ3SA2(t− 1) + γ4L(t− 1))

) ,

where MA1(t− 1) = A1(t−2)+A1(t−1)
2

and SA2(t− 1) = A(t− 2) + A(t− 1).

Note that this data generating distribution implies:

A(t) =
(
{1; 2; 3; 4; 5} × {0, 1}

)t+1

, for t = 0, . . . , K

For different values for K, α = (α0, α1, α2) and γ = (γ0, γ1, γ2, γ3, γ4), we implemented
5 algorithms of the G-computation estimator of β(FX | m, ξ) as defined by equality (2)
with:

m(ā(t) | β) = β0 + β1ma1(t) + β2a2(t− 1) and ξ(t, ā(t)) =
1

Card(A(t))
for t = 0, . . . , K,
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where ma1(0) ≡ a1(0). The first algorithm is described in section 3.3. We will refer to it
as the conventional algorithm (Conv) since it corresponds to the algorithm that was first
proposed for G-computation estimation of parametric MSM parameters of interest. The
second and third algorithms correspond to the proposed procedures 1 and 2 described
in section 4. We will refer to them as procedure 1 (Proc 1) and procedure 2 (Proc 2)
respectively. The last two algorithms correspond to the generalization of procedures 1
and 2 to bounded continuous treatments and are described in section 5. We will refer to
them as generalized procedure 1 (Gen proc 1) and generalized procedure 2 (Gen proc 2)
respectively. Note that all algorithms depend on a user-specified value for N which was
set to 10, 000 for all simulations. All algorithms except for the conventional algorithm
depend on a user-specified value for R. Procedure 1 and generalized procedure 1 also
depend on a user-specified value for p whereas procedure 2 and generalized procedure 2
also depend on a user-specified value for q. Generalized procedures 1 and 2 depend on an
additional user-specified value for nd.

Note that generalized procedures 1 and 2 were developed for problems involving
bounded continuous treatments. Nevertheless, both algorithms can be used with discrete
treatments thus providing a means for testing the validity of both procedures.

In addition, note that all estimates were obtained based on correct model specification
for the QFX

part of the likelihood. The generalized procedures 1 and 2 were implemented
based on the true distribution P (Ā(K)), which was calculated from the known data
generating distribution with a recursive algorithm.

7 Results and interpretation

The first set of results were obtained with n = 1000, K = 0, α = (−1; 0.1;−3), R = 10,
p = q = 5 and nd = 10; 10, 000. Results are displayed in table v. The barplots in
figure 1 represent the estimated uniform distribution over A(K) based on nd draws from
P (Ā(K)), i.e. the barplots of ād(K) against P (Ād(K) = ād(K)) as defined by equality
(9) where each ād(K) ∈ A(K) is represented on the x axis by a given integer between 1
and Card(A(K)).

The second set of results were obtained with n = 1000, K = 1, α = (−1; 0.1;−3), γ =
(−1; 0.1; 0.8;−2; 3), R = 10, p = q = 20 and nd = 10; 10, 000. Results and corresponding
barplots are displayed in table vi and figure 2 respectively.

The third set of results were obtained with n = 1000, K = 3, α = (−1; 0.2;−3),
γ = (−1; 0.2; 0.2;−3; 3), R = 10, p = q = 50 and nd = 10; 10, 000; 100, 000. Results and
barplots are displayed in table vii and figure 3 respectively.

The first two sets of results illustrate the validity of procedures 1 and 2 and of the
generalized procedures 1 and 2 by comparison of the corresponding estimates with the
estimate obtained from the conventional algorithm. Note that the first set of results
illustrates the validity of the four proposed algorithms for point-treatment studies while
the second set of results is truly concerned with longitudinal data. Note that for the third
set of results, the G-computation estimate obtained with the conventional algorithm is not
available. This is due to the computing limitations associated with this algorithm which
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as defined by equality (9).
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β0 β1 β2

Conv -1.219 0.103 -3.018
Proc 1 -1.227 0.102 -2.979
Proc 2 -1.227 0.102 -2.979

Gen proc 1 - nd = 10 -1.221 0.099 -2.969
Gen proc 2 - nd = 10 -1.221 0.099 -2.969

Gen proc 1 - nd = 10, 000 -1.228 0.103 -2.978
Gen proc 2 - nd = 10, 000 -1.228 0.103 -2.978

Table v: G-computation estimates obtained based on 5 algorithms in the simulation study
with longitudinal data where n = 1000, K = 0, α = (−1; 0.1;−3), R = 10, p = q = 5 and
nd = 10; 10, 000.

β0 β1 β2

Conv -0.818 0.289 -1.455
Proc 1 -0.827 0.292 -1.460
Proc 2 -0.827 0.292 -1.459

Gen proc 1 - nd = 10 0.653 -0.139 -0.402
Gen proc 2 - nd = 10 0.649 -0.137 -0.403

Gen proc 1 - nd = 10, 000 -0.859 0.296 -1.411
Gen proc 2 - nd = 10, 000 -0.859 0.297 -1.414

Table vi: G-computation estimates obtained based on 5 algorithms in the simula-
tion study with longitudinal data where n = 1000, K = 1, α = (−1; 0.1;−3),
γ = (−1; 0.1; 0.8;−2; 3), R = 10, p = q = 20 and nd = 10; 10, 000.

prevent us from applying this algorithm to the corresponding simulated data. Indeed,
since N = 10, 000, K = 3, Card(T ) = 3 and Card(A(K)) = 10(K+1), the number of
observations in the weighted regression involved in the conventional algorithm would be:
Ng = 400, 000, 000 as defined by equality (4). The third set of results thus illustrates
how the four proposed algorithms overcome the implementation problems inherent to the
conventional algorithm. In addition, the results associated with the generalized procedures
1 and 2 illustrate the importance of using a large value for nd to insure proper treatment
discretization, i.e. discretization of AV (K): Gen proc 1 and 2 with nd = 10 indeed lead
to bias estimation as shown in tables vi and vii.
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β0 β1 β2

Conv NA NA NA
Proc 1 -1.228 0.365 -1.609
Proc 2 -1.228 0.364 -1.609

Gen proc 1 - nd = 10 -1.465 0.497 -1.197
Gen proc 2 - nd = 10 -1.468 0.498 -1.196

Gen proc 1 - nd = 10, 000 -1.313 0.396 -1.642
Gen proc 2 - nd = 10, 000 -1.313 0.396 -1.644

Gen proc 1 - nd = 100, 000 -1.223 0.363 -1.620
Gen proc 2 - nd = 100, 000 -1.221 0.362 -1.623

Table vii: G-computation estimates obtained based on 5 algorithms in the simula-
tion study with longitudinal data where n = 1000, K = 3, α = (−1; 0.2;−3),
γ = (−1; 0.2; 0.2;−3; 3), R = 10, p = q = 50 and nd = 10; 10, 000; 100, 000. NA stands for
not available.

7.1 Point-treatment simulation with continuous treatment

7.2 Aims and protocol

This simulation study illustrates the results and concepts developed in section 5 (treat-
ment discretization, parameter interpretation, generalized nonparametric causal effects)
with point-treatment data and a continuous treatment variable. Note that even though
the results in section 5 are very general and apply to longitudinal data problems, we chose
to present this point-treatment example for illustration clarity since point-treatment data
facilitate graphical representations of the concepts and results also relevant to the more
complex longitudinal data structure.

The observed data in this simulation are n = 1, 000 i.i.d. observations of the treatment
A, outcome Y , and baseline covariate W which confounds the effect of A on Y . The
distribution of W is a mixture of two uniform distributions U1 and U2 over [1; 80] and
[80; 100] respectively. The distribution of A conditional on W is gaussian with mean W
and standard deviation 5, N (W, 5). The distribution of Y conditional on A and W is
gaussian with mean 5 + ( A

15
)4 + 4W − 10

85.05
AW and standard deviation 1, N (5 + ( A

15
)4 +

4W − 10
85.05

AW, 1). Thus in this simulation, the observed data distribution implies correct
model specification of the following causal model for E(Ya):

m(a | β) = 345.2 +
( a

15

)4

− 10a, where β = (345.2,
( 1

15

)4

,−10)

since E(W ) = 0.1 × 81
2

+ 0.9 × 180
2

= 85.05. The causal curve of interest captured by
this model is represented in figure 4. We wish to investigate this causal curve with a
misspecified linear causal model, m(a | β) = β0 + β1a so as to obtain an overall summary
of the causal curve of interest over the whole range of possible treatment levels. In other
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Figure 4: True causal curve of interest in the simulation study with point-treatment data
and continuous outcome.

words, the initial causal parameter of interest is defined by equality (7) where gt is the
uniform distribution.

We used the procedures described in section 5 with N = 10, 000, R = 1, 000 and
p = q = 100 to implement the G-computation estimator of the parameter of interest. Note
that in point-treatment studies, the implementations of the G-computation estimator
with procedures 1 and 2 are identical. The corresponding algorithm relies on proper
discretization of the set of possible treatments, AV (K), where K = 0 and V = ∅. Proper
discretization depends on consistent estimation of the marginal distribution of A which
is typically unknown in practice. In this simulation, we have a close form representation
of this distribution:

g(A) =
0.1

79

∫ 80

1

g(A | w)dw +
0.9

20

∫ 100

80

g(A | w)dw, (12)

where g(A | W ) is the density of the conditional gaussian distribution of A given W :
N (W, 5). To illustrate the consequence of model misspecification for this distribution and
the impact of the choice for nd, we computed the G-computation estimates based on a)
correct and incorrect model specification for g(A), and b) nd = 10 ; 100 ; 1, 000 ; 10, 000 ;
100, 000 ; 1, 000, 000. Results are presented in figures 5 and 6 and are based on correct
model specification for the QFX

part of the likelihood, i.e. for E(Y | A,W ). The incorrect
model for the marginal distribution of A is the gaussian distribution with mean equal to
the empirical mean of the observed treatment, A, and standard deviation equal to the
empirical standard deviation of the observed treatment, A.

A ∼ N
( 1

n

n∑
i=1

ai,
[ 1

n

n∑
i=1

(ai − 1

n

n∑
i=1

ai)
2
] 1

2
)

(13)
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Figure 5: G-computation estimates based on 6 discretizations of the set of possible treat-
ments corresponding with increasing values for nd and a correctly specified model for
g(A) as defined by equality (12). The plain curves represent the true causal curve of
interest. The dashed curves represent the estimated nonparametric causal effects based
on a linear causal model. The histograms represent the estimated uniform distribution
over −10 ≤ a ≤ 110 based on 100,000 draws from (9).
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Figure 6: G-computation estimates based on 6 discretizations of the set of possible treat-
ments corresponding with increasing values for nd and a misspecified model for g(A) as
defined by (13). The plain curves represent the true causal curve of interest. The dashed
curves represent the estimated nonparametric causal effects based on a linear causal model.
The histograms represent the estimated uniform distribution over −10 ≤ a ≤ 110 based
on 100,000 draws from (9).
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Figure 7: G-computation estimate of βt(FX | mt, λt, (SV (K))) based on point-treatment
data (t = 0, K = 0 and V = ∅) with a continuous treatment where S(0) is defined based
on the first, second and third quartiles of the observed treatment A.

Finally, we illustrate the generalization (10) of the definition of nonparametric causal
effects with the following choices for S(0): a) S(0) is defined based on the first, second
and third quartiles of the observed treatment A, b) S(0) is defined based on four treatment
levels obtained by splitting the range of the observed treatment A in four equal segments,
and c) S(0) is defined based on the 0.1th, first and second percentiles of the observed
treatment A. We computed the G-computation estimates of the three parameters of
interest defined by the three choices for S(0) and a CKS which gives equal weights to all
elements in S(0). The three estimates were obtained from the implementation procedure
described in section 3.3 and adapted to the estimation of generalized nonparametric causal
effects. They are represented on figures 7, 8, and 9 respectively. Note that these estimates
are also based on correct model specification for the QFX

part of the likelihood.

7.3 Interpretation

This simulation study clearly underlines the importance of proper discretization of the
infinite set of possible treatment regimens through 1) correct specification of a model
for g(Ā(K) | V ), and 2) a large value for nd (e.g. nd = 100, 000). This simulation
study demonstrates the impact on G-computation estimation when nd is chosen too small
or when the model for g(Ā(K) | V ) is misspecified. In such cases, the G-computation
estimates cannot be clearly interpreted and the investigator may thus prefer to lower
his/her research ambition by estimating the generalized nonparametric causal effects as
defined by equalities (10) and (11). The interpretation of such parameters is then entirely
controlled by the investigator and a sensitivity-type analysis based on different choices
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Figure 8: G-computation estimate of βt(FX | mt, λt, (SV (K))) based on point-treatment
data (t = 0, K = 0 and V = ∅) with a continuous treatment where S(0) is defined based
on four treatment levels obtained by splitting the range of the observed treatment A in
four equal segments.
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Figure 9: G-computation estimate of βt(FX | mt, λt, (SV (K))) based on point-treatment
data (t = 0, K = 0 and V = ∅) with a continuous treatment where S(0) is defined based
on the 0.1th, first and second percentiles of the observed treatment A.
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for the CKS and (SV (K)) may enable the investigator to gain sufficient insight about the
causal curve of interest even when the causal model is misspecified.

Appendix

A Important results

lemma A.1 We adopt the notations previously introduced in this manuscript. In par-
ticular, Ad

V (K) represents the set of nd i.i.d. observations of Ā(K) with distribution
g(Ā(K) | V ):

Ad
V (K) ≡ {ād

1(K), . . . , ād
nd

(K)},
and Ad,u

V (K) represents the set of unique elements of Ad
V (K). Consider the discrete ran-

dom process, Ād(K), with conditional probability over Ad,u
V (K):

P (Ād(K) = ād(K) | V ) = I(ād(K) ∈ Ad,u
V (K))

nd∑
i=1

I(ād
i (K)=ād(K))

g(ād
i (K)|V )∑nd

i=1
1

g(ād
i (K)|V )

. (14)

The limit distribution of Ād(K) is the uniform distribution of Ā(K) over the support
AV (K).

Proof:
Note first that equality (14) indeed defines a probability with support Ad,u

V (K):

P
(
∪ād(K)∈Ad,u

V (K) Ād(K) = ād(K) | V
)

=
∑

ād(K)∈Ad,u
V (K)

P
(
Ād(K) = ād(K) | V

)

=
∑

ād(K)∈Ad,u
V (K)

nd∑
i=1

I(ād
i (K)=ād(K))

g(ād
i (K)|V )∑nd

i=1
1

g(ād
i (K)|V )

=

∑nd

i=1
1

g(ād
i (K)|V )∑n

i=1
1

g(ād
i (K)|V )

= 1

We obviously have:
lim

nd−→+∞
Ad,u

V (K) = AV (K)
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and thus the support of the limit distribution of Ād(K) is indeed AV (K). In addition we
have for any set A ⊂ AV (K):

lim
nd−→+∞

P
(
Ād(K) ∈ A | V

)
= lim

nd−→+∞

∑

ād(K)∈A
P

(
Ād(K) = ād(K) | V

)

= lim
nd−→+∞

∑

ād(K)∈A
I(ād(K) ∈ Ad,u

V (K))

∑nd

i=1
I(ād

i (K)=ād(K))

g(ād
i (K)|V )∑nd

i=1
1

g(ād
i (K)|V )

= lim
nd−→+∞

∑

ād(K)∈Ad,u
V (K)

∑nd

i=1
I(ād

i (K)=ād(K))I(ād
i (K)∈A)

g(ād
i (K)|V )∑nd

i=1
1

g(ād
i (K)|V )

= lim
nd−→+∞

∑nd

i=1
I(ād

i (K)∈A)

g(ād
i (K)|V )∑nd

i=1
1

g(ād
i (K)|V )

= lim
nd−→+∞

1
nd

∑nd

i=1
I(ād

i (K)∈A)

g(ād
i (K)|V )

1
nd

∑nd

i=1
1

g(ād
i (K)|V )

= lim
nd−→+∞

Eg

(
I(Ā(K)∈A)

g(Ā(K)|V )
| V

)

Eg

(
1

g(Ā(K)|V )
| V

)

= lim
nd−→+∞

∫
ā(K)∈AV (K)

I(ā(K)∈A)
g(ā(K)|V )

g(ā(K) | V )dµ(ā(K))∫
ā(K)∈AV (K)

1
g(ā(K)|V )

g(ā(K) | V )dµ(ā(K))

= lim
nd−→+∞

∫
ā(K)∈AV (K)

I(ā(K) ∈ A)dµ(ā(K))∫
ā(K)∈AV (K)

dµ(ā(K))

= lim
nd−→+∞

∫
ā(K)∈A dµ(ā(K))∫

ā(K)∈AV (K)
dµ(ā(K))

since A ⊂ AV (K).

References

[1] R.D. Gill, M.J. van der Laan, and J.M. Robins. Coarsening at random: Character-
izations, conjectures and counter-examples. In D.Y. Lin and T.R. Fleming, editors,
Proceedings of the First Seattle Symposium in Biostatistics, 1995, Lecture Notes in
Statistics, pages 255–294, New York, 1997. Springer.

[2] R. Neugebauer and M.J. van der Laan. Locally efficient estimation of nonparametric
causal effects on mean outcomes in longitudinal studies. Working paper 134, U.C.
Berkeley Division of Biostatistics Working Paper Series, 2003. [www http://www.

bepress.com/ucbbiostat/paper134/].

31

Hosted by The Berkeley Electronic Press

http://www.bepress.com/ucbbiostat/paper134/�
http://www.bepress.com/ucbbiostat/paper134/�


[3] R. Neugebauer and M.J. van der Laan. Why prefer double robust estimators
in causal inference? Journal of Statistical Planning and Inference, 129:405–
426, February 2005. [www http://www.sciencedirect.com/science/article/

B6V0M-4D5X61S-1/2/b7d0d4635a72e22ee511cce500b33901].

[4] D.B. Rubin. Inference and missing data. Biometrika, pages 581–590, 1976.

[5] M.J. van der Laan and J. M. Robins. Unified Methods for Censored Longitudinal Data
and Causality. Springer, New York, 2002.

32

http://biostats.bepress.com/ucbbiostat/paper183

http://www.sciencedirect.com/science/article/B6V0M-4D5X61S-1/2/b7d0d4635a72e22ee511cce500b33901�
http://www.sciencedirect.com/science/article/B6V0M-4D5X61S-1/2/b7d0d4635a72e22ee511cce500b33901�

	text.pdf.1120586884.titlepage.pdf.Pyr2Y
	tmp.1120586884.pdf.Khaz9

