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Abstract

The receiver operating characteristic (ROC) curve, the positive predictive value (PPV) curve and

the negative predictive value (NPV) curve are three common measures of performance for a diagnostic

biomarker. The independent increments covariance structure assumption is common in the group se-

quential study design literature. Showing that summary measures of the ROC, PPV and NPV curves

have an independent increments covariance structure will provide the theoretical foundation for design-

ing group sequential diagnostic biomarker studies. The ROC, PPV and NPV curves are often estimated

empirically to avoid assumptions about the distributional form of the biomarkers. In this paper we derive

asymptotic theory for the sequential empirical ROC, PPV and NPV curves. These results are used to

show that the independent increments assumption holds for some summary measures of the ROC, PPV

and NPV curves when estimated empirically.

Hosted by The Berkeley Electronic Press



1 Introduction

Diagnostic biomarkers are used to classify a patient as a case or a control. Two common approaches for

evaluating a diagnostic biomarker are to summarize the markers classification and predictive accuracy. Clas-

sification accuracy refers to the biomarker’s ability to, conditional on the subjects true case/control status,

correctly classify the subject as a case or control. Predictive accuracy refers to the biomarker’s ability to,

conditional on the biomarker value, predict if a subject is truly a case or control.

A dichotomous biomarker can only take the values positive or negative and therefore it is straightforward

to summarize its classification and predictive accuracy. In contrast, a threshold must be defined in order

to translate a continuous biomarker into a positive or negative test result. In the setting of case-control

sampling, where disease status is known before sampling, let XD be a biomarker value for a case with cumu-

lative distribution function FD(x) and XD̄ be a biomarker value for a control with cumulative distribution

function FD̄(x). In the setting of cohort sampling, where disease status is unknown before sampling from

a well defined cohort, let D be a Bernoulli random variable indicating disease status with prevalence ρ and

let X be a biomarker value with conditional distribution F (x|D = 1) = FD(x) and F (x|D = 0) = FD̄(x).

The marginal distribution of X is therefore F (x) = ρFD(x) + (1− ρ) FD̄(x). In both cases, we assume that

larger biomarker values are more indicative of disease. Therefore, for a threshold c, a biomarker value XD,

XD̄ or X is translated into a positive test result if it is greater than c and a negative test result if it is less

than or equal to c.

The receiver operating characteristic (ROC) curve summarizes the classification accuracy of a continu-

ous marker (Pepe, 2003). The classification accuracy of a dichotomous biomarker is summarized by the

sensitivity and specificity. This can be extended to continuous markers by defining a threshold and report-

ing the sensitivity and specificity of the dichotomous marker derived from this threshold. For a given

threshold c, the classification accuracy of the biomarker can be summarized by the true positive frac-

tion (TPF), TPF (c) = P [X > c|D = 1] = P [XD > c], and the false positive fraction (FPF), FPF (c) =

P [X > c|D = 0] = P [XD̄ > c]. The entire set of possible true and false positive fractions can be summarized
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by the (ROC) curve

ROC(c) = {(TPF (c), FPF (c)) , c ∈ (−∞,∞)}.

The ROC curve can alternately be expressed as

ROC(t) = SD

(
S−1

D̄
(t)
)
, t ∈ (0, 1) , (1)

where SD(x) = 1 − FD(x) and SD̄(x) = 1 − FD̄(x). ROC(t) can be interpreted as the TPF corresponding

to a FPF of t. Alternately, one might be interested in the inverse of the ROC curve,

ROC−1(v) = SD̄

(
S−1

D (v)
)
, v ∈ (0, 1) . (2)

ROC−1(v) is indexed by the TPF and can be interpreted as the FPF corresponding to a TPF of v.

The predictive accuracy of a dichotomous biomarker can be summarized by the positive predictive value

(PPV) and negative predictive value (NPV). The PPV and NPV curves were proposed as an extension

of PPV and NPV to continuous markers (Moskowitz and Pepe, 2004; Zheng et al., 2008). For a given

threshold c, the predictive accuracy of the biomarker can be summarized by the positive predictive value,

PPV (c) = P [D = 1|X > c], and the negative predictive value, NPV (c) = P [D = 0|X ≤ c]. The PPV and

NPV curves are defined as PPV (c) and NPV (c) for all c ∈ (−∞,∞). In practice, the PPV and NPV curves

are indexed by a summary of the marker distribution rather than a generic threshold. In this paper, we

consider the PPV and NPV curves indexed by the TPF, FPF and the percentile value in the entire population.

The ROC, PPV and NPV curves are commonly estimated nonparametrically using the empirical ROC

curve, the empirical PPV curve and the empirical NPV curve, respectively. Nonparametric estimation al-

lows us to avoid making assumptions about the form of FD(x) and FD̄(x). This is particularly important

in the case of the ROC, PPV and NPV curves because our interest often lies in regions of the curve that

correspond to the tails of the distributions. For example, a biomarker must possess a high specificity in order

to be clinically useful in a low disease risk population screening setting, which corresponds to the upper tail
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of the distribution of the biomarker in the controls.

Our understanding of the empirical ROC curve is enhanced by knowledge of it’s asymptotic properties.

Hsieh and Turnbull (1996) showed that the empirical ROC curve converges to the sum of two independent

Brownian bridges. The asymptotic normality of summary measures of the empirical ROC curve, such as the

area under the ROC curve or a point on the ROC curve, can be derived as a result of their work. Currently,

no asymptotic theory is available for the empirical PPV and NPV curves.

Group sequential study designs provide an opportunity to improve the efficiency of diagnostic biomarker

studies. Many group sequential methods assume an independent increments covariance structure (Jennison

and Turnbull, 2000). These methods could be applied to any summary of the ROC, PPV or NPV curve for

which this assumption holds. Tang et al. (2008) recently showed that a family of weighted area under the

ROC curve (wAUC) statistics has an independent increments covariance structure and illustrate how this

family of statistics can be used to design group sequential diagnostic biomarker studies. Showing that a wide

array of summaries of the ROC, PPV and NPV curves have an independent increment covariance structure

will allow more flexibility when designing group sequential diagnostic biomarker studies.

In this paper we investigate the asymptotic properties of the sequential empirical ROC, PPV and NPV

curves. We first define the sequential empirical estimates of the underlying distribution and quantile func-

tions under case-control and cohort sampling. Under case-control sampling, let XD,1, XD,2, . . . , XD,nD
be

the marker values for the cases with distribution function, FD(x), and XD̄,1, XD̄,2, . . . , XD̄,nD̄
be the marker

values for the controls with distribution function, FD̄(x). Furthermore, we let rD and rD̄ refer to the pro-

portion of case and controls, respectively, that are observed at a given time point. The sequential empirical

estimate of FD(x) is defined as

F̂D,rD
(x) =

 0, 0 ≤ rD < 1
nD

,

1
[rDnD]

∑[rDnD]
i=1 1{XD,i ≤ x}, −∞ < x < ∞, 1

nD
≤ rD ≤ 1,
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and the sequential empirical estimate of F−1
D (t) is defined as

F̂−1
D,rD

(t) =


XD,1,[rDnD] if t = 0, 0 ≤ rD ≤ 1,

XD,k,[rDnD] if k−1
[rDnD] < t ≤ k

[rDnD] ,

1 ≤ k ≤ [rDnD], 0 ≤ t ≤ 1

where XD,1,[rDnD], XD,2,[rDnD], . . . , XD,[rDnD],[rDnD] are the sequential order statistics of the biomarker val-

ues for the cases. The sequential empirical estimates of SD(x) and S−1
D (t) are defined as ŜD,rD

(x) =

1− F̂D,rD
(x) and Ŝ−1

D,rD
(t) = F̂−1

D,rD
(1− t). The sequential empirical estimates for the control population are

defined analagously. The sequential empirical estimates of FD(x) and FD̄(x) lead to a natural definition of

the sequential empirical estimates of F (x) and F−1(t) under case-control sampling,

F̂rD,rD̄
(x) = ρF̂D,rD

(x) + (1− ρ) F̂D̄,rD̄
(x)

and

F̂−1
rD,rD̄

(t) = inf{x : F̂rD,rD̄
(x) ≥ t},

where ρ is assumed to be known.

Under cohort sampling, let D1, D2, . . . , Dn be i.i.d. Bernoulli random variables indicating disease status with

prevalence ρ, let X1, X2, . . . , Xn be biomarker values with conditional distribution F (x|D = 1) = FD(x) and

F (x|D = 0) = FD̄(x) and let r refer to the proportion of subjects observed at a given time point. The

marginal distribution of the X ′
is is F (x) = ρFD(x) + (1− ρ) FD̄(x). The sequential empirical estimate of

FD(x) under cohort sampling is defined as

F̂D,r(x) =

 0, 0 ≤ r < 1
n ,

P̂r(X≤x,D=1)
ρ̂r

, −∞ < x < ∞, 1
n ≤ r ≤ 1,

4
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where

P̂r (X ≤ x,D = 1) =

 0, 0 ≤ r < 1
n ,

1
[rn]

∑[rn]
i=1 1{Xi ≤ x,Di = 1}, −∞ < x < ∞, 1

n ≤ r ≤ 1,

and

ρ̂r =
1

[rn]

[rn]∑
i=1

Di.

The sequential empirical estimate of F−1
D (t) under cohort sampling is defined as

F̂−1
D,r(t) = inf{x : F̂D,r(x) ≥ t}.

Again, the sequential empirical estimates of SD(x) and S−1
D (t) are defined as ŜD,r(x) = 1 − F̂D(x) and

Ŝ−1
D,r(t) = F̂−1

D,r(1−t) and the sequential empirical estimates for the control population are defined analagously.

The sequential empirical estimate of F (x) is

F̂r(x) =

 0, 0 ≤ r < 1
n ,

1
[rn]

∑[rn]
i=1 1{Xi ≤ x}, −∞ < x < ∞, 1

n ≤ r ≤ 1,

and the sequential empirical estimate of F−1(t) is

F̂−1
r (t) =


X1,[rn] if t = 0, 0 ≤ r ≤ 1,

Xk,[rn] if k−1
[rn] < t ≤ k

[rn] ,

1 ≤ k ≤ [rn], 0 ≤ t ≤ 1,

where X1,[rn], X2,[rn], . . . , X[rn],[rn] are the sequential order statistics of the biomarker values in the entire

population.

Throughout this paper we let 0 < a < b < 1, 0 < c < 1, 0 < d < 1, 0 < e < 1 and make the follow-

ing assumptions:

A1 FD(x) and FD̄(x) are continuous distribution functions with continuous densities fD(x) and fD̄(x),
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respectively,

A2 fD(x) > 0 for x ∈ (sup{x : FD(x) = 0}, inf{x : FD(x) = 1}),

A3 fD̄(x) > 0 for x ∈ (sup{x : FD̄(x) = 0}, inf{x : FD̄(x) = 1}),

and under case-control sampling we also assume

A4 nD

nD̄
→ λ > 0 as nD →∞ and nD̄ →∞.

In section 2 we extend the work of Hsieh and Turnbull (1996) to the sequential empirical ROC curve and

use this result to show that the sequential empirical estimate of ROC(t), a point on the ROC curve, has an

independent increments covariance structure. In Sections 3, 4 and 5 we consider the PPV and NPV curves

indexed by the true positive fraction, false positive fraction and the percentile value in the entire population,

respectively. Distribution theory is developed for the sequential empirical PPV and NPV curves along with

some of their summary measures. Distribution theory for the fixed-sample empirical PPV and NPV curves

is developed as a special case.

2 ROC curve

2.1 Under Case-Control Sampling

We first consider the sequential empirical estimate of the ROC curve. In most instances the ROC curve

is estimated from case-control sampling and therefore we assume case-control sampling at this point. The

sequential empirical estimate of the ROC curve, R̂OCrD,rD
(t), is defined by substituting the sequential

empirical estimates of SD(x) and SD̄(x) into (1)

R̂OCrD,rD̄
(t) = ŜD,rD

(
Ŝ−1

D̄,rD̄
(t)
)

.

The sequential empirical estimate of ROC−1(v) is defined similarly. Theorem 2.1 establishes the convergence

in distribution of the sequential empirical ROC curve and the inverse of the ROC curve to the sum of two

6
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independent Kiefer processes.

Theorem 2.1. Assume A1-A4 hold.

A. Let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
−1/2
D [nDrD](R̂OCrD,rD̄

(t)− ROC(t)) →DK1(ROC(t), rD) + λ
1/2 rD

rD̄

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
K2(t, rD̄)

uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

B. Let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
−1/2
D [nDrD](R̂OC

−1
rD,rD̄

(v)− ROC
−1

(v)) →Dλ
−1/2 rD

rD̄

K2(ROC
−1

(v), rD̄) +

 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
K1(v, rD)

uniformly for v ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

Proof. We present the proof of A and note that the proof of B is nearly identical. First, note that

n
−1/2
D [nDrD]( ˆROCrD,rD̄

(t)−ROC(t)) =n
−1/2
D [nDrD]

“
ŜD,rD (Ŝ−1

D̄,rD̄
(t))− SD(S−1

D̄
(t))
”

=n
−1/2
D [nDrD]

“
ŜD,rD (Ŝ−1

D̄,rD̄
(t))− SD(Ŝ−1

D̄,rD̄
(t))
”

+ n
−1/2
D [nDrD]

“
SD(Ŝ−1

D̄,rD̄
(t))− SD(S−1

D̄
(t))
”

.

The first term converges to a Kiefer process. We note that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
FD̄

„
F̂
−1
D̄,rD̄

(t)

«
− t

˛̨̨̨
=

nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

[nD̄d]

nD̄

˛̨̨̨
FD̄

„
F̂
−1
D̄,rD̄

(t)

«
− t

˛̨̨̨

≤
nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

[nD̄rD̄]

nD̄

˛̨̨̨
FD̄

„
F̂
−1
D̄,rD̄

(t)

«
− t

˛̨̨̨
.

Therefore

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣FD̄

(
F̂−1

D̄,rD̄
(t)
)
− t
∣∣∣→a.s. 0 (3)

by the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and Szyszkowicz (1998)) and because nD̄

[nD̄d] →
1
d .
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Furthermore, F−1
D̄

(t) will be continuous by A1-A3 and will be uniformly continuous on [a, b]. Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣F̂−1
D̄,rD̄

(t)− F−1
D̄

(t)
∣∣∣→a.s. 0. (4)

We note that due to the continuity of FD̄(x), S−1
D̄

(t) = F−1
D̄

(1− t) and therefore (4) also applies to S−1
D̄

(t).

From corollary 1.A in Csörgő and Szyszkowicz (1998), (4) and the uniform continuity of the Kiefer process,

we have

n
−1/2
D [nDrD]

(
ŜD,rD

(Ŝ−1
D̄,rD̄

(t))− SD(Ŝ−1
D̄,rD̄

(t))
)
→D K1(ROC(t), rD). (5)

The second term can be re-written as

n
−1/2
D

[nDrD ]

 
SD(Ŝ

−1
D̄,rD̄

(t)) − SD(S
−1
D̄

(t))

!

=n
−1/2
D

[nDrD ]

 
SD

 
S
−1
D̄

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!!!
− SD

“
S
−1
D̄

(t)
”!

=
n
−1/2
D

[nDrD ]

n
−1/2
D̄

[nD̄rD̄ ]

 
SD

 
S
−1
D̄

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!!!
− SD

“
S
−1
D̄

(t)
”!

SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− t

n
−1/2
D̄

[nD̄rD̄ ]

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− t

!

=
n
−1/2
D

[nDrD ]

n
−1/2
D̄

[nD̄rD̄ ]

 
SD

 
S
−1
D̄

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!!!
− SD

“
S
−1
D̄

(t)
”!

SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− t

n
−1/2
D̄

[nD̄rD̄ ]

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− ŜD̄,rD̄

 
Ŝ
−1
D̄,rD̄

(t)

!!

+
n
−1/2
D

[nDrD ]

n
−1/2
D̄

[nD̄rD̄ ]

 
SD

 
S
−1
D̄

 
SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!!!
− SD

“
S
−1
D̄

(t)
”!

SD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− t

n
−1/2
D̄

[nD̄rD̄ ]

 
ŜD̄,rD̄

 
Ŝ
−1
D̄,rD̄

(t)

!
− t

!
.

By the mean value theorem, there exists a SD̄

(
S̃−1

D̄,rD̄
(t)
)

between SD̄

(
Ŝ−1

D̄,rD̄
(t)
)

and t such that

SD

(
S−1

D̄

(
SD̄

(
Ŝ−1

D̄,rD̄
(t)
)))

− SD

(
S−1

D̄
(t)
)

SD̄

(
Ŝ−1

D̄,rD̄
(t)
)
− t

=
fD

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,rD̄
(t)
)))

fD̄

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,rD̄
(t)
))) .

From (3), we know that SD̄

(
Ŝ−1

D̄,rD̄
(t)
)
→a.s. t, uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1], and,

therefore, SD̄

(
S̃−1

D̄,rD̄
(t)
)
→a.s. t, uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1]. This, along with the

uniform continuity of
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t)) , allows us to conclude that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣∣∣∣
fD

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,rD̄
(t)
)))

fD̄

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,rD̄
(t)
))) − fD

(
S−1

D̄
(t)
)

fD̄

(
S−1

D̄
(t)
)
∣∣∣∣∣∣→a.s. 0,

8
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which implies,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
˛̨̨SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,rD̄
(t)
”””

− SD

“
S−1

D̄
(t)
”

SD̄

“
Ŝ−1

D̄,rD̄
(t)
”
− t

−
fD

“
S−1

D̄
(t)
”

fD̄

“
S−1

D̄
(t)
”
˛̨̨̨
˛̨̨→a.s. 0. (6)

For all rD̄ ∈ [d, 1],

sup
a≤t≤b

∣∣∣ŜD̄,rD̄

(
Ŝ−1

D̄,rD̄
(t)
)
− t
∣∣∣ ≤a.s.

1
[nD̄rD̄]

.

Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

n
−1/2

D̄
[nD̄rD̄]

∣∣∣ŜD̄,rD̄

(
Ŝ−1

D̄,rD̄
(t)
)
− t
∣∣∣ ≤a.s.

1

n
1/2

D̄

,

and

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

n
−1/2

D̄
[nD̄rD̄]

∣∣∣ŜD̄,rD̄

(
Ŝ−1

D̄,rD̄
(t)
)
− t
∣∣∣→a.s. 0. (7)

From corollary 1.A in Csörgő and Szyszkowicz (1998), (4) and the uniform continuity of the Kiefer process,

we have

n
−1/2

D̄
[nD̄rD̄]

(
SD̄

(
Ŝ−1

D̄,rD̄
(t)
)
− ŜD̄,rD̄

(
Ŝ−1

D̄,rD̄
(t)
))

→D K2(t, rD̄). (8)

By (6), (7), (8) and noting that n
−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄]
→ λ1/2 rD

rD̄
, we conclude that

n
−1/2
D [nDrD]

“
SD(Ŝ−1

D̄,rD̄
(t))− SD(S−1

D̄
(t))
”
→D λ1/2 rD

rD̄

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
K2(t, rD̄). (9)

Summing (5) and (9) gives the desired result.

Theorem 2.1 extends the work of Hsieh and Turnbull to the sequential empirical ROC curve. We see

that the result is nearly identical to Hsieh and Turnbull’s result with Kiefer Processes replacing Brownian

Bridges. In fact, we are able to recover Hsieh and Turnbull’s result as a corollary.

Corollary 2.2. Assume A1-A4 hold.

A. Let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
1/2
D (R̂OC1,1(t)−ROC(t)) →DB1(ROC(t)) + λ1/2

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
B2(t)

9
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uniformly for t ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

B. Let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
1/2
D (R̂OC

−1

1,1(v)−ROC−1(v)) →Dλ−1/2B2(ROC−1(v)) +

„
fD̄(S−1

D (v))

fD(S−1
D (v))

«
B1(v)

uniformly for v ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

Proof. Immediate from Theorem 2.1 and by noting that K(t, 1) =D B(t).

Our ability to implement group sequential methodology for diagnostic biomarker studies will be enhanced

by showing that summary measures of the ROC curve have an independent increments covariance structure

when estimated sequentially. From Theorem 2.1 we are able to derive distribution theory for the sequential

empirical estimates of summary measures of the ROC curve. Corollary 2.3 shows that the sequential empir-

ical estimate of ROC(t), a point on the ROC curve, has an independent increments covariance structure.

Corollary 2.3. Assume A1-A4 hold.

A. Let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1) and J stopping times,(

R̂OCrD,1,rD̄,1
(t), R̂OCrD,2,rD̄,2

(t), . . . , R̂OCrD,J ,rD̄,J
(t)
)
, is approximately multivariate normal with,

R̂OCrD,i,rD̄,i
(t) ∼ N

(
ROC(t), σ2

R̂OCrD,i,rD̄,i
(t)

)
i = 1, 2, . . . , J

and
Cov

h
R̂OCrD,i,rD̄,i

(t), R̂OCrD,j,rD̄,j
(t)
i

= V ar
h
R̂OCrD,j,rD̄,j

(t)
i

= σ
2
R̂OCrD,j,rD̄,j

(t)
, ri ≤ rj

where

σ2

R̂OCrD,j,rD̄,j
(t)

=
ROC(t) (1−ROC(t))

nDrD,j
+

(
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

)2
t (1− t)
nD̄rD̄,j

.

B. Let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1) and J stopping times,

10
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(
R̂OC

−1

rD,1,rD̄,1
(v), R̂OC

−1

rD,2,rD̄,2
(v), . . . , R̂OC

−1

rD,J ,rD̄,J
(v)
)
, is approximately multivariate normal with,

R̂OC
−1

rD,i,rD̄,i
(v) ∼ N

(
ROC−1(v), σ2

R̂OC
−1
rD,i,rD̄,i

(v)

)
i = 1, 2, . . . , J

and
Cov

»
R̂OC

−1
rD,i,rD̄,i

(v), R̂OC
−1
rD,j,rD̄,j

(v)

–
= V ar

»
R̂OC

−1
rD,j,rD̄,j

(v)

–
= σ

2
R̂OC

−1
rD,j,rD̄,j

(v)
, ri ≤ rj

where

σ2

R̂OC
−1
rD,j,rD̄,j

(v)
=

ROC−1(v)
(
1−ROC−1(v)

)
nD̄rD̄,j

+
(

fD̄(S−1
D (v))

fD(S−1
D (v))

)2
v (1− v)
nDrD,j

.

Proof. Immediate from Theorem 2.1.

2.2 Under Cohort Sampling

We conclude this section by considering the behavior of the sequential empirical estimates of ROC(t) and

ROC(v)−1 under cohort sampling. These results are not of primary interest because the ROC curve and

inverse ROC curve are usually estimated from case-control sampling. We will, though, need these results

in the remainder of this chapter. Briefly, the sequential empirical estimates of the ROC curve under cohort

sampling is found by substituting the sequential empirical estimates of SD(x) and S−1
D̄

(t) under cohort

sampling into (1)

R̂OCr(t) = ŜD,r

(
Ŝ−1

D̄,r
(t)
)

.

The sequential empirical estimate of ROC−1(v) is defined in an analagous fashion. We begin by con-

sidering the joint asymptotic behavior of n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
, n−1/2[nr]

(
F̂D̄,r(x)− FD̄(x)

)
and

n−1/2[nr] (ρ̂r − ρ) under cohort sampling.

Lemma 2.4 provides the basis for all remaining asymptotic results that assume cohort sampling.

11
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Lemma 2.4. Assume A1-A3 hold,

n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
→D

1
√

ρ
K3 (FD(x), r) ,

uniformly for x ∈ (−∞,∞) and r ∈ [0, 1],

n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
→D

1√
1− ρ

K4 (FD̄(x), r) ,

uniformly for x ∈ (−∞,∞) and r ∈ [0, 1] and

n−1/2[nr] (ρ̂r − ρ) →D

√
ρ (1− ρ)W (r) ,

uniformly for r ∈ [0, 1], where K3 and K4 are independent Kiefer processes and W is a Wiener process that

is independent of both K3 and K4.

Proof. Let Pn = 1
n

∑n
i=1 δXi,Di

be the empirical measure and consider the following class F of real-valued

functions defined on R× {0, 1} ∪ {∞}:

F = {1[X≤x]D, 1[X≤x] (1−D) : x ∈ R}.

Therefore, for f ∈ F , Pnf = 1
n

∑n
i=1 f (Xi, Di). F is a VC class of functions by Lemma 2.6.17 of van der

Vaart and Wellner (1996). By combining this with van der Vaart and Wellner (1996), Theorem 2.4.6, page

136 and Theorem 2.5.2, page 127, and noting that ‖f‖∞ ≤ 1 ≡ F for all f ∈ F , we conclude that F is

P−Donsker.. Furthermore, by Theorem 2.12.1 of van der Vaart and Wellner (1996),

1√
n

[nr]∑
i=1

(f (Xi, Di)− Pf) →D K (f, r)

in l∞(F × [0, 1]) where K is a P−Kiefer process. That is, a mean-zero Gaussian process with covariance

Cov (K (f1, r1) ,K (f2, r2)) = (r1 ∧ r2) (P (f1f2)− P (f1) P (f2)) ,

12
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for f1, f2 ∈ F and r1, r2 ∈ [0, 1]. Therefore,

n−1/2[nr]
(
P̂r (X ≤ x,D = 1)− P (X ≤ x,D = 1)

)
→D K

(
D1[X≤x], r

)
,

n−1/2[nr]
(
P̂r (X ≤ x,D = 0)− P (X ≤ x,D = 0)

)
→D K

(
(1−D) 1[X≤x], r

)
,

and

n−1/2[nr] (ρ̂r − ρ) →D K (D, r) ,

where K is a P−Kiefer process with

Cov
`
K
`
D1[X≤x1], r1

´
, K
`
(1−D) 1[X≤x2], r2

´´
= (r1 ∧ r2) (0− ρ (1− ρ) FD(x1)FD̄(x2))

=− (r1 ∧ r2) ρ (1− ρ) FD(x1)FD̄(x2),

Cov
(
K
(
D1[X≤x1], r1

)
,K (D, r2)

)
=(r1 ∧ r2)

(
ρFD(x1)− ρ2FD(x1)

)
=(r1 ∧ r2) ρ (1− ρ) FD(x1),

and

Cov
(
K
(
(1−D) 1[X≤x1], r1

)
,K
(
D, 1[X≤x2]

))
=(r1 ∧ r2) (0− ρ (1− ρ) FD̄(x1))

=− (r1 ∧ r2) ρ (1− ρ) FD̄(x1).

13
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Now, note that

n−1/2[nr]
“
F̂D,r(x)− FD(x)

”
=n−1/2[nr]

 
P̂r (X ≤ x, D = 1)

ρ̂r
−

P (X ≤ x, D = 1)

ρ

!

=n−1/2[nr]

 
P̂r (X ≤ x, D = 1)

ρ̂r
−

P (X ≤ x, D = 1)

ρ̂r

!

+ n−1/2[nr]

„
P (X ≤ x, D = 1)

ρ̂r
−

P (X ≤ x, D = 1)

ρ

«
=

1

ρ̂r
n−1/2[nr]

“
P̂r (X ≤ x, D = 1)− P (X ≤ x, D = 1)

”
−

FD(x)

ρ̂r
n−1/2[nr] (ρ̂r − ρ) .

From above we conclude

n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
→D

1
ρ
K
(
D1[X≤x], r

)
− FD(x)

ρ
K (D, r) ,

Similarly,

n−1/2[nr]
“
F̂D̄,r(x)− FD̄(x)

”
=n−1/2[nr]

 
P̂r (X ≤ x, D = 0)

1− ρ̂r
−

P (X ≤ x, D = 0)

1− ρ

!

=n−1/2[nr]

 
P̂r (X ≤ x, D = 0)

1− ρ̂r
−

P (X ≤ x, D = 0)

1− ρ̂r

!

+ n−1/2[nr]

„
P (X ≤ x, D = 1)

1− ρ̂r
−

P (X ≤ x, D = 1)

1− ρ

«
=

1

1− ρ̂r
n−1/2[nr]

“
P̂r (X ≤ x, D = 0)− P (X ≤ x, D = 0)

”
+

FD̄(x)

1− ρ̂r
n−1/2[nr] (ρ̂r − ρ) ,

and

n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
→D

1
1− ρ

K
(
(1−D) 1[X≤x], r

)
+

FD̄(x)
1− ρ

K (D, r) .

To show that the limiting processes of n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
and

n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
are independent we must show that 1

ρK
(
D1[X≤x], r

)
− FD(x)

ρ K (D, r) and

14
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1
1−ρK

(
(1−D) 1[X≤x], r

)
+ FD̄(x)

1−ρ K (D, r) have covariance 0. Without loss of generality, assume r1 ≤ r2,

Cov

„
1

ρ
K
`
D1[X≤x1], r1

´
−

FD(x1)

ρ
K (D, r1) ,

1

1− ρ
K
`
(1−D) 1[X≤x2], r2

´
+

FD̄(x2)

1− ρ
K (D, r2)

«
=

1

ρ (1− ρ)
Cov

`
K
`
D1[X≤x1], r1

´
, K
`
(1−D) 1[X≤x2], r2

´´
+

FD̄(x2)

ρ (1− ρ)
Cov

`
K
`
D1[X≤x1], r1

´
, K (D, r2)

´
−

FD(x1)

ρ (1− ρ)
Cov

`
K (D, r1) , K

`
(1−D) 1[X≤x2], r2

´´
−

FD(x1)FD̄(x2)

ρ (1− ρ)
Cov (K (D, r1) , K (D, r2))

=− r1FD(x1)FD̄(x2) + r1FD(x1)FD̄(x2) + r1FD(x1)FD̄(x2)− r1FD(x1)FD̄(x2)

=0, (10)

and we conclude that the limiting processes of n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
and

n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
are independent. A similar calculation shows that the limiting processes of

n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
and n−1/2[nr] (ρ̂r − ρ) are independent. Again, assume r1 ≤ r2,

Cov

 
1

ρ
K
“

D1[X≤x], r1
”
−

FD(x)

ρ
K (D, r1) , K (D, r2)

!
=

1

ρ
Cov

“
K
“

D1[X≤x], r1
”

, K (D, r2)
”
−

FD(x)

ρ
Cov (K (D, r1) , K (D, r2))

=
1

ρ
r1
“

ρFD(x) − ρ
2

FD(x1)
”
−

FD(x)

ρ
r1
“

ρ − ρ
2”

=FD(x)r1 (1 − ρ) − FD(x)r1 (1 − ρ)

=0. (11)

Finally, we can show that the limiting processes of n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
and n−1/2[nr] (ρ̂r − ρ) are

independent. Again, assuming r1 ≤ r2,

Cov

 
1

1 − ρ
K
“
(1 −D) 1[X≤x], r1

”
+

FD̄(x1)

1 − ρ
K (D, r1) , K (D, r2)

!

=
1

1 − ρ
Cov

“
K
“
(1 −D) 1[X≤x], r1

”
, K (D, r2)

”
+

FD̄(x)

1 − ρ
Cov (K (D, r1) , K (D, r2))

= −r1ρFD̄(x) + r1ρFD̄(x)

= 0, (12)

and we conclude that the limiting processes of n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
and

n−1/2[nr] (ρ̂r − ρ) are independent.

We next show that 1
ρK

(
D1[X≤x], r

)
− FD(x)

ρ K (D, r) is equal in distribution to an (ordinary) Kiefer process

indexed by [0, 1] × [0, 1], 1√
ρK3 (FD(x), r). 1

ρK
(
D1[X≤x], r

)
− FD(x)

ρ K (D, r) is a mean 0 Gaussian process
and will be equal in distribution to 1√

ρK3 (FD(x), r) if they have the same covariance structure. Without
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loss of generality assume r1 ≤ r2 and x1 ≤ x2,

Cov

„
1

ρ
K
`
D1[X≤x1], r1

´
−

FD(x1)

ρ
K (D, r1) ,

1

ρ
K
`
D1[X≤x2], r2

´
−

FD(x2)

ρ
K (D, r2)

«
=

1

ρ2
Cov

`
K
`
D1[X≤x1], r1

´
, K
`
D1[X≤x2], r2

´´
−

FD(x1)

ρ2
Cov

`
K (D, r1) , K

`
D1[X≤x2], r2

´´
−

FD(x2)

ρ2
Cov

`
K
`
D1[X≤x1], r1

´
, K (D, r2)

´
+

FD(x1)FD(x2)

ρ2
Cov (K (D, r1) , K (D, r2))

=
r1
`
ρFD(x1)− ρ2FD(x1)FD(x2)

´
ρ2

−
FD(x1)r1

`
ρFD(x2)− ρ2FD(x2)

´
ρ2

−
FD(x2)r1

`
ρFD(x1)− ρ2FD(x1)

´
ρ2

+
FD(x1)FD(x2)r1ρ (1− ρ)

ρ2

=
r1 (FD(x1)− FD(x1)FD(x2))

ρ

=Cov

„
1
√

ρ
K3 (FD(x1), r1) ,

1
√

ρ
K3 (FD(x2), r2)

«
.

This implies,
1
ρ
K
(
D1[X≤x], r

)
− FD(x)

ρ
K (D, r) =D

1
√

ρ
K3 (FD(x), r) ,

where K3 is a Kiefer process, and

n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
→D

1
√

ρ
K3 (FD(x), r) . (13)

A nearly identical argument shows that 1
1−ρK

(
(1−D) 1[X≤x], r

)
+ FD̄(x)

1−ρ K (D, r) is equal in distribution to

an (ordinary) Kiefer process indexed by [0, 1]× [0, 1],

1√
1−ρ

K4 (FD̄(x), r), and we conclude

n−1/2[nr]
(
F̂D̄,r(x)− FD̄(x)

)
→D

1√
1− ρ

K4 (FD̄(x), r) . (14)

Finally, we know that

K (D, r) =D

√
ρ (1− ρ)W (r) (15)

where W is a Wiener process. Combining (10) - (15) gives the desired result.

Lemma 2.4 provides the joint asymptotic behavior of n−1/2[nr]
(
F̂D,r(x)− FD(x)

)
, n−1/2[nr]

(
F̂D̄,r(x)− FD̄(x)

)
and n−1/2[nr] (ρ̂r − ρ) under cohort sampling. This result will be used when developing asymptotic theory
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for the ROC, PPV and NPV curves under cohort sampling. We next provide three lemmas that deal directly

with the behavior of the sequentail empirical ROC curve under cohort sampling. We begin by showing that

the sequential empirical ROC curve is consistent under cohort sampling.

Lemma 2.5. Assume A1-A3 hold and that ρ ∈ (0, 1).

A. As n →∞

R̂OCr(t) →a.s ROC(t)

uniformly for t ∈ [a, b] and r ∈ [e, 1].

B. As n →∞

R̂OC
−1

r (v) →a.s ROC−1(v)

uniformly for v ∈ [a, b] and r ∈ [e, 1].

Proof. We begin by showing that F̂D,r(x) converges uniformly to FD(x) for x ∈ < and r ∈ (e, 1]. Note that,

sup
e≤r≤1

sup
x∈<

˛̨̨
F̂D,r(x)− FD(x)

˛̨̨
= sup

e≤r≤1
sup
x∈<

˛̨̨̨
˛ P̂r (X ≤ x, D = 1)

ρ̂r
− P (X ≤ x, D = 1)

ρ

˛̨̨̨
˛

≤ sup
e≤r≤1

sup
x∈<

˛̨̨̨
˛ P̂r (X ≤ x, D = 1)

ρ̂r
− P̂r (X ≤ x, D = 1)

ρ

˛̨̨̨
˛

+ sup
e≤r≤1

sup
x∈<

˛̨̨̨
˛ P̂r (X ≤ x, D = 1)

ρ
− P (X ≤ x, D = 1)

ρ

˛̨̨̨
˛ .

The first term can be written as

sup
e≤r≤1

sup
x∈<

˛̨̨̨
˛ P̂r (X ≤ x, D = 1)

ρ̂r

−
P̂r (X ≤ x, D = 1)

ρ

˛̨̨̨
˛ =

n

[ne]
sup

e≤r≤1
sup
x∈<

[ne]

n

˛̨̨̨
P̂r (X ≤ x, D = 1)

„
1

ρ̂r

−
1

ρ

«˛̨̨̨

≤
n

[ne]
sup

e≤r≤1
sup
x∈<

[nr]

n

˛̨̨̨
1

ρ̂r

−
1

ρ

˛̨̨̨

=
n

[ne]
sup

e≤r≤1

[nr]

n

˛̨̨̨
1

ρ̂r

−
1

ρ

˛̨̨̨
→a.s. 0,

where the last line is a result of the Glivenko-Cantelli theorems (Theorem 1.52 of Csörgő and Szyszkowicz
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(1998)), the continuity of 1
ρ and n

[ne] →
1
e . The second term can be written as

sup
e≤r≤1

sup
x∈<

˛̨̨̨
˛ P̂ (X ≤ x, D = 1)

ρ
−

P (X ≤ x, D = 1)

ρ

˛̨̨̨
˛ =

1

ρ

n

[ne]
sup

e≤r≤1
sup
x∈<

[ne]

n

˛̨̨
P̂ (X ≤ x, D = 1)− P (X ≤ x, D = 1)

˛̨̨
≤

1

ρ

n

[ne]
sup

e≤r≤1
sup
x∈<

[nr]

n

˛̨̨
P̂ (X ≤ x, D = 1)− P (X ≤ x, D = 1)

˛̨̨
→a.s 0.

Again, the last line is a result of the Glivenko-Cantelli theorems and n
[ne] →

1
e . Combining these two results

gives us

sup
e≤r≤1

sup
x∈<

∣∣∣F̂D,r(x)− FD(x)
∣∣∣→a.s. 0. (16)

Furthermore, we have

sup
e≤r≤1

sup
a≤t≤b

∣∣∣FD

(
F̂−1

D (t)
)
− t
∣∣∣ ≤ sup

e≤r≤1
sup

a≤t≤b

∣∣∣FD

(
F̂−1

D (t)
)
− F̂D

(
F̂−1

D (t)
)∣∣∣

+ sup
e≤r≤1

sup
a≤t≤b

∣∣∣F̂D

(
F̂−1

D (t)
)
− t
∣∣∣ .

We know that,

sup
e≤r≤1

sup
a≤t≤b

∣∣∣FD

(
F̂−1

D (t)
)
− F̂D

(
F̂−1

D (t)
)∣∣∣→a.s. 0,

by (16) and

sup
e≤r≤1

sup
a≤t≤b

∣∣∣F̂D

(
F̂−1

D (t)
)
− t
∣∣∣ ≤a.s.

1∑[ne]
i=1 Di

→ 0.

Combining these two results gives us

sup
e≤r≤1

sup
a≤t≤b

∣∣∣FD

(
F̂−1

D (t)
)
− t
∣∣∣→a.s. 0. (17)
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Returning to the ROC curve under cohort sampling, we have

sup
e≤r≤1

sup
a≤t≤b

˛̨̨
ŜD,r

“
Ŝ
−1
D̄,r

(t)
”
− SD

“
S
−1
D̄

(t)
”˛̨̨
≤ sup

e≤r≤1
sup

a≤t≤b

˛̨̨
ŜD,r

“
Ŝ
−1
D̄,r

(t)
”
− SD

“
Ŝ
−1
D̄,r

(t)
”˛̨̨

+ sup
e≤r≤1

sup
a≤t≤b

˛̨̨
SD

“
Ŝ
−1
D̄,r

(t)
”
− SD

“
S
−1
D̄

(t)
”˛̨̨

= sup
e≤r≤1

sup
a≤t≤b

˛̨̨
ŜD,r

“
Ŝ
−1
D̄,r

(t)
”
− SD

“
Ŝ
−1
D̄,r

(t)
”˛̨̨

+ sup
e≤r≤1

sup
a≤t≤b

˛̨̨
SD

“
S
−1
D̄

“
SD̄

“
Ŝ
−1
D̄,r

(t)
”””

− SD

“
S
−1
D̄

(t)
”˛̨̨

The first term coverges to 0 uniformly as a result of (16), while the second term converges uniformly to 0 as

a result of (17) and the uniform continuity of SD

(
S−1

D̄
(t)
)
. Combining these two results gives us

sup
e≤r≤1

sup
a≤t≤b

∣∣∣ŜD,r

(
Ŝ−1

D̄,r
(t)
)
− SD

(
S−1

D̄
(t)
)∣∣∣→a.s. 0

The proof of part B is nearly identical.

The consistency of the sequential empirical ROC curve under cohort sampling will be used in the re-

maining sections of this chapter when developing asymptotic theory for the sequential empirical PPV and

NPV curves. The following lemma provides asymptotic theory for the sequential empirical ROC curve under

cohort sampling.

Lemma 2.6. Assume A1-A3 hold.

A. Let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. As n →∞

n
−1/2

[nr](R̂OCr(t)− ROC(t)) →D
1
√

ρ
K3(ROC(t), r) +

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

K4(t, r)

uniformly for t ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes.

B. Let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. As n →∞

n
−1/2

[nr](R̂OC
−1
r (v)− ROC

−1
(v)) →D

1
√

1− ρ
K4(ROC

−1
(v), r) +

 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
1
√

ρ
K3(v, r)

uniformly for v ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes.
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Proof. We provide a proof for part A and note that the proof of part B is nearly identical. First,

n−1/2[nr]( ˆROCr(t)−ROC(t)) =n−1/2[nr]
(
ŜD,r(Ŝ−1

D̄,r
(t))− SD(S−1

D̄
(t))
)

=n−1/2[nr]
(
ŜD,r(Ŝ−1

D̄,r
(t))− SD(Ŝ−1

D̄,rD̄
(t))
)

+ n−1/2[nr]
(
SD(Ŝ−1

D̄,r
(t))− SD(S−1

D̄
(t))
)

.

We know that SD̄

(
Ŝ−1

D̄,r
(t)
)

converges uniformly to t by (17). This, combined with the uniform continuity

of S−1
D̄

(t), allows us to conclude,

sup
e≤r≤1

sup
a≤t≤b

∣∣∣Ŝ−1
D̄

(t)− S−1
D̄

(t)
∣∣∣→a.s. 0.

Lemma 2.4, the uniform convergence of Ŝ−1
D̄

(t) to S−1 (t) for t ∈ [a, b] and r ∈ [e, 1] and the uniform

continuity of the Kiefer process gives us,

n−1/2[nr]
(
ŜD,r(Ŝ−1

D̄,r
(t))− SD(S−1

D̄
(t))
)
→D

1
√

ρ
K3(ROC(t), r), (18)

uniformly for t ∈ [a, b] and r ∈ [e, 1].

The second term can be re-written as,

n−1/2[nr]
“
SD(Ŝ−1

D̄,r
(t))− SD(S−1

D̄
(t))
”

=n−1/2[nr]
“
SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,r
(t)
”””

− SD

“
S−1

D̄
(t)
””

=

“
SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,r
(t)
”””

− SD

“
S−1

D̄
(t)
””

SD̄

“
Ŝ−1

D̄,r
(t)
”
− t

n−1/2[nr]
“
SD̄

“
Ŝ−1

D̄,r
(t)
”
− t
”

=

“
SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,r
(t)
”””

− SD

“
S−1

D̄
(t)
””

SD̄

“
Ŝ−1

D̄,r
(t)
”
− t

n−1/2[nr]
“
SD̄

“
Ŝ−1

D̄,r
(t)
”
− ŜD̄,r

“
Ŝ−1

D̄,r
(t)
””

+

“
SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,r
(t)
”””

− SD

“
S−1

D̄
(t)
””

SD̄

“
Ŝ−1

D̄,r
(t)
”
− t

n−1/2[nr]
“
ŜD̄,r

“
Ŝ−1

D̄,r
(t)
”
− t
”

.
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By the mean value theorem, there exists a SD̄

(
S̃−1

D̄,r
(t)
)

between SD̄

(
Ŝ−1

D̄,r
(t)
)

and t such that,

SD

(
S−1

D̄

(
SD̄

(
Ŝ−1

D̄,r
(t)
)))

− SD

(
S−1

D̄
(t)
)

SD̄

(
Ŝ−1

D̄,r
(t)
)
− t

=
fD

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,r
(t)
)))

fD̄

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,r
(t)
))) .

From (17), we know that SD̄

(
Ŝ−1

D̄,r
(t)
)
→a.s. t, uniformly for t ∈ [a, b] and r ∈ [e, 1], and, therefore,

SD̄

(
S̃−1

D̄,r
(t)
)
→a.s. t, uniformly for t ∈ [a, b] and r ∈ [e, 1]. This, along with the uniform continuity of

fD(S−1
D̄

(t))
fD̄(S−1

D̄
(t)) , allows us to conclude that,

sup
e≤r≤1

sup
a≤t≤b

∣∣∣∣∣∣
fD

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,r
(t)
)))

fD̄

(
S−1

D̄

(
SD̄

(
S̃−1

D̄,r
(t)
))) − fD

(
S−1

D̄
(t)
)

fD̄

(
S−1

D̄
(t)
)
∣∣∣∣∣∣→a.s. 0,

which implies,

sup
e≤r≤1

sup
a≤t≤b

˛̨̨̨
˛̨SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,r
(t)
”””

− SD

“
S−1

D̄
(t)
”

SD̄

“
Ŝ−1

D̄,r
(t)
”
− t

−
fD

“
S−1

D̄
(t)
”

fD̄

“
S−1

D̄
(t)
”
˛̨̨̨
˛̨→a.s. 0. (19)

Furthermore,

sup
e≤r≤1

sup
a≤t≤b

n−1/2[nr]
∣∣∣ŜD̄,r

(
Ŝ−1

D̄,r
(t)
)
− t
∣∣∣ ≤a.s.

n1/2∑[ne]
i=1 Di

,

and

sup
e≤r≤1

sup
a≤t≤b

n−1/2[nr]
∣∣∣ŜD̄,r

(
Ŝ−1

D̄,r
(t)
)
− t
∣∣∣→a.s. 0. (20)

By Lemma 2.4, the uniform convergence of Ŝ−1
D̄

(t) to S−1 (t) for t ∈ [a, b] and r ∈ [e, 1] and the uniform

continuity of the Kiefer process we conclude,

n−1/2[nr]
(
SD̄

(
Ŝ−1

D̄,r
(t)
)
− ŜD̄,r

(
Ŝ−1

D̄,r
(t)
))

→D
1√

1− ρ
K4(t, r), (21)

uniformly for t ∈ [a, b] and r ∈ [e, 1]. Combining (19), (20) and (21) allows us to conclude,

n−1/2[nr]
“
SD(Ŝ−1

D̄,r
(t))− SD(S−1

D̄
(t))
”
→D

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1√

1− ρ
K4(t, r), (22)

uniformly for t ∈ [a, b] and r ∈ [e, 1]. Summing (18) and (22) gives the desired result.
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Lemma 2.6 will be used in the next three sections to develop asymptotic theory for the empirical PPV

and NPV curves under cohort sampling. The final Lemma of this section provides asymptotic theory for the

sequential empirical estimate of a point on the ROC curve under cohort sampling.

Lemma 2.7. Assume A1-A3 hold.

A. Let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1) and J stopping times,(

R̂OCr1(t), R̂OCr2(t), . . . , R̂OCrJ
(t)
)
, is approximately multivariate normal with,

R̂OCri
(t) ∼ N

(
ROC(t), σ2

R̂OCri
(t)

)
i = 1, 2, . . . , J

and

Cov
[
R̂OCri

(t), R̂OCrj
(t)
]

= V ar
[
R̂OCrj

(t)
]

= σ2

R̂OCrj
(t)

, ri ≤ rj

where

σ2

R̂OCrj
(t)

=
ROC(t) (1−ROC(t))

ρnrj
+

(
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

)2
t (1− t)

(1− ρ) nrj
.

B. Let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1) and J stopping times,(
R̂OC

−1

r1
(v), R̂OC

−1

r2
(v), . . . , R̂OC

−1

rJ
(v)
)
, is approximately multivariate normal with,

R̂OC
−1

ri
(v) ∼ N

(
ROC−1(v), σ2

R̂OC
−1
ri

(v)

)
i = 1, 2, . . . , J

and

Cov
[
R̂OC

−1

ri
(v), R̂OC

−1

rj
(v)
]

= V ar
[
R̂OC

−1

rj
(v)
]

= σ2

R̂OC
−1
rj

(v)
, ri ≤ rj

where

σ2

R̂OC
−1
rj

(v)
=

ROC−1(v)
(
1−ROC−1(v)

)
(1− ρ) nrj

+
(

fD̄(S−1
D (v))

fD(S−1
D (v))

)2
v (1− v)

ρnrj
.

Proof. Immediate from Lemma 2.6.
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3 PPV and NPV curve indexed by the False Positive Fraction

We first consider the PPV and NPV curves indexed by the false positive fraction, t. In this case, the PPV

and NPV curves are defined as PPV (t) = P [D = 1|X > S−1
D̄

(t)] and NPV (t) = P [D = 0|X ≤ S−1
D̄

(t)] for

all t ∈ (0, 1). Under this indexing, the PPV and NPV curves can be written as functions of the ROC curve

PPV (t) =P [D = 1|X > S−1
D̄

(t)]

=
P [D = 1, X > S−1

D̄
(t)]

P [X > S−1
D̄

(t)]

=
P [X > S−1

D̄
(t)|D = 1]P [D = 1]

P [X > S−1
D̄

(t)|D = 1]P [D = 1] + P [X > S−1
D̄

(t)|D = 0]P [D = 0]

=
ROC (t) ρ

ROC (t) ρ + t (1− ρ)
. (23)

and

NPV (t) =
(1− t) (1− ρ)

(1−ROC (t)) ρ + (1− t) (1− ρ)
. (24)

The sequential empirical estimates of PPV (t) and NPV (t) can be found be plugging the sequential empirical

estimate of ROC(t) into (23) and (24). It is straight-forward to derive asymptotic theory for PPV (t) and

NPV (t) using the results from Section 2.

3.1 Under Case-Control Sampling

Consider estimation of PPV (t) and NPV (t) under case-control sampling. In case-control sampling, we

sample a pre-specified number of cases and controls and assume that the prevalence is known. The sequential

empirical estimates of PPV (t) and NPV (t) can be found by substituting the sequential empirical estimate

of ROC(t) into (23) and (24). The sequential empirical estimates of PPV (t) and NPV (t) are therefore

defined as

P̂PV cc,rD,rD̄
(t) =

R̂OCrD,rD̄
(t) ρ

R̂OCrD,rD̄
(t) ρ + t (1− ρ)

,
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and

N̂PV cc,rD,rD̄
(t) =

(1− t) (1− ρ)(
1− R̂OCrD,rD̄

(t)
)

ρ + (1− t) (1− ρ)
.

We see that P̂PV cc,rD,rD̄
(t) and N̂PV cc,rD,rD̄

(t) are functions of R̂OCrD,rD̄
(t) and therefore we can use the

results from Section 2 to derive asymptotic theory for P̂PV cc,rD,rD̄
(t) and N̂PV cc,rD,rD̄

(t). Theorem 3.1

establishes that P̂PV cc,rD,rD̄
(t) and N̂PV cc,rD,rD̄

(t) both converge to the sum of two independent Kiefer

Proccesses.

Theorem 3.1. Assume A1-A4 hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b].

A. As nD →∞ and nD̄ →∞

n
−1/2
D

[nDrD ](P̂ P V cc,rD,rD̄
(t) − P P V (t)) →D

 
t (1 − ρ) ρ

(ROC(t)ρ + t (1 − ρ))2

!
K1(ROC(t), rD)

+

 
t (1 − ρ) ρ

(ROC(t)ρ + t (1 − ρ))2

!
λ
1/2 rD

rD̄

0B@ fD(S
−1
D̄

(t))

fD̄(S
−1
D̄

(t))

1CAK2(t, rD̄)

uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

B. As nD →∞ and nD̄ →∞

n
−1/2
D

[nDrD ](N̂P V cc,rD,rD̄
(t) − NP V (t)) →D

 
(1 − t) (1 − ρ) ρ

((1 − ROC(t)) ρ + (1 − t) (1 − ρ))2

!
K1(ROC(t), rD)

+

 
(1 − t) (1 − ρ) ρ

((1 − ROC(t)) ρ + (1 − t) (1 − ρ))2

!
λ
1/2 rD

rD̄

0B@ fD(S
−1
D̄

(t))

fD̄(S
−1
D̄

(t))

1CAK2(t, rD̄)

uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

Proof. Again, we present a proof for part A and note the proof of B is nearly identical. First, note that

n
−1/2
D [nDrD]

“
P̂PV cc,rD,rD̄

(t)− PPV (t)
”

=n
−1/2
D [nDrD]

 
R̂OCrD,rD̄

(t)ρ

R̂OCrD,rD̄
(t)ρ + t (1− ρ)

−
ROC(t)ρ

ROC(t)ρ + t (1− ρ)

!

=

„
R̂OCrD,rD̄

(t)ρ

R̂OCrD,rD̄
(t)ρ+t(1−ρ)

− ROC(t)ρ
ROC(t)ρ+t(1−ρ)

«
R̂OCrD,rD̄

(t)−ROC(t)
n
−1/2
D [nDrD]

“
R̂OCrD,rD̄

(t)−ROC(t)
”

.
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We begin by showing that R̂OCrD,rD̄
(t) →a.s. ROC(t) uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1],

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨
R̂OCrD,rD̄

(t)− ROC(t)
˛̨̨

= sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
ŜD,rD

„
Ŝ
−1
D̄,rD̄

(t)

«
− SD

“
S
−1
D̄

(t)
”˛̨̨̨

≤ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
ŜD,rD

„
Ŝ
−1
D̄,rD̄

(t)

«
− SD

„
Ŝ
−1
D̄,rD̄

(t)

«˛̨̨̨

+ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
SD

„
Ŝ
−1
D̄,rD̄

(t)

«
− SD

“
S
−1
D̄

(t)
”˛̨̨̨

=
nD

[nDc]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

[nDc]

nD

˛̨̨̨
ŜD,rD

„
Ŝ
−1
D̄,rD̄

(t)

«
− SD

„
Ŝ
−1
D̄,rD̄

(t)

«˛̨̨̨

+
nD̄

[nD̄d]
sup

d≤rD̄≤1
sup

a≤t≤b

[nD̄d]

nD̄

˛̨̨̨
SD

„
S
−1
D̄

„
SD̄

„
Ŝ
−1
D̄,rD̄

(t)

«««
− SD

“
S
−1
D̄

“
SD̄

“
S
−1
D̄

(t)
”””˛̨̨̨

≤
nD

[nDc]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

[nDrD]

nD

˛̨̨̨
ŜD,rD

„
Ŝ
−1
D̄,rD̄

(t)

«
− SD

„
Ŝ
−1
D̄,rD̄

(t)

«˛̨̨̨

+
nD̄

[nD̄d]
sup

d≤rD̄≤1
sup

a≤t≤b

[nD̄rD̄]

nD̄

˛̨̨̨
SD

„
S
−1
D̄

„
SD̄

„
Ŝ
−1
D̄,rD̄

(t)

«««
− SD

“
S
−1
D̄

“
SD̄

“
S
−1
D̄

(t)
”””˛̨̨̨

,

The Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and Szyszkowicz (1998)), along with the fact that

nD

[nDc] →
1
c and nD̄

[nD̄d] →
1
d as nD →∞ and nD̄ →∞, respectively, allow us to conclude that,

nD

[nDc]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

[nDrD]
nD

∣∣∣ŜD,rD

(
Ŝ−1

D̄,rD̄
(t)
)
− SD

(
Ŝ−1

D̄,rD̄
(t)
)∣∣∣→a.s 0,

and
nD̄

[nD̄d]
sup

d≤rD̄≤1
sup

a≤t≤b

[nD̄rD̄]

nD̄

˛̨̨
SD

“
S−1

D̄

“
SD̄

“
Ŝ−1

D̄,rD̄
(t)
”””

− SD

“
S−1

D̄

“
SD̄

“
S−1

D̄
(t)
”””˛̨̨

→a.s. 0,

where the second statement also relies on the uniform continuity of SD

(
S−1

D̄
(t)
)
. Combining the two previous

results gives us

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣R̂OCrD,rD̄
(t)−ROC(t)

∣∣∣→a.s 0. (25)

By the Mean Value Theorem, there exists a R̃OC(t)rD,rD̄
between R̂OCrD,rD̄

(t) and ROC(t) such that

(
R̂OCrD,rD̄

(t)ρ

R̂OCrD,rD̄
(t)ρ+t(1−ρ)

− ROC(t)ρ
ROC(t)ρ+t(1−ρ)

)
R̂OCrD,rD̄

(t)−ROC(t)
=

t (1− ρ) ρ(
R̃OC(t)rD,rD̄

ρ + t (1− ρ)
)2 .

From (25) we know that R̃OC(t)rD,rD̄
→a.s. ROC(t). This, combined with the uniform continuity of
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t(1−ρ)ρ

(ROC(t)ρ+t(1−ρ))2
, allows us to conclude

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣∣∣∣∣
t (1− ρ) ρ(

R̃OC(t)rD,rD̄
ρ + t (1− ρ)

)2 −
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

∣∣∣∣∣∣∣→a.s. 0,

which implies

(
R̂OCrD,rD̄

(t)ρ

R̂OCrD,rD̄
(t)ρ+t(1−ρ)

− ROC(t)ρ
ROC(t)ρ+t(1−ρ)

)
R̂OCrD,rD̄

(t)−ROC(t)
→a.s.

t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2
, (26)

uniformly for t ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1]. Combining (26) with the results from Theorem 2.1 gives

the desired result.

Theorem 3.1 establishes the convergence of PPVcc,rD,rD̄
(t) and NPVcc,rD,rD̄

(t) to the sum of two inde-

pendent Kiefer Processes. An analagous result is not currently available for fixed-sample empirical estimates

of PPV (t) and NPV (t) under case-control sampling. Corollary 3.2 provides such a result as a special case

of Theorem 3.1.

Corollary 3.2. Assume A1-A4 hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b].

A. As nD →∞ and nD̄ →∞

n
1/2
D (P̂PV cc,1,1(t)− PPV (t)) →D

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
B1(ROC(t))

+

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
λ

1/2

 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
B2(t)

uniformly for t ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

B. As nD →∞ and nD̄ →∞

n
1/2
D

(N̂P V cc,1,1(t) − NP V (t)) →D

 
(1 − t) (1 − ρ) ρ

((1 − ROC(t)) ρ + (1 − t) (1 − ρ))2

!
B1(ROC(t))

+

 
(1 − t) (1 − ρ) ρ

((1 − ROC(t)) ρ + (1 − t) (1 − ρ))2

!
λ
1/2

0B@ fD(S
−1
D̄

(t))

fD̄(S
−1
D̄

(t))

1CAB2(t)

uniformly for t ∈ [a, b] where B1 and B2 are independent Brownian Bridges.
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Proof. Immediate from Theorem 3.1 and by noting that K(t, 1) =D B(t).

We are able to develop distribution theory for summary measures of the PPV and NPV curves using the

results from Theorem 3.1 and Corollary 3.2. The PPV curve is usually summarized by PPV (t), a point on

the positive predictive value curve, which can be interpreted as the positive predictive value corresponding

to a specificity of 1− t. Similarly, the NPV curve is typically summarized by NPV (t), a point on the NPV

curve. In Corollary 3.3 we show that the sequential empirical estimate of a point on the PPV or NPV curve is

asymptotically normal with an independent increments covariance structure, while Corollary 3.4 establishes

the asymptotic normality of the fixed-sample empirical estimate of a point on the PPV or NPV curve as a

special case.

Corollary 3.3. Assume A1-A4 hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1) and J stopping

times,

A.
(
P̂PV cc,rD,1,rD̄,1

(t), P̂PV cc,rD,2,rD̄,2
(t), . . . , P̂PV cc,rD,J ,rD̄,J

(t)
)
, is approximately multivariate normal

with,

P̂PV cc,rD,i,rD̄,i
(t) ∼ N

(
PPV (t), σ2

P̂PV cc,rD,i,rD̄,i
(t)

)
i = 1, 2, . . . , J

and

Cov
h
P̂PV cc,rD,i,rD̄,i

(t), P̂PV cc,rD,j,rD̄,j
(t)
i

= V ar
h
P̂PV cc,rD,j,rD̄,j

(t)
i

= σ
2
P̂ P V cc,rD,j,rD̄,j

(t)
, ri ≤ rj

where

σ2

P̂PV cc,rD,j,rD̄,j
(t)

=

(
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

)2

σ2

R̂OCrD,j,rD̄,j
(t)

and σ2

R̂OCrD,j,rD̄,j
(t)

is defined as in Corollary 2.3.

B.
(
N̂PV cc,rD,1,rD̄,1

(t), N̂PV cc,rD,2,rD̄,2
(t), . . . , N̂PV cc,rD,J ,rD̄,J

(t)
)
, is approximately multivariate nor-

mal with,

N̂PV cc,rD,i,rD̄,i
(t) ∼ N

(
NPV (t), σ2

N̂PV cc,rD,i,rD̄,i
(t)

)
i = 1, 2, . . . , J
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and

Cov
h
N̂PV cc,rD,i,rD̄,i

(t), N̂PV cc,rD,j,rD̄,j
(t)
i

= V ar
h
N̂PV cc,rD,j,rD̄,j

(t)
i

= σ
2
N̂P V cc,rD,j,rD̄,j

(t)
, ri ≤ rj

where

σ2

N̂PV cc,rD,j,rD̄,j
(t)

=

(
(1− t) (1− ρ) ρ

((1−ROC(t)) ρ + (1− t) (1− ρ))2

)2

σ2

R̂OCrD,j,rD̄,j
(t)

and σ2

R̂OCrD,j,rD̄,j
(t)

is defined as in Corollary 2.3.

Proof. Immediate from Theorem 3.1.

Corollary 3.4. Assume A1 - A4 hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1), the empirical

estimates of PPV(t) and NPV(t) under case-control sampling are approximately normally distributed with

P̂PV cc,1,1(t) ∼ N
(
PPV (t), σ2

P̂PV cc,1,1(t)

)

and

N̂PV cc,1,1(t) ∼ N
(
NPV (t), σ2

N̂PV cc,1,1(t)

)
where σ2

P̂PV cc,1,1(t)
and σ2

N̂PV cc,1,1(t)
are defined as in Corollary 3.3.

Proof. Immediate from Corollary 3.3.

3.2 Under Cohort Sampling

We now turn our attention to estimation of PPV (t) and NPV (t) under cohort sampling. In cohort sampling,

disease status is unknown at the time of sampling. Therefore, the number of cases and controls is random at

a given time point and we must estimate the prevalence. The sequential empirical estimates of PPV (t) and

NPV (t) under cohort sampling can be found by substituting the sequential empirical estimates of ROC(t)

and ρ under cohort sampling into (23) and (24). Therefore, the sequential empirical estimates of PPV (t)
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and NPV (t) under cohort sampling are defined as

P̂PV co,r(t) =
R̂OCr (t) ρ̂r

R̂OCr (t) ρ̂r + t (1− ρ̂r)
,

and

N̂PV co,r(t) =
(1− t) (1− ρ̂r)(

1− R̂OCr (t)
)

ρ̂r + (1− t) (1− ρ̂r)
.

Again, we can use the results from Section 2 to develop asymptotic theory for P̂PV co,r(t) and N̂PV co,r(t).

We begin by showing that P̂PV co,r(t) and N̂PV co,r(t) converge to the sum of independent Kiefer Processes.

Theorem 3.5. Assume A1-A3 hold, ρ ∈ (0, 1) and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b].

A. As n →∞

n
−1/2

[nr](P̂PV co,r(t)− PPV (t)) →D

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
1
√

ρ
K3(ROC(t), r)

+

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

« 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

K4(t, r)

+

„
tROC(t)

(ROC(t)ρ + t (1− ρ))2

«q
ρ (1− ρ)W (r)

uniformly for t ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes and W is a

Wiener Process independent of K3 and K4.

B. As n →∞

n
−1/2

[nr](N̂PV co,r(t)−NPV (t)) →D

„
(1− t) (1− ρ) ρ

((1− ROC(t)) ρ + (1− t) (1− ρ))2

«
1
√

ρ
K3(ROC(t), r)

+

„
(1− t) (1− ρ) ρ

((1− ROC(t)) ρ + (1− t) (1− ρ))2

« 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

K4(t, r)

−
„

(1− t) (1− ROC(t))

((1− ROC(t)) ρ + (1− t) (1− ρ))2

«q
ρ (1− ρ)W (r)

uniformly for t ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes and W is a

Wiener Process independent of K3 and K4.
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Proof. We provide a proof of A but the proof of B is omitted as it is nearly identical. First, note that,

n−1/2[nr](P̂PV co,r(t)− PPV (t)) =n−1/2[nr]

 
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ

ROC (t) ρ + t (1− ρ)

!

=n−1/2[nr]

 
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ̂r

ROC (t) ρ̂r + t (1− ρ̂r)

!

+ n−1/2[nr]

„
ROC (t) ρ̂r

ROC (t) ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ

ROC (t) ρ + t (1− ρ)

«
.

We begin with the second term, which can be re-written as,

n−1/2[nr]

„
ROC (t) ρ̂r

ROC (t) ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ

ROC (t) ρ + t (1− ρ)

«

=

“
ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ

ROC(t)ρ+t(1−ρ)

”
(ρ̂r − ρ)

n−1/2[nr] (ρ̂r − ρ) .

It is straight-forward to show the ρ̂r →a.s. ρ uniformly for r ∈ [e, 1],

sup
e≤r≤1

|ρ̂r − ρ| = n

[ne]
sup

e≤r≤1

[ne]
n

|ρ̂r − ρ|

≤ n

[ne]
sup

e≤r≤1

[nr]
n

|ρ̂r − ρ|

→a.s. 0.

The last step is a result of n
[ne] →

1
e and the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and

Szyszkowicz (1998)). To see this, note that ρ is equal to the cumulative distribution function for a Bernoulli

random variable for any x ∈ (0, 1). By the Mean Value Theorem, there exists ρ̃r between ρ̂r and ρ such that,

“
ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ

ROC(t)ρ+t(1−ρ)

”
(ρ̂r − ρ)

=

„
tROC(t)

(ROC(t)ρ + t (1− ρ̃r))
2

«
. (27)

The uniform convergence of ρ̂r to ρ implies that that ρ̃r →a.s. ρ uniformly for r ∈ [e, 1]. This, along with
the uniform continuity of

(
tROC(t)

(ROC(t)ρ+t(1−ρ))2

)
, allows us to conclude that,

sup
e≤r≤1

sup
a≤t≤b

˛̨̨̨„
tROC(t)

(ROC(t)ρ + t (1− ρ̃r))2

«
−
„

tROC(t)

(ROC(t)ρ + t (1− ρ))2

«˛̨̨̨
→a.s. 0.
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This result combined with (27) shows that,

“
ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ

ROC(t)ρ+t(1−ρ)

”
(ρ̂r − ρ)

→a.s.

„
tROC(t)

(ROC(t)ρ + t (1− ρ))2

«
, (28)

uniformly for r ∈ [e, 1] and t ∈ [a, b]. Combining (28) with Lemma 2.4 gives us,

n
−1/2

[nr]

„
ROC (t) ρ̂r

ROC (t) ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ

ROC (t) ρ + t (1− ρ)

«
→D

„
tROC(t)

(ROC(t)ρ + t (1− ρ))2

«q
ρ (1− ρ)W (r) , (29)

uniformly for r ∈ [e, 1] and t ∈ [a, b].

The first term can be re-written as,

n−1/2[nr]

 
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r + t (1− ρ̂r)
−

ROC (t) ρ̂r

ROC (t) ρ̂r + t (1− ρ̂r)

!

=

„
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)

«
“
R̂OCr(t)−ROC(t)

” n−1/2[nr]
“
R̂OCr(t)−ROC(t)

”
.

By the Mean Value Theorem, there exists R̃OCr(t) between R̂OCr(t) and ROC(t) such that,

(
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)

)
(
R̂OCr(t)−ROC(t)

) =

 t (1− ρ̂r) ρ̂r(
R̃OCr(t)ρ̂r + t (1− ρ̂r)

)2

 .

From Lemma 2.5 we know that R̂OCr(t) →a.s. ROC(t) uniformly for r ∈ [e, 1] and t ∈ [a, b]. This, combined
with the uniform convergence of ρ̂r to ρ and the uniform continuity of

(
t(1−ρ)ρ

(ROC(t)ρ+t(1−ρ))2

)
, gives us,

sup
e≤r≤1

sup
a≤t≤b

˛̨̨̨
˛̨̨
0B@ t (1− ρ̂r) ρ̂r“

R̃OCr(t)ρ̂r + t (1− ρ̂r)
”2

1CA− „ t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«˛̨̨̨˛̨̨→a.s 0,

which implies that,„
R̂OCrD,rD̄

(t)ρ̂r

R̂OCrD,rD̄
(t)ρ̂r+t(1−ρ̂r)

− ROC(t)ρ̂r
ROC(t)ρ̂r+t(1−ρ̂r)

«
“
R̂OCrD,rD̄

(t)−ROC(t)
” →a.s.

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
, (30)

uniformly for r ∈ [e, 1] and t ∈ [a, b]. Combining (30) with the results of Lemma 2.6 allows us to conclude
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that,

„
R̂OCr(t)ρ̂r

R̂OCr(t)ρ̂r+t(1−ρ̂r)
− ROC(t)ρ̂r

ROC(t)ρ̂r+t(1−ρ̂r)

«
“

R̂OCr(t)− ROC(t)
” n

−1/2
[nr]

“
R̂OCr(t)− ROC(t)

”

→D

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
1
√

ρ
K3(ROC(t), r)

+

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

« 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

K4(t, r). (31)

Summing (29) and (31) gives the desired result.

We are able to derive distribution theory for the fixed-sample estimates of PPV (t) and NPV (t) under

cohort sampling as a special case of Theorem 3.5. Corollary 3.6 establishes that the fixed-sample empirical

estimates of PPV (t) and NPV (t) converge to the sum of two independent Brownian Bridges.

Corollary 3.6. Assume A1-A3 hold, ρ ∈ (0, 1) and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b].

A. As n →∞

n1/2(P̂PV co,1(t)− PPV (t)) →D

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

«
1
√

ρ
B3(ROC(t))

+

„
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

« 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

B4(t)

+

„
tROC(t)

(ROC(t)ρ + t (1− ρ))2

«p
ρ (1− ρ)Z

uniformly for t ∈ [a, b] where B3 and B4 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.

B. As n →∞

n
1/2

(N̂PV co,1(t)−NPV (t)) →D

„
(1− t) (1− ρ) ρ

((1− ROC(t)) ρ + (1− t) (1− ρ))2

«
1
√

ρ
B3(ROC(t))

+

„
(1− t) (1− ρ) ρ

((1− ROC(t)) ρ + (1− t) (1− ρ))2

« 
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

!
1

√
1− ρ

B4(t)

−
„

(1− t) (1− ROC(t))

((1− ROC(t)) ρ + (1− t) (1− ρ))2

«q
ρ (1− ρ)Z

uniformly for t ∈ [a, b] where B3 and B4 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.
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Proof. Immediate from Theorem 3.5.

The results of Theorem 3.5 and Corollary 3.6 can be used to develop distribution theory for summary

measures of the PPV and NPV curves. Corollary 3.7 shows that the sequential emprical estimates of a point

on the PPV and NPV curve, P̂PV co,r(t) and N̂PV co,r(t), respectively, are asymptotically normal with an

independent increments covariance structure, while Corollary 3.8 establishes the asymptotic normality of the

fixed-sample empirical estimates of PPV (t) and NPV (t) under cohort sampling.

Corollary 3.7. Assume A1-A3 hold, ρ ∈ (0, 1) and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1) and J

stopping times,

A.
(
P̂PV co,r1(t), P̂PV co,r2(t), . . . , P̂PV co,rJ

(t)
)
, is approximately multivariate normal with,

P̂PV co,ri
(t) ∼ N

(
PPV (t), σ2

P̂PV co,ri
(t)

)
i = 1, 2, . . . , J

and

Cov
[
P̂PV co,ri

(t), P̂PV co,rj
(t)
]

= V ar
[
P̂PV co,rj

(t)
]

= σ2

P̂PV co,rj
(t)

, ri ≤ rj

where

σ2

P̂PV co,rj
(t)

=

(
t (1− ρ) ρ

(ROC(t)ρ + t (1− ρ))2

)2

σ2

R̂OCrj
(t)

+

(
tROC(t)

(ROC(t)ρ + t (1− ρ))2

)2
ρ (1− ρ)

n

and σ2

R̂OCr,j
(t)

is defined as in Lemma 2.7.

B.
(
N̂PV co,r1(t), N̂PV co,r2(t), . . . , N̂PV co,rJ

(t)
)
, is approximately multivariate normal with,

N̂PV co,ri
(t) ∼ N

(
NPV (t), σ2

N̂PV co,ri
(t)

)
i = 1, 2, . . . , J

and

Cov
[
N̂PV co,ri

(t), N̂PV co,rj
(t)
]

= V ar
[
N̂PV co,rj

(t)
]

= σ2

N̂PV co,rj
(t)

, ri ≤ rj
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where

σ2

N̂PV co,rj
(t)

=

(
(1− t) (1− ρ) ρ

((1−ROC(t)) ρ + (1− t) (1− ρ))2

)2

σ2

R̂OCrj
(t)

+

(
(1− t) (1−ROC(t))

((1−ROC(t)) ρ + (1− t) (1− ρ))2

)2
ρ (1− ρ)

n

and σ2

R̂OCrj
(t)

is defined as in Lemma 2.7.

Proof. Immediate from Theorem 3.5.

Corollary 3.8. Assume A1-A3 hold, ρ ∈ (0, 1) and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on [a, b]. For t ∈ (0, 1), the

empirical estimates of PPV(t) and NPV(t) under cohort sampling are approximately normally distributed

with

P̂PV co,1(t) ∼ N
(
PPV (t), σ2

P̂PV co,1(t)

)
and

N̂PV co,1(t) ∼ N
(
NPV (t), σ2

N̂PV co,1(t)

)
where σ2

P̂PV co,1(t)
and σ2

N̂PV co,1(t)
are defined as in Corollary 3.7.

Proof. Immediate from Corollary 3.7.

4 PPV and NPV curve indexed by the True Positive Fraction

We next consider the PPV and NPV curves indexed by the true positive fraction, v. In this case, the PPV

and NPV curves are defined as PPV (v) = P [D = 1|X > S−1
D (v)] and NPV (v) = P [D = 0|X ≤ S−1

D (v)] for

all v ∈ (0, 1). Under this indexing, the PPV and NPV curves can be written as functions of the inverse of

34

Hosted by The Berkeley Electronic Press



the ROC curve

PPV (v) =P [D = 1|X > S−1
D (v)]

=
P [D = 1, X > S−1

D (v)]

P [X > S−1
D (t)]

=
P [X > S−1

D (v)|D = 1]P [D = 1]

P [X > S−1
D (v)|D = 1]P [D = 1] + P [X > S−1

D (v)|D = 0]P [D = 0]

=
vρ

vρ + ROC−1 (v) (1− ρ)
, (32)

and

NPV (v) =

(
1−ROC−1 (v)

)
(1− ρ)

(1− v) ρ + (1−ROC−1 (v)) (1− ρ)
. (33)

The sequential empirical estimates of PPV (v) and NPV (v) can be found be plugging the sequential empirical

estimate of ROC−1(v) into (32) and (33). It is straight-forward to derive asymptotic theory for PPV (v)

and NPV (v) using the results from Section 2.

4.1 Under Case-Control Sampling

We first consider estimation of PPV (v) and NPV (v) under case-control sampling. The sequential empirical

estimates of PPV (v) and NPV (v) under case-control sampling can be found by substituting the sequential

empirical estimate of ROC−1(v) into (32) and (33) and are therefore defined as

P̂PV cc,rD,rD̄
(v) =

vρ

vρ + R̂OC
−1

rD,rD̄
(v) (1− ρ)

,

and

N̂PV cc,rD,rD̄
(v) =

(
1− R̂OC

−1

rD,rD̄
(v)
)

(1− ρ)

(1− v) ρ +
(
1− R̂OC

−1

rD,rD̄
(v)
)

(1− ρ)
.

P̂PV cc,rD,rD̄
(v) and N̂PV cc,rD,rD̄

(v) are functions of R̂OC
−1

rD,rD̄
(v) and we can use the results from Section 2

to derive asymptotic for P̂PV cc,rD,rD̄
(v) and N̂PV cc,rD,rD̄

(v). Theorem 4.1 establishes the convergence of

P̂PV cc,rD,rD̄
(v) and N̂PV cc,rD,rD̄

(v) to the sum of two independent Kiefer Processes.
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Theorem 4.1. Assume A1-A4 hold and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b].

A. As nD →∞ and nD̄ →∞

n
−1/2
D

[nDrD ](P̂ P V cc,rD,rD̄
(v) − P P V (v)) →D

0B@ vρ (ρ − 1)“
vρ + ROC−1 (v) (1 − ρ)

”2
1CAλ
−1/2 rD

rD̄

K2(ROC
−1(v), rD̄)

+

0B@ vρ (ρ − 1)“
vρ + ROC−1 (v) (1 − ρ)

”2
1CA
0@ fD̄(S

−1
D

(v))

fD(S
−1
D

(v))

1AK1(v, rD)

uniformly for v ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

B. As As nD →∞ and nD̄ →∞

n
−1/2
D

[nDrD ](N̂P V cc,rD,rD̄
(v) − NP V (v)) →D

0B@ ρ (1 − ρ) (v − 1)“
(1 − v) ρ +

“
1 − ROC−1 (v)

”
(1 − ρ)

”2
1CAλ
−1/2 rD

rD̄

K2(ROC
−1(v), rD̄)

+

0B@ ρ (1 − ρ) (v − 1)“
(1 − v) ρ +

“
1 − ROC−1 (v)

”
(1 − ρ)

”2
1CA
0@ fD̄(S

−1
D

(v))

fD(S
−1
D

(v))

1AK1(v, rD)

uniformly for v ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

Proof. We only present the proof of part A as the proof of part B is nearly identical. First, note that

n
−1/2
D [nDrD]

“
P̂PV cc,rD,rD̄

(v)− PPV (v)
”
)

=n
−1/2
D [nDrD]

0@ vρ

vρ + R̂OC
−1
rD,rD̄

(v) (1− ρ)
−

vρ

vρ + ROC−1 (v) (1− ρ)

1A

=

 
vρ

vρ+R̂OC
−1
rD,rD̄

(v)(1−ρ)
− vρ

vρ+ROC−1(v)(1−ρ)

!
R̂OC

−1
rD,rD̄

(v)− ROC−1 (v)
n
−1/2
D [nDrD]

“
R̂OC

−1
rD,rD̄

(v)− ROC
−1

(v)
”

.

We begin by showing that R̂OC
−1

rD,rD̄
(v) →a.s. ROC−1 (v) uniformly for v ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [c, 1].
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Consider the following inequality,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤v≤b

˛̨̨
R̂OC

−1
rD,rD̄

(v)− ROC
−1

(v)
˛̨̨

= sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤v≤b

˛̨̨
ŜD̄,rD̄

“
Ŝ
−1
D,rD

(v)
”
− SD̄

“
S
−1
D (v)

”˛̨̨
≤ sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤t≤b

˛̨̨
ŜD̄,rD̄

“
Ŝ
−1
D,rD

(v)
”
− SD̄

“
Ŝ
−1
D,rD

(v)
”˛̨̨

+ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤v≤b

˛̨̨
SD̄

“
Ŝ
−1
D,rD

(v)
”
− SD̄

“
S
−1
D (v)

”˛̨̨
=

nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤v≤b

[nD̄d]

nD̄

˛̨̨
ŜD̄,rD̄

“
Ŝ
−1
D,rD

(v)
”
− SD̄

“
Ŝ
−1
D,rD

(v)
”˛̨̨

+
nD

[nDc]
sup

d≤rD̄≤1
sup

a≤v≤b

[nDc]

nD

˛̨̨
SD̄

“
S
−1
D

“
SD

“
Ŝ
−1
D,rD

(v)
”””

− SD̄

“
S
−1
D (v)

”˛̨̨
≤

nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤v≤b

[nD̄rD̄]

nD̄

˛̨̨
ŜD̄,rD̄

“
Ŝ
−1
D,rD

(v)
”
− SD̄

“
Ŝ
−1
D,rD

(v)
”˛̨̨

+
nD

[nDc]
sup

d≤rD̄≤1
sup

a≤v≤b

[nDrD]

nD

˛̨̨
SD̄

“
S
−1
D

“
SD

“
Ŝ
−1
D,rD

(v)
”””

− SD̄

“
S
−1
D (v)

”˛̨̨
.

The Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and Szyszkowicz (1998)), along with the fact that

nD

[nDc] →
1
c and nD̄

[nD̄d] →
1
d as nD →∞ and nD̄ →∞, respectively, allow us to conclude that

nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤v≤b

[nD̄rD̄]
nD̄

∣∣∣ŜD̄,rD̄

(
Ŝ−1

D,rD
(v)
)
− SD̄

(
Ŝ−1

D,rD
(v)
)∣∣∣→a.s 0,

and
nD

[nDc]
sup

d≤rD̄≤1
sup

a≤v≤b

[nDrD]
nD

∣∣∣SD̄

(
S−1

D

(
SD

(
Ŝ−1

D,rD
(v)
)))

− SD̄

(
S−1

D (v)
)∣∣∣→a.s. 0,

where the second statement also relies on the uniform continuity of SD̄

(
S−1

D (t)
)
. Combining the two previous

results allows us to conclude that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤v≤b

∣∣∣R̂OC
−1

rD,rD̄
(v)−ROC−1 (v)

∣∣∣→a.s 0. (34)
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By the Mean Value Theorem, there exists a R̃OC
−1

rD,rD̄
(v) between R̂OC

−1

rD,rD̄
(v) and ROC−1 (v) such that

(
vρ

vρ+R̂OC
−1
rD,rD̄

(v)(1−ρ)
− vρ

vρ+ROC−1(v)(1−ρ)

)
R̂OC

−1

rD,rD̄
(v)−ROC−1 (v)

=
vρ (ρ− 1)(

vρ + R̃OC
−1

rD,rD̄
(v) (1− ρ)

)2 .

From (34) we know that R̃OC
−1

rD,rD̄
(v) →a.s. ROC−1(v) and therefore

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

˛̨̨̨
˛̨̨̨
˛

vρ (ρ− 1)„
vρ + R̃OC

−1

rD,rD̄
(v) (1− ρ)

«2 −
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

˛̨̨̨
˛̨̨̨
˛→a.s. 0,

which allows us to conclude(
vρ

vρ+R̂OC
−1
rD,rD̄

(v)(1−ρ)
− vρ

vρ+ROC−1(v)(1−ρ)

)
R̂OC

−1

rD,rD̄
(v)−ROC−1 (v)

→a.s.
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2
(35)

uniformly for v ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1]. Combining (35) with the results from Theorem 2.1 gives

the desired result.

Theorem 4.1 is a powerful result that gives insight into the asymptotic behavior of the sequential empir-

ical PPV and NPV curves under case-control sampling. Asymptotic theory is not currently available for

the fixed-sample empirical PPV and NPV but can be developed as a special case of the previous result.

Corollary 4.2 establishes the convergence of the fixed-sample empirical PPV and NPV curves to the sum

of independent Brownian Bridges.

Corollary 4.2. Assume A1-A4 hold and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b].

A. As nD →∞ and nD̄ →∞

n
1/2
D (P̂PV cc,1,1(v)− PPV (v)) →D

„
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

«
λ
−1/2

B2(ROC
−1

(v))

+

„
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

« 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
B1(v)
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uniformly for v ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

B. As nD →∞ and nD̄ →∞

n
1/2
D (N̂PV cc,1,1(v)−NPV (v)) →D

„
ρ (1− ρ) (v − 1)

((1− v) ρ + (1− ROC−1 (v)) (1− ρ))2

«
λ
−1/2

B2(ROC
−1

(v)

+

„
ρ (1− ρ) (v − 1)

((1− v) ρ + (1− ROC−1 (v)) (1− ρ))2

« 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
B1(v)

uniformly for v ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

Proof. Immediate from Theorem 4.1 and by noting that K(v, 1) =D B(v).

Theorem 4.1 and Corollary 4.2 allow us to develop distribution theory for summaries of the PPV and

NPV curves. The most commonly used summary measures of the PPV and NPV curve are PPV (v),

the positive predictive value at a sensitivity equal to v, and NPV (v), the negative predictive value at a

sensitivity of v. Theorem 4.3 establishes that the sequential empirical estimates of PPV (v) and NPV (v) are

asymptotically normal with an independent increments covariance structure, while Corollary 4.4 establishes

the asymptotic normality of the fixed-sample estimate.

Corollary 4.3. Assume A1-A4 hold and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1) and J stopping

times,

A.
(
P̂PV cc,rD,1,rD̄,1

(v), P̂PV cc,rD,2,rD̄,2
(v), . . . , P̂PV cc,rD,J ,rD̄,J

(v)
)
, is approximately multivariate nor-

mal with,

P̂PV cc,rD,i,rD̄,i
(v) ∼ N

(
PPV (v), σ2

P̂PV cc,rD,i,rD̄,i
(v)

)
i = 1, 2, . . . , J

and
Cov

»
P̂ P V cc,rD,i,rD̄,i

(v), P̂ P V cc,rD,j,rD̄,j
(v)

–
= V ar

»
P̂ P V cc,rD,j,rD̄,j

(v)
–

= σ
2
P̂ P V cc,rD,j,rD̄,j

(v)
, ri ≤ rj

where

σ2

P̂PV cc,rD,j,rD̄,j
(v)

=

(
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

)2

σ2

R̂OC
−1
rD,j,rD̄,j

(v)

and σ2

R̂OCrD,j,rD̄,j
(v)

is defined as in Corollary 2.3.

B.
(
N̂PV cc,rD,1,rD̄,1

(v), N̂PV cc,rD,2,rD̄,2
(v), . . . , N̂PV cc,rD,J ,rD̄,J

(v)
)
, is approximately multivariate nor-
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mal with,

N̂PV cc,rD,i,rD̄,i
(v) ∼ N

(
NPV (v), σ2

N̂PV cc,rD,i,rD̄,i
(v)

)
i = 1, 2, . . . , J

and
Cov

»
N̂P V cc,rD,i,rD̄,i

(v), N̂P V cc,rD,j,rD̄,j
(v)

–
= V ar

»
N̂P V cc,rD,j,rD̄,j

(v)
–

= σ
2
N̂P V cc,rD,j,rD̄,j

(v)
, ri ≤ rj

where

σ2

N̂PV cc,rD,j,rD̄,j
(v)

=

(
ρ (1− ρ) (v − 1)

((1− v) ρ + (1−ROC−1 (v)) (1− ρ))2

)2

σ2

R̂OC
−1
rD,j,rD̄,j

(v)

and σ2

R̂OCrD,j,rD̄,j
(v)

is defined as in Corollary 2.3.

Proof. Immediate from Theorem 4.1.

Corollary 4.4. Assume A1-A4 hold and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1), the empirical

estimates of PPV(v) and NPV(v) under case-control sampling are approximately normally distributed with

P̂PV cc,1,1(v) ∼ N
(
PPV (v), σ2

P̂PV cc,1,1(v)

)

and

N̂PV cc,1,1(v) ∼ N
(
NPV (v), σ2

N̂PV cc,1,1(v)

)
where σ2

P̂PV cc,1,1(v)
and σ2

N̂PV cc,1,1(v)
are defined as in Corollary 4.3.

Proof. Immediate from Corollary 4.3.

4.2 Under Cohort Sampling

We next consider estimation of PPV (v) and NPV (v) under cohort sampling. Both ρ and ROC−1(v) must

be estimated under cohort sampling. The sequential empirical estimates of PPV (v) and NPV (v) can be

found by substituting the sequential empirical estimate of ρ and ROC−1(v) into (32) and (33), respectively,

and are defined as

P̂PV co,r(v) =
vρ̂r

vρ + R̂OC
−1

r (v) (1− ρ̂r)
,
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and

N̂PV co,r(v) =

(
1− R̂OC

−1

r (v)
)

(1− ρ̂r)

(1− v) ρ̂r +
(
1− R̂OC

−1

r (v)
)

(1− ρ̂r)
.

Again, the results from Section 2 can be used to develop asymptotic theory for P̂PV co,r(v) and N̂PV co,r(v).

Theorem 4.5 establishes that P̂PV co,r(v) and N̂PV co,r(v) both converge to the sum of two independent

Kiefer Processes.

Theorem 4.5. Assume A1-A3 hold, ρ ∈ (0, 1) and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b].

A. As n →∞

n
−1/2

[nr](P̂PV co,r(v)− PPV (v)) →D

„
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

«
1

√
1− ρ

K4(ROC
−1

(v), r)

+

„
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

« 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
1
√

ρ
K3(v, r)

+

 
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2

!q
ρ (1− ρ)W (r)

uniformly for v ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes and W is a

Wiener Process independent of K3 and K4.

B. As n →∞

n
−1/2[nr](N̂P V co,r(v) − NP V (v)) →D

0B@ ρ (1 − ρ) (v − 1)“
(1 − v) ρ +

“
1 − ROC−1 (v)

”
(1 − ρ)

”2
1CA 1
√

1 − ρ
K4(ROC

−1(v), r)

+

0B@ ρ (1 − ρ) (v − 1)“
(1 − v) ρ +

“
1 − ROC−1 (v)

”
(1 − ρ)

”2
1CA
0@ fD̄(S

−1
D

(v))

fD(S
−1
D

(v))

1A 1
√

ρ
K3(v, r)

−

0B@ (1 − v)
“
1 − ROC−1 (v)

”
“
(1 − v) ρ +

“
1 − ROC−1 (v)

”
(1 − ρ)

”2
1CAqρ (1 − ρ)W (r)

uniformly for v ∈ [a, b] and r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes and W is a

Wiener Process independent of K3 and K4.

Proof. Again, we only present a proof of A because the proof of B is nearly identical. First, note that

n
−1/2

[nr](P̂PV co,r(v)− PPV (v)) =n
−1/2

[nr]

 
vρ̂r

vρ̂r + R̂OC
−1
r (v) (1− ρ̂r)

−
vρ

vρ + ROC−1(v) (1− ρ)

!

=n
−1/2

[nr]

 
vρ̂r

vρ̂r + R̂OC
−1
r (v) (1− ρ̂r)

−
vρ̂r

vρ̂r + ROC−1(v) (1− ρ̂r)

!

+ n
−1/2

[nr]

„
vρ̂r

vρ̂r + ROC−1(v) (1− ρ̂r)
−

vρ

vρ + ROC−1(v) (1− ρ)

«
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We begin with the second term, which can be re-written as

n−1/2[nr]

„
vρ̂r

vρ̂r + ROC−1(v) (1− ρ̂r)
−

vρ

vρ + ROC−1(v) (1− ρ)

«

=

“
vρ̂r

vρ̂r+ROC−1(v)(1−ρ̂r)
− vρ

vρ+ROC−1(v)(1−ρ)

”
(ρ̂r − ρ)

n−1/2[nr] (ρ̂r − ρ) .

It is straight-forward to show the ρ̂r →a.s. ρ uniformly for r ∈ [e, 1],

sup
e≤r≤1

|ρ̂r − ρ| = n

[ne]
sup

e≤r≤1

[ne]
n

|ρ̂r − ρ|

≤ n

[ne]
sup

e≤r≤1

[nr]
n

|ρ̂r − ρ|

→a.s. 0.

The last step is a result of n
[ne] →

1
e and the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and

Szyszkowicz (1998)). To see this, note that ρ is equal to the cumulative distribution function for a Bernoulli

random variable for any x ∈ (0, 1). By the Mean Value Theorem, there exists ρ̃r between ρ̂r and ρ such that

(
vρ̂r

vρ̂r+ROC−1(v)(1−ρ̂r) −
vρ

vρ+ROC−1(v)(1−ρ)

)
(ρ̂r − ρ)

=
vROC−1 (v)

(vρ̃r + ROC−1 (v) (1− ρ̃r))
2 . (36)

The uniform convergence of ρ̂r to ρ implies that that ρ̃r →a.s. ρ uniformly for r ∈ [e, 1]. This, along with

the uniform continuity of
(

vROC−1(v)

(vρ+ROC−1(v)(1−ρ))2

)
, allows us to conclude that

sup
e≤r≤1

sup
a≤v≤b

∣∣∣∣∣ vROC−1 (v)
(vρ̃r + ROC−1 (v) (1− ρ̃r))

2 −
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2

∣∣∣∣∣→a.s. 0.

This result combined with (36) shows that

(
vρ̂r

vρ̂r+ROC−1(v)(1−ρ̂r) −
vρ

vρ+ROC−1(v)(1−ρ)

)
(ρ̂r − ρ)

→a.s.
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2
, (37)

42

Hosted by The Berkeley Electronic Press



uniformly for r ∈ [e, 1] and v ∈ [a, b]. Combining (37) and Lemma 2.4 gives us

n
−1/2

[nr]

„
vρ̂r

vρ̂r + ROC−1(v) (1− ρ̂r)
−

vρ

vρ + ROC−1(v) (1− ρ)

«

→D

 
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2

!q
ρ (1− ρ)W (r) , (38)

uniformly for r ∈ [e, 1] and v ∈ [a, b]. The first term can be re-written as

n
−1/2[nr]

0@ vρ̂r

vρ̂r + R̂OC
−1
r (v) (1 − ρ̂r)

−
vρ̂r

vρ̂r + ROC−1(v) (1 − ρ̂r)

!

=

0@ vρ̂r

vρ̂r+R̂OC
−1
r (v)(1−ρ̂r)

− vρ̂r
vρ̂r+ROC−1(v)(1−ρ̂r)

1A
“

R̂OC
−1
r (v) − ROC−1(v)

” n
−1/2[nr]

“
R̂OC

−1
r (v) − ROC

−1(v)
”

By the Mean Value Theorem, there exists R̃OC
−1

r (v) between R̂OC
−1

r (v) and ROC−1(v) such that

(
vρ̂r

vρ̂r+R̂OC
−1
r (v)(1−ρ̂r)

− vρ̂r

vρ̂r+ROC−1(v)(1−ρ̂r)

)
(
R̂OC

−1

r (v)−ROC−1(v)
) =

vρ̂r (ρ̂r − 1)(
vρ̂r + R̃OC

−1

r (v) (1− ρ̂r)
)2 .

From Lemma 2.5 we know that R̂OC
−1

r (v) →a.s. ROC−1(v) uniformly for r ∈ [e, 1] and v ∈ [a, b]. This,

combined with the uniform convergence of ρ̂r to ρ and the uniform continuity of vρ(ρ−1)

(vρ+ROC−1(v)(1−ρ))2
gives

us

sup
e≤r≤1

sup
a≤t≤b

∣∣∣∣∣∣∣∣∣
vρ̂r (ρ̂r − 1)(

vρ̂r + R̃OC
−1

r (v) (1− ρ̂r)
)2 −

vρ (ρ− 1)
(vρ + ROC−1(v) (1− ρ))2

∣∣∣∣∣∣∣∣∣→a.s 0,

which implies that

(
vρ̂r

vρ̂r+R̂OC
−1
r (v)(1−ρ̂r)

− vρ̂r

vρ̂r+ROC−1(v)(1−ρ̂r)

)
(
R̂OC

−1

r (v)−ROC−1(v)
) →a.s.

vρ (ρ− 1)
(vρ + ROC−1(v) (1− ρ))2

, (39)

uniformly for r ∈ [e, 1] and t ∈ [a, b]. Combining (39) with the results of Lemma 2.6 allows us to conclude
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that

0@ vρ̂r

vρ̂r+R̂OC
−1
r (v)(1−ρ̂r)

− vρ̂r
vρ̂r+ROC−1(v)(1−ρ̂r)

1A
“

R̂OC
−1
r (v) − ROC−1(v)

” n
−1/2[nr]

“
R̂OC

−1
r (v) − ROC

−1(v)
”

→D

0B@ vρ (ρ − 1)“
vρ + ROC−1(v) (1 − ρ)

”2
1CA 1
√

1 − ρ
K4(ROC

−1(v), r)

+

0B@ vρ (ρ − 1)“
vρ + ROC−1(v) (1 − ρ)

”2
1CA
0@ fD̄(S

−1
D

(v))

fD(S
−1
D

(v))

1A 1
√

ρ
K3(v, r) (40)

Summing (38) and (40) gives the desired result.

Theorem 4.5 establishes that the sequential empirical estimates of PPV (v) and NPV (v) converge to

the sum of two independent Kiefer Processes. We are able to develop an analagous result for the fixed-

sample empirical estimates of PPV (v) and NPV (v) as a special case. Corollary 4.6 establishes that the

fixed-sample empirical estimates of PPV (v) and NPV (v) converge to the sum of two independent Brownian

Bridges under cohort sampling.

Corollary 4.6. Assume A1-A3 hold, ρ ∈ (0, 1) and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b].

A. As n →∞

n1/2(P̂PV co,1(v)− PPV (v)) →D

 
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

!
1

√
1− ρ

B4(ROC−1(v))

+

 
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

! 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
1
√

ρ
B3(v)

+

 
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2

!p
ρ (1− ρ)Z

uniformly for v ∈ [a, b] where B3 and B4 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.

B. As n →∞

n
1/2

(N̂PV co,1(v)−NPV (v)) →D

s
1

1− ρ

„
ρ (1− ρ) (v − 1)

((1− v) ρ + (1− ROC−1 (v)) (1− ρ))2

«
B4(ROC

−1
(v))

+

s
1

ρ

„
ρ (1− ρ) (v − 1)

((1− v) ρ + (1− ROC−1 (v)) (1− ρ))2

« 
fD̄(S−1

D (v))

fD(S−1
D (v))

!
B3(v)

−
 

(1− v)
`
1− ROC−1 (v)

´
((1− v) ρ + (1− ROC−1 (v)) (1− ρ))2

!q
ρ (1− ρ)Z
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uniformly for v ∈ [a, b] where B3 and B4 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.

Proof. Immediate from Theorem 4.5 and by noting that K(v, 1) =D B(v).

Again, we are able to develop distribution theory for summary measures of PPV (v) and NPV (v) using

the results of Theorem 4.5 and Corollary 4.6. Corollary 4.7 establishes that the sequential empirical estimate

of a point on the PPV or NPV curve is asymptotically normal with an independent increments covariance

structure, while Corollary 4.8 establishes the asymptotic normality of the fixed-sample empirical estimates

of PPV (v) and NPV (v).

Corollary 4.7. Assume A1-A3 hold, ρ ∈ (0, 1) and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1) and J

stopping times,

A.
(
P̂PV co,r1(v), P̂PV co,r2(v), . . . , P̂PV co,rJ

(v)
)
, is approximately multivariate normal with,

P̂PV co,ri
(v) ∼ N

(
PPV (v), σ2

P̂PV co,ri
(v)

)
i = 1, 2, . . . , J

and

Cov
[
P̂PV co,ri

(v), P̂PV co,rj
(v)
]

= V ar
[
P̂PV co,rj

(v)
]

= σ2

P̂PV co,rj
(v)

, ri ≤ rj

where

σ2

P̂PV co,rj
(v)

=

(
vρ (ρ− 1)

(vρ + ROC−1 (v) (1− ρ))2

)2

σ2

R̂OC
−1
rj

(v)

+

(
vROC−1 (v)

(vρ + ROC−1 (v) (1− ρ))2

)2
ρ (1− ρ)

n

and σ2

R̂OCrj
(v)

is defined as in Lemma 2.7.

B.
(
N̂PV co,r1(v), N̂PV co,r2(v), . . . , N̂PV co,rJ

(v)
)
, is approximately multivariate normal with,

N̂PV co,ri
(v) ∼ N

(
NPV (v), σ2

N̂PV co,ri
(v)

)
i = 1, 2, . . . , J

45

http://biostats.bepress.com/uwbiostat/paper345



and

Cov
[
N̂PV co,ri

(v), N̂PV co,rj
(v)
]

= V ar
[
N̂PV co,rj

(v)
]

= σ2

N̂PV co,rj
(v)

, ri ≤ rj

where

σ2

N̂PV co,rj
(v)

=

(
ρ (1− ρ) (v − 1)

((1− v) ρ + (1−ROC−1 (v)) (1− ρ))2

)2

σ2

R̂OC
−1
rj

(v)

+

(
(1− v)

(
1−ROC−1 (v)

)
((1− v) ρ + (1−ROC−1 (v)) (1− ρ))2

)2
ρ (1− ρ)

n

and σ2

R̂OCrj
(v)

is defined as in Lemma 2.7.

Proof. Immediate from Theorem 4.5.

Corollary 4.8. Assume A1-A3 hold, ρ ∈ (0, 1) and let fD̄(S−1
D (v))

fD(S−1
D (v))

be bounded on [a, b]. For v ∈ (0, 1), the

empirical estimates of PPV(v) and NPV(v) under cohort sampling are approximately normally distributed

with

P̂PV co,1(v) ∼ N
(
PPV (v), σ2

P̂PV co,1(v)

)
and

N̂PV co,1(v) ∼ N
(
NPV (v), σ2

N̂PV co,1(v)

)
where σ2

P̂PV co,1(v)
and σ2

N̂PV co,1(v)
are defined as in Corollary 4.7.

Proof. Immediate from Corollary 4.7.

5 PPV and NPV curve indexed by the Percentile Value

Finally, we consider the PPV and NPV curves indexed by the proportion of the population that are classified

as negative, u, and positive, 1− u. In this case, the PPV and NPV curves are defined as PPV (u) = P [D =

1|X > F−1(u)] and NPV (u) = P [D = 0|X ≤ F−1(u)] for all u ∈ (0, 1). Under this indexing, the PPV
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curve can be written as

PPV (u) = P
[
D = 1|X > F−1(u)

]
=

P
[
D = 1, X > F−1(u)

]
P [X > F−1(u)]

=
P
[
X > F−1(u)|D = 1

]
∗ P [D = 1]

1− F (F−1(u))

=
SD

(
F−1(u)

)
ρ

1− u
, (41)

and

NPV (u) =
FD̄

(
F−1(u)

)
(1− ρ)

u
.

It should also be noted that the NPV curve can be expressed as a function of the PPV curve

NPV (u) =
u− ρ

u
+

1− u

u
PPV (u), (42)

and, therefore, it suffices to study the PPV curve when considering estimation of the PPV and NPV curves.

5.1 Case-Control Sampling

In this section, we consider the sequential empirical estimates of PPV (u) and NPV (u) under case-control

sampling. The sequential empirical estimate of PPV (u) under case-control sampling can be found by

substituting the sequential empirical estimates of SD(x) and F (x), along with the known value of ρ, into

(41),

P̂PV cc,rD,rD̄
(u) =

ŜD,rD

(
F̂−1

rD,rD̄
(u)
)

ρ

1− u
. (43)

NPV (u) can be expressed as a function of PPV (u) and, therefore, the sequential empirical estimate of

NPV (u) is found by substituting the sequential empirical estimate of PPV (u) into (42),

N̂PV cc,rD,rD̄
(u) =

u− ρ

u
+

1− u

u
P̂PV cc,rD,rD̄

(u). (44)
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We begin by showing that P̂PV cc,rD,rD̄
(u) converges to the sum of two independent Kiefer process in

Theorem 5.1. The proof of Theorem 5.1 follows the proofs found in Pyke and Shorack (1968).

Theorem 5.1. Assume A1 - A4 hold and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
−1/2
D [nDrD]

“
P̂PV cc,rD,rD̄

(u)− PPV (u)
”
→D −

ρ (1− ρ)

1− u

fD̄

`
F−1 (u)

´
f (F−1 (u))

K1(FD(F−1(u)), rD)

+
ρ (1− ρ)

1− u

fD

`
F−1 (u)

´
f (F−1 (u))

√
λ

rD

rD̄

K2(FD̄(F−1(u)), rD̄)

uniformly for u ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes.

Proof. First, note that,

n
−1/2
D [nDrD]

“
ŜD,rD

“
F̂
−1
rD,rD̄

(u)
”
− SD

“
F
−1

(u)
””

=n
−1/2
D [nDrD]

“
FD

“
F
−1

(u)
”
− F̂D,rD

“
F̂
−1
rD,rD̄

(u)
””

=n
−1/2
D [nDrD]

“
FD

“
F
−1

(u)
”
− FD

“
F̂
−1
rD,rD̄

(u)
””

+ n
−1/2
D [nDrD]

“
FD

“
F̂
−1
rD,rD̄

(u)
”
− F̂D,rD

“
F̂
−1
rD,rD̄

(u)
””

.

The first term can be rewritten as,

n
−1/2
D

ˆ
nDrD

˜ „
FD

“
F
−1 (u)

”
− FD

„
F̂
−1
rD,rD̄

(u)
««

=n
−1/2
D

ˆ
nDrD

˜ FD

“
F−1 (u)

”
− FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
u − F

„
F̂
−1
rD,rD̄

(u)
« „

u − F

„
F̂
−1
rD,rD̄

(u)
««

=n
−1/2
D

ˆ
nDrD

˜ FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

„
u − F̂rD,rD̄

„
F̂
−1
rD,rD̄

(u)
««

+ n
−1/2
D

ˆ
nDrD

˜ FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

„
F̂rD,rD̄

„
F̂
−1
rD,rD̄

(u)
«
− F

„
F̂
−1
rD,rD̄

(u)
««

=
FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

n
−1/2
D

ˆ
nDrD

˜ „
u − F̂rD,rD̄

„
F̂
−1
rD,rD̄

(u)
««

+
FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

ρn
−1/2
D

ˆ
nDrD

˜ „
F̂D,rD

„
F̂
−1
rD,rD̄

(u)
«
− FD

„
F̂
−1
rD,rD̄

(u)
««

+
n
−1/2
D

ˆ
nDrD

˜
n
−1/2
D̄

h
nD̄rD̄

i FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

(1 − ρ) n
−1/2
D̄

h
nD̄rD̄

i „
F̂D̄,rD̄

„
F̂
−1
rD,rD̄

(u)
«
− FD̄

„
F̂
−1
rD,rD̄

(u)
««
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We begin by showing that F
(
F̂−1

rD,rD̄
(u)
)

converges to u uniformly,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
F
“
F̂−1

rD,rD̄
(u)
”
− u
˛̨̨

≤ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
F
“
F̂−1

rD,rD̄
(u)
”
− F̂rD,rD̄

“
F̂−1

rD,rD̄
(u)
”˛̨̨

+ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
F̂rD,rD̄

“
F̂−1

rD,rD̄
(u)
”
− u
˛̨̨
.

We note that,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
F
“

F̂
−1
rD,rD̄

(u)
”
− F̂rD,rD̄

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

≤ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
FD

“
F̂
−1
rD,rD̄

(u)
”
− F̂D,rD

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

+ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

˛̨̨
FD̄

“
F̂
−1
rD,rD̄

(u)
”
− F̂D̄,rD̄

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

=
nD

[nDc]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤u≤b

[nDc]

nD

˛̨̨
FD

“
F̂
−1
rD,rD̄

(u)
”
− F̂D,rD

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

+
nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤u≤b

[nD̄d]

nD̄

˛̨̨
FD̄

“
F̂
−1
rD,rD̄

(u)
”
− F̂D̄,rD̄

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

≤
nD

[nDc]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤u≤b

[nDrD]

nD

˛̨̨
FD

“
F̂
−1
rD,rD̄

(u)
”
− F̂D,rD

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

+
nD̄

[nD̄d]
sup

c≤rD≤1
sup

d≤rD̄≤1
sup

a≤u≤b

[nD̄rD̄]

nD̄

˛̨̨
FD̄

“
F̂
−1
rD,rD̄

(u)
”
− F̂D̄,rD̄

“
F̂
−1
rD,rD̄

(u)
”˛̨̨

→a.s. 0,

by the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and Szyszkowicz (1998)), along with the fact

that nD

[nDc] →
1
c and nD̄

[nD̄d] →
1
d . For all rD, rD̄ ∈ (0, 1]× (0, 1],

sup
a≤u≤b

∣∣∣u− F̂rD,rD̄

(
F̂−1

rD,rD̄
(u)
)∣∣∣ ≤a.s.

(
ρ

[rDnD]

∨ 1− ρ

[nD̄rD̄]

)
.

Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

∣∣∣u− F̂rD,rD̄

(
F̂−1

rD,rD̄
(u)
)∣∣∣ ≤a.s.

(
ρ

[nDc]

∨ 1− ρ

[nD̄d]

)
→ 0,

which implies that,

sup
c<rD≤1

sup
d<rD̄≤1

sup
a≤u≤b

∣∣∣F (F̂−1
rD,rD̄

(u)
)
− u
∣∣∣→a.s. 0. (45)
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We note that (45) also implies that FD

(
F̂−1

rD,rD̄
(u)
)

and FD̄

(
F̂−1

rD,rD̄
(u)
)

converge uniformly to FD

(
F−1 (u)

)
and FD̄

(
F−1 (u)

)
, respectively, which can be seen by noting that the difference between FD

(
F̂−1

rD,rD̄
(u)
)

and

FD

(
F−1 (u)

)
will always have the same sign as the difference between FD̄

(
F̂−1

rD,rD̄
(u)
)

and FD̄

(
F−1 (u)

)
.

By the mean value theorem, there exists F
(
F̃−1

rD,rD̄
(u)
)

between u and F
(
F̂−1

rD,rD̄
(u)
)
, such that,

FD

(
F−1

(
F
(
F̂−1

rD,rD̄
(u)
)))

− FD

(
F−1 (u)

)
F
(
F̂−1

rD,rD̄
(u)
)
− u

=
fD

(
F−1

(
F
(
F̃−1

rD,rD̄
(u)
)))

f
(
F−1

(
F
(
F̃−1

rD,rD̄
(u)
))) .

The uniform continuity of
fD(F−1(u))
f(F−1(u)) , combined with the fact that F

(
F̃−1

rD,rD̄
(u)
)
→a.s. u uniformly, allows

us to conclude,

sup
c<rD≤1

sup
d<rD̄≤1

sup
a≤u≤b

∣∣∣∣∣∣
fD

(
F−1

(
F
(
F̃−1

rD,rD̄
(u)
)))

f
(
F−1

(
F
(
F̃−1

rD,rD̄
(u)
))) −

fD

(
F−1 (u)

)
f (F−1 (u))

∣∣∣∣∣∣→a.s. 0. (46)

For all rD, rD̄ ∈ (0, 1]× (0, 1],

sup
a≤u≤b

n
−1/2
D [nDrD]

∣∣∣u− F̂rD,rD̄

(
F̂−1

rD,rD̄
(u)
)∣∣∣ ≤a.s.

(
ρ

n
−1/2
D

∨ [nDrD]
[nD̄rD̄]

1− ρ

n
−1/2
D

)
.

Therefore, as nD →∞ and nD̄ →∞,

sup
0<rD≤1

sup
0<rD̄≤1

sup
a≤u≤b

n
−1/2
D [nDrD]

∣∣∣u− F̂rD,rD̄

(
F̂−1

rD,rD̄
(u)
)∣∣∣→a.s. 0.

Combining this result with (46) allows us to conclude that,

FD

“
F−1

“
F
“
F̂−1

rD,rD̄
(u)
”””

− FD

`
F−1 (u)

´
F
“
F̂−1

rD,rD̄
(u)
”
− u

n
−1/2
D [nDrD]

“
u− F̂rD,rD̄

“
F̂−1

rD,rD̄
(u)
””
→a.s. 0.

Corollary 1.A in Csörgő and Szyszkowicz (1998), (46) and the uniform continuity of the Kiefer process allow
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us to conclude,

FD

“
F−1

“
F
“

F̂−1
rD,rD̄

(u)
”””

− FD

`
F−1 (u)

´
F
“

F̂−1
rD,rD̄

(u)
”
− u

ρn
−1/2
D [nDrD]

“
F̂D,rD

“
F̂
−1
rD,rD̄

(u)
”
− FD

“
F̂
−1
rD,rD̄

(u)
””

→D

fD

`
F−1 (u)

´
f (F−1 (u))

ρK1

“
FD

“
F
−1

(u)
”

, rD

”
, (47)

and,

n
−1/2
D

ˆ
nDrD

˜
n
−1/2
D̄

h
nD̄rD̄

i FD

„
F−1

„
F

„
F̂−1

rD,rD̄
(u)

«««
− FD

“
F−1 (u)

”
F

„
F̂
−1
rD,rD̄

(u)
«
− u

(1 − ρ) n
−1/2
D̄

h
nD̄rD̄

i „
F̂D̄,rD̄

„
F̂
−1
rD,rD̄

(u)
«
− FD̄

„
F̂
−1
rD,rD̄

(u)
««

→D
√

λ
rD

rD̄

fD

“
F−1 (u)

”
f
“

F−1 (u)
” (1 − ρ) K2

“
FD̄

“
F
−1 (u)

”
, rD

”
. (48)

The second term converges in distribution to a Kiefer process,

n
−1/2
D

ˆ
nDrD

˜ „
FD

„
F̂
−1
rD,rD̄

(u)
«
− F̂D,rD

„
F̂
−1
rD,rD̄

(u)
««

= − n
−1/2
D

ˆ
nDrD

˜ „
F̂D,rD

„
F̂
−1
rD,rD̄

(u)
«
− FD

„
F̂
−1
rD,rD̄

(u)
««

→D −K1
“

FD

“
F
−1 (u)

”
, rD

”
, (49)

by Corollary 1.A in Csörgő and Szyszkowicz (1998). Summing (47), (48) and (49) gives the desired result.

Theorem 5.1 establishes the convergence of the sequential empirical PPV curve to the sum of two indepen-

dent Kiefer Processes under case-control sampling. From this result we are able to derive distribution theory

for the fixed-sample empirical estimate of PPV (u), as well as the sequential and fixed-sample empirical es-

timates of NPV (u). Corollary 5.2 establishes the convergence in distribution for the fixed-sample empirical

estimate of PPV (u), while Corollary 5.3 provide results analagous to Theorem 5.1 and Corollary 5.2 for the

NPV curve.

Corollary 5.2. Assume A1 - A4 hold and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
1/2
D

“
P̂PV cc,1,1 (u)− PPV (u)

”
→D −

ρ (1− ρ)

1− u

fD̄

`
F−1 (u)

´
f (F−1 (u))

B1(FD(F−1(u)))

+
ρ (1− ρ)

1− u

fD

`
F−1 (u)

´
f (F−1 (u))

√
λ

rD

rD̄

B2(FD̄(F−1(u)))

uniformly for u ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

Proof. Immediate from Theorem 5.1 and by noting that K(t, 1) =D B(t).
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Corollary 5.3. Assume A1 - A4 hold and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As nD →∞ and nD̄ →∞

n
−1/2
D [nDrD]

“
N̂PV cc,rD,rD̄

(u)−NPV (u)
”
→D −

ρ (1− ρ)

u

fD̄

`
F−1 (u)

´
f (F−1 (u))

K1(FD(F
−1

(u)), rD)

+
ρ (1− ρ)

u

fD

`
F−1 (u)

´
f (F−1 (u))

√
λ

rD

rD̄

K2(FD̄(F
−1

(u)), rD̄)

uniformly for u ∈ [a, b], rD ∈ [c, 1] and rD̄ ∈ [d, 1] where K1 and K2 are independent Kiefer Processes and

n
1/2
D

“
N̂PV cc,1,1 (u)−NPV (u)

”
→D −

ρ (1− ρ)

u

fD̄

`
F−1 (u)

´
f (F−1 (u))

B1(FD(F−1(u)))

+
ρ (1− ρ)

u

fD

`
F−1 (u)

´
f (F−1 (u))

√
λB2(FD̄(F−1(u)))

uniformly for u ∈ [a, b] where B1 and B2 are independent Brownian Bridges.

Proof. Immediate from Theorem 5.1, Corollary 5.2 and (42).

Theorem 5.1, Corollary 5.2 and Corollary 5.3 allow us to develop distribution theory for summaries

of the PPV and NPV curves. The most common summaries of the PPV and NPV curves are PPV (u)

and NPV (u), respectively. PPV (u) and NPV (u) are the positive and negative predictive values when

biomarkers values at the uth percentile or above are considered positive. The following corollary provides a

normal approximation for the sequential empirical estimates of PPV (u) and NPV (u).

Corollary 5.4. Assume A1 - A4 hold and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. For u ∈ (0, 1) and J stopping

times,

A.
(
P̂PV cc,rD,1,rD̄,1

(u), P̂PV cc,rD,2,rD̄,2
(u), . . . , P̂PV cc,rD,J ,rD̄,J

(u)
)
, is approximately multivariate nor-

mal with,

P̂PV cc,rD,i,rD̄,i
(u) ∼ N

(
PPV (u), σ2

P̂PV cc,rD,i,rD̄,i
(u)

)
i = 1, 2, . . . , J

and

Cov

»
P̂ P V cc,rD,i,rD̄,i

(u), P̂ P V cc,rD,j,rD̄,j
(u)

–
= V ar

»
P̂ P V cc,rD,j,rD̄,j

(u)
–

= σ
2
P̂ P V cc,rD,j,rD̄,j

(u)
, ri ≤ rj
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where

σ2

P̂PV cc,rD,j,rD̄,j
(u)

=

(
fD̄(F−1(u))
f(F−1(u)) (1− ρ)

)2

PPV (u)
(

ρ
1−u − PPV (u)

)
nDrD,j

+

(
fD(F−1(u))
f(F−1(u)) ρ

)2

(1− PPV (u))
(

u−ρ
1−u + PPV (u)

)
nD̄rD̄,j

.

B.
(
N̂PV cc,rD,1,rD̄,1

(u), N̂PV cc,rD,2,rD̄,2
(u), . . . , N̂PV cc,rD,J ,rD̄,J

(u)
)
, is approximately multivariate nor-

mal with,

N̂PV cc,rD,i,rD̄,i
(u) ∼ N

(
NPV (u), σ2

N̂PV cc,rD,i,rD̄,i
(u)

)
i = 1, 2, . . . , J

and

Cov

»
N̂P V cc,rD,i,rD̄,i

(u), N̂P V cc,rD,j,rD̄,j
(u)

–
= V ar

»
N̂P V cc,rD,j,rD̄,j

(u)
–

= σ
2
N̂P V cc,rD,j,rD̄,j

(u)
, ri ≤ rj

where

σ2

N̂PV cc,rD,j,rD̄,j
(u)

=

(
fD̄(F−1(u))
f(F−1(u)) (1− ρ)

)2 (
NPV (u) + ρ−u

u

)
(1−NPV (u))

nDrD,j

+

(
fD(F−1(u))
f(F−1(u)) ρ

)2

NPV (u)
(

1−ρ
u −NPV (u)

)
nD̄rD̄,j

.

Proof. It immediate from Theorem 5.1 that(
P̂PV cc,rD,1,rD̄,1

(u), P̂PV cc,rD,2,rD̄,2
(u), . . . , P̂PV cc,rD,J ,rD̄,J

(u)
)

is approximately multivariate normal with

P̂PV cc,rD,i,rD̄,i
(u) ∼ N

(
PPV (u), σ2

P̂PV cc,rD,i,rD̄,i
(u)

)
i = 1, 2, . . . , J

and

Cov

»
P̂ P V cc,rD,i,rD̄,i

(u), P̂ P V cc,rD,j,rD̄,j
(u)

–
= V ar

»
P̂ P V cc,rD,j,rD̄,j

(u)
–

= σ
2
P̂ P V cc,rD,j,rD̄,j

(u)
, ri ≤ rj
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where

σ2

P̂PV cc,rD,j,rD̄,j
(u)

=

(
ρ(1−ρ)
1−u

fD̄(F−1(u))
f(F−1(u))

)2

FD

(
F−1 (u)

) (
1− FD

(
F−1 (u)

))
nDrD,j

+

(
ρ(1−ρ)
1−u

fD(F−1(u))
f(F−1(u))

)2

FD̄

(
F−1 (u)

) (
1− FD̄

(
F−1 (u)

))
nD̄rD̄,j

.

We can write the variance of in terms of PPV (u) by noting that

1− FD(F−1(u)) =
1− u

ρ
PPV (u)

and

1− FD̄(F−1(u)) =
1− u

1− ρ
(1− PPV (u)) ,

substituting into the above variance formula and simplifying. The proof of part B is nearly identical with

the only difference being that we write the variance in terms of NPV (u) by noting that

FD(F−1(u)) =
u

ρ
(1−NPV (u))

and

FD̄(F−1(u)) =
u

1− ρ
NPV (u).

Corollary 5.4 proves that the sequential empirical estimates of PPV (u) and NPV (u) are asymptotically

normal with an independent increments covariance structure. This is an important result as it confirms that

existing group sequential methodology can be used to design diagnostic trials using PPV (u) and NPV (u)

as the primary outcomes. We are able to derive a normal approximation for the fixed-sample empirical

estimates of PPV (u) and NPV (u) as special case of Corollary 5.4.

Corollary 5.5. Assume A1 - A4 hold and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. For u ∈ (0, 1), the empirical
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estimates of PPV (u) and NPV (u) are approximately normally distributed with

P̂PV cc,1,1(u) ∼ N
(
PPV (u), σ2

P̂PV cc,1,1(u)

)

and

N̂PV cc,1,1(u) ∼ N
(
NPV (u), σ2

N̂PV cc,1,1(u)

)
where σ2

P̂PV cc,1,1(u)
and σ2

N̂PV cc,1,1(u)
are defined as in Corollary 5.4.

Proof. Immediate from Corollary 5.4.

5.2 Cohort Sampling

We now consider estimation of the PPV and NPV curve under cohort sampling. Under cohort sampling we

must estimate ρ, along with SD(x) and F (x). The sequential empirical estimate of PPV (u) is defined as

P̂PV co,r(u) =
ŜD,r

(
F̂−1

r (u)
)

ρ̂r

1− u
, (50)

where ρ̂r, ŜD,r(x) and F̂−1
r (u) are the sequential empirical estimates of ρ, SD(x) and F−1(u), respectively. We

again define the sequential empirical estimate of NPV (u) by substituting the sequential empirical estimate

of PPV (u) under cohort sampling into (42),

N̂PV co,r(u) =
u− ρ

u
+

1− u

u
P̂PV co,r(u). (51)

Theorem 5.6 establishes the convergence in distribution of P̂PV co,r(u) to the sum of two independent Kiefer

processes. Again, we closely follow the proofs found in Pyke and Shorack (1968).
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Theorem 5.6. Assume A1 - A3 hold, ρ ∈ (0, 1) and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As n →∞

n
−1/2 [nr]

“
P̂ P V co,r (u) − P P V (u)

”
→D −

ρ (1 − ρ)

1 − u

fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

ρ
K3

“
FD

“
F
−1 (u)

”
, r
”

+
ρ (1 − ρ)

1 − u

fD

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

1 − ρ
K4

“
FD̄

“
F
−1 (u)

”
, r
”

−

0@ (1 − ρ) fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” FD

“
F
−1 (u)

”
+

ρfD

“
F−1 (u)

”
f
“

F−1 (u)
” FD̄

“
F
−1 (u)

”1A p
ρ (1 − ρ)

1 − u
W (r)

uniformly for u ∈ [a, b] and r ∈ [c, 1] where K3 and K4 are independent Kiefer Processes and W is a Wiener

process independent of K3 and K4.

Proof. First, note that,

n
−1/2

[nr]
“

ŜD,r

“
F̂
−1
r (u)

”
ρ̂r − SD

“
F
−1

(u)
”

ρ
”

=n
−1/2

[nr]
“

FD

“
F
−1

(u)
”

ρ− F̂D,r

“
F̂
−1
r (u)

”
ρ̂r

”
=− FD

“
F
−1

(u)
”

n
−1/2

[nr] (ρ̂r − ρ)

+ ρ̂rn
−1/2

[nr]
“

FD

“
F
−1

(u)
”
− FD

“
F̂
−1
r (u)

””
− ρ̂rn

−1/2
[nr]

“
F̂D,r

“
F̂
−1
r (u)

”
− FD

“
F̂
−1
r (u)

””
.

The first term converges to a Wiener Process,

−FD

(
F−1 (u)

)
n−1/2 [nr] (ρ̂r − ρ) →D −FD

(
F−1 (u)

)√
ρ (1− ρ)W (r) , (52)

by Lemma 2.4. It can also be shown that ρ̂r →a.s ρ uniformly for r ∈ [e, 1],

sup
e≤r≤1

|ρ̂r − ρ| = n

[ne]
sup

e≤r≤1

[ne]
n

|ρ̂r − ρ|

≤ n

[ne]
sup

e≤r≤1

[nr]
n

|ρ̂r − ρ|

→a.s 0.

This result can be thought of as a special case of the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő
and Szyszkowicz (1998)) for a fixed x ∈ (0, 1), where F is the CDF of a Bernoulli random variable. The
second term converges to the sum of two independent Kiefer Proccesses. To see this we rewrite the second
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term as,

ρ̂rn
−1/2

[nr]
“

FD

“
F
−1

(u)
”
− FD

“
F̂
−1
r (u)

””
=ρ̂rn

−1/2
[nr]

FD

`
F−1 (u)

´
− FD

“
F−1

“
F
“

F̂−1
r (u)

”””
u− F

“
F̂−1

r (u)
” “

u− F
“

F̂
−1
r (u)

””

=ρ̂rn
−1/2

[nr]
FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

“
u− F̂r

“
F̂
−1
r (u)

””

+ ρ̂rn
−1/2

[nr]
FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

“
F̂r

“
F̂
−1
r (u)

”
− F

“
F̂
−1
r (u)

””

=ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

n
−1/2

[nr]
“

u− F̂r

“
F̂
−1
r (u)

””

+ ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

n
−1/2

[nr]
“

ρ̂rF̂D,rD

“
F̂
−1
r (u)

”
− ρFD

“
F̂
−1
r (u)

””

+ ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

n
−1/2

[nr]
“
(1− ρ̂r) F̂D̄,rD̄

“
F̂
−1
r (u)

”
− (1− ρ) FD̄

“
F̂
−1
r (u)

””

=ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

n
−1/2

[nr]
“

u− F̂r

“
F̂
−1
r (u)

””

+ ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

ρ̂rn
−1/2

[nr]
“

F̂D,rD

“
F̂
−1
r (u)

”
− FD

“
F̂
−1
r (u)

””

+ ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

(1− ρ̂r) n
−1/2

[nr]
“

F̂D̄,rD̄

“
F̂
−1
r (u)

”
− FD̄

“
F̂
−1
r (u)

””

+ ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

“
FD

“
F̂
−1
r (u)

”
− FD̄

“
F̂
−1
r (u)

””
n
−1/2

[nr] (ρ̂r − ρ)

We must show that
FD(F−1(F(F̂−1

r (u))))−FD(F−1(u))
F(F̂−1

r (u))−u
converges uniformly to

fD(F−1(u))
f(F−1(u)) for r ∈ [e, 1] and

u ∈ [a, b]. A simple application of the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgő and Szyszkowicz

(1998)) allows us to conclude that F
(
F̂−1

r (u)
)

converges to u uniformly,

sup
e≤r≤1

sup
a≤u≤b

˛̨̨
F
“
F̂−1

r (u)
”
− u
˛̨̨
=

n

[ne]
sup

e≤r≤1
sup

a≤u≤b

[ne]

n

˛̨̨
F
“
F̂−1

r (u)
”
− u
˛̨̨

≤ n

[ne]
sup

e≤r≤1
sup

a≤u≤b

[nr]

n

˛̨̨
F
“
F̂−1

r (u)
”
− u
˛̨̨

→a.s 0. (53)
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We note that (53) also implies that FD

(
F̂−1

r (u)
)

and FD̄

(
F̂−1

r (u)
)

converge uniformly to FD

(
F−1 (u)

)
and FD̄

(
F−1 (u)

)
, respectively, which can be seen by noting that the difference between FD

(
F̂−1

r (u)
)

and

FD

(
F−1 (u)

)
will always have the same sign as the difference between FD̄

(
F̂−1

r (u)
)

and FD̄

(
F−1 (u)

)
.

By the mean value theorem, there exists F
(
F̃−1

r (u)
)

between u and F
(
F̂−1

r (u)
)
, such that,

FD

(
F−1

(
F
(
F̂−1

r (u)
)))

− FD

(
F−1 (u)

)
F
(
F̂−1

r (u)
)
− u

=
fD

(
F−1

(
F
(
F̃−1

r (u)
)))

f
(
F−1

(
F
(
F̃−1

r (u)
))) .

Since F
(
F̃−1

r (u)
)
→a.s. u uniformly and by the uniform continuity of

fD(F−1(u))
f(F−1(u)) ,

sup
e<r≤1

sup
a≤u≤b

∣∣∣∣∣∣
fD

(
F−1

(
F
(
F̃−1

r (u)
)))

f
(
F−1

(
F
(
F̃−1

r (u)
))) −

fD

(
F−1 (u)

)
f (F−1 (u))

∣∣∣∣∣∣→a.s. 0,

which implies,
FD

(
F−1

(
F
(
F̂−1

r (u)
)))

− FD

(
F−1 (u)

)
F
(
F̂−1

r (u)
)
− u

→a.s

fD

(
F−1 (u)

)
f (F−1 (u))

, (54)

uniformly for u ∈ [a, b] and r ∈ [e, 1]. For all r ∈ [e, 1],

sup
a≤u≤b

n−1/2 [nr]
∣∣∣u− F̂r

(
F̂−1

r (u)
)∣∣∣ ≤a.s.

1
n1/2

.

Therefore, as n →∞,

sup
e≤r≤1

sup
a≤u≤b

n−1/2 [nr]
∣∣∣u− F̂r

(
F̂−1

r (u)
)∣∣∣→a.s. 0.

From this result, (54) and the uniform convergence of ρ̂r to ρ we can conclude that,

ρ̂r

FD

(
F−1

(
F
(
F̂−1

r (u)
)))

− FD

(
F−1 (u)

)
F
(
F̂−1

r (u)
)
− u

n−1/2 [nr]
(
u− F̂r

(
F̂−1

r (u)
))

→a.s. 0,

uniformly for u ∈ [a, b] and r ∈ [e, 1]. From (54), the uniform convergence of ρ̂r to ρ, Lemma 2.4 and the
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uniform continuity of the Kiefer process we can conclude,

ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

`
F−1 (u)

´
F
“

F̂−1
r (u)

”
− u

ρ̂rn
−1/2

[nr]
“

F̂D,rD

“
F̂
−1
r (u)

”
− FD

“
F̂
−1
r (u)

””

→D

ρ2fD

`
F−1 (u)

´
f (F−1 (u))

1
√

ρ
K3

“
FD

“
F
−1

(u)
”

, r
”

, (55)

ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

“
F−1 (u)

”
F
“

F̂
−1
r (u)

”
− u

(1 − ρ̂r) n
−1/2 [nr]

„
F̂D̄,rD̄

“
F̂
−1
r (u)

”
− FD̄

“
F̂
−1
r (u)

”«

→D

ρ (1 − ρ) fD

“
F−1 (u)

”
f
“

F−1 (u)
” (1 − ρ)

1
√

1 − ρ
K3

“
FD̄

“
F
−1 (u)

”
, r
”

, (56)

and

ρ̂r

FD

“
F−1

“
F
“

F̂−1
r (u)

”””
− FD

“
F−1 (u)

”
F
“

F̂
−1
r (u)

”
− u

“
FD

“
F̂
−1
r (u)

”
− FD̄

“
F̂
−1
r (u)

””
n
−1/2 [nr] (ρ̂r − ρ)

→D

ρfD

“
F−1 (u)

”
f
“

F−1 (u)
” “

FD

“
F
−1 (u)

”
− FD̄

“
F
−1 (u)

””q
ρ (1 − ρ)W (r), (57)

where K3 and K4 are Kiefer processes and W is the same Wiener Process from (52) and is independent of
K3 and K4. The third term converges in distribution to a Kiefer process,

−ρ̂rn
−1/2

[nr]
“

F̂D,r

“
F̂
−1
r (u)

”
− FD

“
F̂
−1
r (u)

””
→D −ρ

1
√

ρ
K3

“
FD

“
F
−1

(u)
”

, r
”

, (58)

by Lemma 2.4, the uniform continuity of the Kiefer process and the uniform convergence of ρ̂R to ρ. Summing

(52), (55), (56), (57),(58) and some algebra gives the desired result.

Theorem 5.6 establishes distribution theory for the sequential empirical PPV curve indexed by the

percentile value. From this result we can easily develop distribution theory for the fixed-sample empirical

PPV curve, the sequential empirical NPV curve and the fixed-sample empirical NPV curve. Corollary 5.7

considers the fixed-sample empirical PPV curve as a special case, while Corollary 5.8 establishes distribution

theory for the sequential and fixed-sample empirical NPV curve indexed by the percentile value.
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Corollary 5.7. Assume A1 - A3 hold, ρ ∈ (0, 1) and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As n →∞

n
1/2 “

P̂ P V co,1 (u) − P P V (u)
”
→D −

ρ (1 − ρ)

1 − u

fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

ρ
B3

“
FD

“
F
−1 (u)

””

+
ρ (1 − ρ)

1 − u

fD

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

1 − ρ
B4

“
FD̄

“
F
−1 (u)

””

−

0@ (1 − ρ) fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” FD

“
F
−1 (u)

”
+

ρfD

“
F−1 (u)

”
f
“

F−1 (u)
” FD̄

“
F
−1 (u)

”1A p
ρ (1 − ρ)

1 − u
Z

uniformly for u ∈ [a, b] where B3 and B3 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.

Proof. Immediate from Theorem 5.6 and by noting that K(t, 1) =D B(t).

Corollary 5.8. Assume A1 - A3 hold, ρ ∈ (0, 1) and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. As n →∞

n
−1/2 [nr]

“
N̂P V co,r (u) − NP V (u)

”
→D −

ρ (1 − ρ)

u

fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

ρ
K3

“
FD

“
F
−1 (u)

”
, r
”

+
ρ (1 − ρ)

u

fD

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

1 − ρ
K4

“
FD̄

“
F
−1 (u)

”
, r
”

−

0@ (1 − ρ) fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” FD

“
F
−1 (u)

”
+

ρfD

“
F−1 (u)

”
f
“

F−1 (u)
” FD̄

“
F
−1 (u)

”1A p
ρ (1 − ρ)

u
W (r)

uniformly for u ∈ [a, b], r ∈ [e, 1] where K3 and K4 are independent Kiefer Processes and W is a Wiener
process independent of K3 and K4.

n
1/2 “

N̂P V co,1 (u) − P P V (u)
”
→D −

ρ (1 − ρ)

u

fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

ρ
B1

“
FD

“
F
−1 (u)

””

+
ρ (1 − ρ)

u

fD

“
F−1 (u)

”
f
“

F−1 (u)
” 1
√

1 − ρ
B2

“
FD̄

“
F
−1 (u)

””

−

0@ (1 − ρ) fD̄

“
F−1 (u)

”
f
“

F−1 (u)
” FD

“
F
−1 (u)

”
+

ρfD

“
F−1 (u)

”
f
“

F−1 (u)
” FD̄

“
F
−1 (u)

”1A p
ρ (1 − ρ)

u
Z

uniformly for u ∈ [a, b] where B3 and B3 are independent Brownian Bridges and Z is a standard normal

random variable independent of B3 and B4.

Proof. Immediate from Theorem 5.6, Corollary 5.7 and (42).

Theorem 5.6, Corollary 5.7 and Corollary 5.8 establish the convergence of the fixed-sample and sequential

empirical PPV and NPV curve indexed by the percentile value under cohort sampling. These results allow
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us to develop distribution theory for summaries of the PPV and NPV curves. Corollary 5.9 establishes

that the sequential empirical estimates of PPV (u) and NPV (u), a point on the PPV and NPV curve,

respectively, are asymptotically normal with an independent increments covariance structure.

Corollary 5.9. Assume A1 - A3 hold, ρ ∈ (0, 1) and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. For u ∈ (0, 1) and

J stopping times,

A.
(
P̂PV co,r1(u), P̂PV co,r2(u), . . . , P̂PV co,rJ

(u)
)
, is approximately multivariate normal with,

P̂PV co,ri
(u) ∼ N

(
PPV (u), σ2

P̂PV co,ri
(u)

)
i = 1, 2, . . . , J

and

Cov
[
P̂PV co,ri

(u), P̂PV co,rj
(u)
]

= V ar
[
P̂PV co,rj

(u)
]

= σ2

P̂PV co,rj
(u)

, ri ≤ rj

where

σ2

P̂PV co,rj
(u)

=

„
fD̄(F−1(u))
f(F−1(u))

(1− ρ)

«2

PPV (u)
“

ρ
1−u

− PPV (u)
”

ρnrj

+

„
fD(F−1(u))
f(F−1(u))

ρ

«2

(1− PPV (u))
“

u−ρ
1−u

+ PPV (u)
”

(1− ρ) nrj

+

„
PPV (u)

„
fD(F−1(u))

(1−ρ)f(F−1(u))
− 1

ρ

«
+ 1

1−u
− ρfD(F−1(u))

(1−ρ)f(F−1(u))

«2

ρ (1− ρ)

nr
.

B.
(
N̂PV co,r1(u), N̂PV co,r2(u), . . . , N̂PV co,rJ

(u)
)
, is approximately multivariate normal with,

N̂PV co,ri
(u) ∼ N

(
NPV (u), σ2

N̂PV co,ri
(u)

)
i = 1, 2, . . . , J

and

Cov
[
N̂PV co,ri

(u), N̂PV co,rj
(u)
]

= V ar
[
N̂PV co,rj

(u)
]

= σ2

N̂PV co,rj
(u)

, ri ≤ rj
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where

σ2

N̂PV co,rj
(u)

=

„
fD̄(F−1(u))
f(F−1(u))

(1− ρ)

«2 `
NPV (u) + ρ−u

u

´
(1−NPV (u))

ρnrj

+

„
fD(F−1(u))
f(F−1(u))

ρ

«2

NPV (u)
`

1−ρ
u
−NPV (u)

´
(1− ρ) nrj

+

„
NPV (u)

„
fD(F−1(u))

(1−ρ)f(F−1(u))
− 1

ρ

«
+ 1

ρ
− fD(F−1(u))

f(F−1(u))

«2

ρ (1− ρ)

nr
.

Proof. It immediate from Theorem 5.6 that(
P̂PV co,r1(u), P̂PV co,r2(u), . . . , P̂PV co,rJ

(u)
)

is approximately multivariate normal with

P̂PV co,ri
(u) ∼ N

(
PPV (u), σ2

P̂PV co,ri
(u)

)
i = 1, 2, . . . , J

and

Cov
[
P̂PV co,ri

(u), P̂PV co,rj
(u)
]

= V ar
[
P̂PV co,rj

(u)
]

= σ2

P̂PV co,rj
(u)

, ri ≤ rj

where

σ2

P̂PV co,rj
(u)

=

„
ρ(1−ρ)
1−u

fD̄(F−1(u))
f(F−1(u))

«2

FD

`
F−1 (u)

´ `
1− FD

`
F−1 (u)

´´
ρnrj

+

„
ρ(1−ρ)
1−u

fD(F−1(u))
f(F−1(u))

«2

FD̄

`
F−1 (u)

´ `
1− FD̄

`
F−1 (u)

´´
(1− ρ) nrj

+

„
(1−ρ)fD̄(F−1(u))
(1−u)f(F−1(u))

FD

`
F−1 (u)

´
+

ρfD(F−1(u))
(1−u)f(F−1(u))

FD̄

`
F−1 (u)

´«2

ρ (1− ρ)

nr
.

We can write the variance in terms of PPV (u) by noting that

1− FD(F−1(u)) =
1− u

ρ
PPV (u)

and

1− FD̄(F−1(u)) =
1− u

1− ρ
(1− PPV (u)) ,
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substituting into the above variance formula and simplifying. The proof of part B is nearly identical with

the only difference being that we write the variance in terms of NPV (u) by noting that

FD(F−1(u)) =
u

ρ
(1−NPV (u))

and

FD̄(F−1(u)) =
u

1− ρ
NPV (u).

Finally, Corollary 5.10 establishes a normal approximation for the fixed-sample empirical estimates of

PPV (u) and NPV (u) under cohort sampling as a special case of Corollary 5.9.

Corollary 5.10. Assume A1 - A3 hold, ρ ∈ (0, 1) and let
fD(F−1(u))
f(F−1(u)) be bounded on [a, b]. For u ∈ (0, 1),

the empirical estimates of PPV (u) and NPV (u) are approximately normally distributed with

P̂PV co,1(u) ∼ N
(
PPV (u), σ2

P̂PV co,1(u)

)

and

N̂PV co,1(u) ∼ N
(
NPV (u), σ2

N̂PV co,1(u)

)
where σ2

P̂PV co,1(u)
and σ2

N̂PV co,1(u)
are defined as in Corollary 5.4.

Proof. Immediate from Corollary 5.9.

6 Discussion

We considered the asymptotic properties of the sequential empirical ROC, PPV and NPV curves. We first

extended the work of Hsieh and Turnbull (1996) to the sequential empirical ROC curve. We showed that

the sequential empirical ROC curve converges to the sum of independent Kiefer processes and that the

sequential empirical estimate of a point on the ROC curve is asymptotically normal with an independent

increments covariance structure. Next, distribution theory was developed for the sequential empirical PPV
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and NPV curves indexed by the true positive fraction, false positive fraction and the percentile value in

the entire population. In all cases, the sequential empirical PPV and NPV curves converge to the sum of

independent Kiefer processes and the sequential empirical estimate of a point on the PPV and NPV curve

is asymptotically normal with an independent increments covariance structure. Finally, distribution theory

for the fixed-sample empirical PPV and NPV curves were developed as a special case.

The results in this chapter provide the theoretical basis for applying standard group sequential methods

to diagnostic biomarker studies. The independent increments assumption is common in the group sequential

testing literature. Verifying that the independent increments assumption holds for the sequential empirical

estimate of a point on the ROC, PPV and NPV curves allows us to use standard group sequential methods

with a point a point on the ROC, PPV or NPV curve as our summary of interest. Furthermore, the results

in this chapter apply to the entire process which will allow us to easily develop distribution theory for other

summaries of the ROC, PPV and NPV curves.

We showed that the sequential empirical estimate of a point on the ROC, PPV or NPV curve has an

independent increments covariance structure. This is only one of many summaries of the ROC, PPV or

NPV curve. Future work is needed to show that this assumption holds for other summary measures and to

identify summary measures for which the independent increments assumption does not hold. For example,

the area under the ROC curve (AUC) is a common summary measure of the ROC curve and it would be

beneficial to show that the independent increments assumption holds for the sequential empirical estimate of

the AUC. Also, the results in this chapter only deal with the estimation of the ROC, PPV or NPV curve for

a single marker. In many cases we estimate the ROC, PPV or NPV curve for multiple markers and compare

the performance of these markers by comparing summaries of the ROC, PPV or NPV curve. Future work is

needed to generalize the results in this chapter to the cases with multiple markers and arbitrary correlation

between markers.
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