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A semi-parametric two-part mixed-effects

heteroscedastic transformation model

for correlated right-skewed semi-continuous data

Huazhen Lin ∗, Xiao-Hua Zhou †, ‡

Summary. In longitudinal or hierarchical structure studies, we

often encounter a semi-continuous variable that has a certain pro-

portion of a single value and a continuous and skewed distribution

among the rest of values. In the paper, we propose a new semi-

parametric two-part mixed-effects transformation model to fit cor-

related skewed semi-continuous data. In our model, we allow the

transformation to be non-parametric. Fitting the proposed model

faces computational challenges due to intractable numerical integra-

tions. We derive the estimates for the parameter and the transfor-

mation function based on an approximate likelihood, which has high

order accuracy but less computational burden. We also propose an

estimator for the expected value of the semi-continuous outcome

on the original-scale. Finally, we apply the proposed methods to a

clinical study on effectiveness of a collaborative care treatment on

late life depression on health care costs.

Key words: Semi-continuous; Right-skewed; Mixed-effects;

Transformation model; Semi-parametric; Laplace approximation.

1 Introduction

This study is motivated by an analysis to examine the effectiveness of the Improving

Mood-Promoting Access to Collaborative Treatment (IMPACT) program for late-life

∗Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China
†HSR&D Center of Excellence, VA Puget Sound Health Care System, Seattle, WA 98108
‡Department of Biostatistics, University of Washington, Seattle, WA 98195

1

Hosted by The Berkeley Electronic Press



depression (Unutzer et al. 2002). Intervention patients had access for up to 12 months

to a depression care manager who offered education, care management, and support

of antidepressant management. One primary outcome, the total inpatient cost over

a half year period, was collected at month 6, 12, 18 and 24.

We are interested in assessing the cost difference between intervention and control

groups and how the difference changes with patient’s covariates. This problem can

be considered as a special case of inference on a change in the mean cost associated

with a change in one or more covariates (e.g. increase in depression; comparison

of treatment groups). Statistically, we need to develop accurate regression models

for the mean function µ(x) = E(Y | X = x). The main challenge for such an

estimation is how to deal with three analytic problems: correlated data, zero inpatient

costs for some patients, and a highly skewed distribution of non-zero costs. Unlike

estimation on regression coefficients, estimation of µ(x) may be sensitive to how to

treat the correlation and skewness (Manning, 1998; Mullahy, 1998; Blough et al.,

1999; Manning et al., 2005).

In the literature, a continuous variable with addition zero values is also called a

semi-continuous variable. For cross-sectional data, a two-part model, which has a

long history in econometrics, is most appropriate for dealing with semi-continuous

data. The two-part model assumes that a semi-continuous response results from two

processes: one determining whether the response is zero, and the other determining

the actual level if it is non-zero (Duan et al., 1983; Manning et al., 1981; Manning,

1998; Mullahy, 1998). Olsen & Schafer (2001) extended the two-part model to lon-

gitudinal data by introducing random effects into the two-part model. Tooze et al.

(2002) independently developed a similar extension of the two-part model. Albert &

Shen (2005) further extended Olsen & Schafer’s model to incorporate serial correla-

tions. All these mixed-effect two-part models use a linear normal model to fit the

actual level of non-zero observations, which may not be appropriate for highly skewed

2

http://biostats.bepress.com/uwbiostat/paper346



data.

Since the transformation of Y can simplify the relationship of Y and X by in-

ducing a particular type of distribution, e.g. normal, homoscedastic, symmetric dis-

tribution, or remove extreme skewness so that more efficient estimators and more

appropriate plotting can be obtained (Ruppert, 2001), econometricians and statisti-

cians have historically relied on logarithmic or other specific transformations of Y ,

followed by regression of the transformed Y on X using Ordinary Least Square (OLS)

estimation, to overcome problems of heteroscedasticity, severe skewness, and kurtosis

(Box & Cox, 1964; Duan, 1983; Ruppert, 2001; Manning, 1998; Manning & Mullahy,

2001). Since the parametric transformation in OLS is not based upon any meaningful

mechanism and may not be reasonable, Horowitz (1996), Cheng (2002) and Zhou et

al. (2008) proposed nonparametric transformation models for non-zero cost data in

cross-sectional studies. In the paper, we extend Olsen & Schafer’s parametric two-

part mixed-effects model to a semi-parametric transformation two-part mixed-effects

model.

Fitting our semi-parametric two-part mixed-effects transformation model faces a

computational challenge because of intractable numerical integration, which is also

encountered in generalized linear random effects models and nonlinear variance com-

ponent models. In the paper, by transforming the integral in the likelihood function

to a “conditional expectation,” we obtain an approximation to the likelihood function

that has a closed form. The simulation shows that our approximation is even more

accurate than the sixth-order Laplace approximation in finite sample sizes. However,

the computational requirement on our accurate approximation is minimal; we only

need to evaluate first and second derivatives and maximize the two integrands.

This paper is organized as follows. In Section 2, we derive the estimates for the

regression parameters and the transformation function based on the approximate log-

likelihood and a system of estimating equations. In Section 3, we present a method for
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calculating the unbiased estimator for the mean of the untransformed cost of a patient

given the patient’s covariates. In Sections 2 and 3, we also show that under some

regularity conditions that our estimators for the unknown transformation function

and the mean of the untransformed scale are asymptotically normal, both with the

parametric rate of O(n−1/2). We report results of simulation studies on the accuracy

of our approximation and the robustness and efficiency of our method in Section 4.

Finally, we apply our methods to the IMPACT data in Section 5.

2 Model and Estimation

2·1 Notation and model

Let Yij denote a semi-continuous response for subject i at occasion j, where i =

1, · · · , n, and j = 1, · · · , ni. This response can be recorded as two different responses,

Uij =

{
1 if Yij 6= 0

0 if Yij = 0
, and Vij =

{
Yij if Yij 6= 0

irrelevant if Yij = 0
.

We model these two responses by a pair of correlated random-effects models: one for

the probability that Uij = 1, and one for the continuous response Vij. Let δ1i and δ2i

be the random effects due to subject i for the two parts. We allow δ1i and δ2i to be

correlated, reflecting possible correlations across the two parts of the model. Denote

δi = (δ1i, δ2i)
′ and assume that δi’s are i.i.d. with the density function f(δi; ψ). A

common choice of f is a multivariate normal distribution with zero mean vector and

covariance matrix, ψ =

(
ψ11 ψ12

ψ′12 ψ22

)
, where ψ11 and ψ22 are the covariance matrices

of δ1i and δ2i, respectively. We assume that Yij’s are conditionally independent, given

δi. Let πij(δ1i) = P (Uij = 1|δ1i). The first part of the two-part model predicts the

probability of having a non-zero cost by the following mixed-effects model:

η(πij(δ1i)) = X ′
1ijα + Z ′

1ijδ1i, (2.1)
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where α is a vector of unknown parameters, and η is a known link function. A

common choice of η is the logistic function η(x) = log(x/(1 − x)), but other choices

are possible.

The second part of the two-part model predicts the continuous response by the

following model:

h(Vij) = b0 + X ′
2ijβ + Z ′

2ijδ2i + εij, (2.2)

where h is a monotone increasing but unknown transformation function, satisfying

h(0) = −∞, that makes the distribution of the error term εij to be the normal

distribution with mean zero and variance σ2, β is a vector of unknown parameters,

εij and δ2i are independent. b0 is a known constant for identifiability. The requirement

h(0) = −∞ ensures that Φ(a + h(0)) = 0 for any finite a, where Φ is the distribution

function of the standard normal variable.

Let Ui = (Ui1, . . . , Uini
)′, X1i = (X1i1, . . . , X

′
1ini)

, and Z1i = (Z1i1, . . . , Z1ini
)′.

Denote h(Vi), Vi, X2i, and Z2i to be the vectors or matrices of all relevant values of

h(Vij), Vij, X2ij, and Z2ij for subject i with Uij = 1, respectively.

Let Θ = (β, α, σ, ψ). Hence Θ and h are the unknown parameters and function

to be estimated in our two-part mixed-effects transformation regression model, de-

fined by (2.1) and (2.2). In the rest of the paper, we denote the (k1 + k2 + · · · )th
order partial derivative of a function f(x1, x2, · · · ) by f (k1,k2,··· )(x1, x2, · · · ); that is,

f (k1,k2,··· )(x1, x2, · · · ) = d(k1+k2+··· )f(x1,x2,··· )
dx

k1
1 dx

k2
2 ··· .

2·2 The approximate likelihood for the parameter vector Θ given h

In this section, we propose a likelihood-based estimation method for Θ given that

h is known. Given h, the marginal likelihood for the model defined by (2.1) and (2.2)

5
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can be expressed as follows:

L =
n∏

i=1

∫
f(Ui|δ1i)f(h(Vi)|δ1i, δ2i)f(δ1i, δ2i)dδ1idδ2i.

Clearly, f(h(Vi)|δ1i, δ2i)f(δ1i, δ2i) can be identified as the joint density of (h(Vi), δ1i, δ2i)

and can be further written as f(δ2i|h(Vi), δ1i)f(h(Vi), δ1i). Since
∫

f(δ2i|h(Vi), δ1i)dδ2i =

1, we can further write the marginal likelihood function as follows:

L =
n∏

i=1

∫
f(Ui|δ1i)f(h(Vi), δ1i)dδ1i =

n∏
i=1

f(h(Vi))

∫
f(Ui|δ1i)f(δ1i|h(Vi))dδ1i, (2.3)

where f(Ui|δ1i) = exp
{∑ni

j=1(Uijη(πij(δ1i)) + log(1− πij(δ1i)))
}

comes from the model

that describes the probability of being a zero observation.

When the dimension of δ1i is high, ML estimation of Θ becomes difficult because

of the intractable numerical integration in (2.3). One method to avoid this intractable

numerical integration is to use a Bayesian simulation method with an MCMC algo-

rithm. However, with an unknown transformation function h, the Bayesian MCMC

algorithm may also be time-consuming.

The problem of intractable integration in (2.3) is closely related to that in the

marginal likelihood of a generalized linear mixed model. In the literature on maxi-

mizing the marginal likelihood of a generalized linear mixed model, several authors

have proposed several methods for approximating the integrands in the marginal

likelihood functions, including Gauss-Hermite quadrature (Anderson & Aitkin, 1985;

Hedeker & Gibbons, 1994) and second-order Laplace approximations (Solomon &

Cox, 1992; Liu & Pierce, 1993; Breslow & Clayton, 1993). In general, the Laplace

method is easier to implement than the quadrature method, while the quadrature

method is more accurate than the Laplace approximation. Recently, Raudenbush et

al. (2000) proposed the sixth-order Laplace approximation.

Olsen & Schafer (2001) applied the sixth-order Laplace approximation to the

parametric two-part homoscedastic mixed-effects model for the semi-continuous data.
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Through the simulation, Raudenbush et al. (2000) found that the sixth-order Laplace

approximation is as accurate as the quadrature method but with much less compu-

tational time. However, computation of the first to sixth derivatives, required by the

sixth-order Laplace approximation, is also a difficult task in our case.

Based on the idea proposed by Tierney and Kadane (1986), we propose a new

approximation to the integration in (2.3), which only requires evaluation of first and

second derivatives. Through simulations, we find our approximation is more accurate

than the sixth-order Laplace approximation in finite sample sizes. We achieve this

accurate approximation by writing the integral in (2.3) as the ratio of two integrals,

∫
f(Ui|δ1i)f(δ1i|h(Vi))dδ1i =

∫
f(Ui|δ1i)f(δ1i, h(Vi))dδ1i∫

f(δ1i, h(Vi))dδ1i

. (2.4)

We approximate the numerator and denominator in (2.4), respectively, by Laplace’s

approximation, instead of directly approximating
∫

f(Ui|δ1i)f(δ1i|h(Vi))dδ1i, as done

in a standard Laplace’s approximation. In taking the ratio of these two approxima-

tions, we can cancel some portion of these residual errors. As a result, we can improve

the order of accuracy of the approximation for the ratio.

Next we give a formal statement of the proposed approximation. Denote

Di = diag(σ2, · · · , σ2), Σi = Di + Z2iψ22Z
′
2i, Bi = ψ11 − ψ12Z

′
2iΣ

−1
i Z2iψ21,

πi(δ1i) = (πi1(δ1i), · · · , πini
(δ1i))

′, ∆i =

(
Σi Z2iψ21

ψ12Z
′
2i ψ11

)
,

Πi(δ1i) = diag{Πij(δ1i), j = 1, · · · , ni}, and Πij(δ1i) = πij(δ1i)(1− πij(δ1i)).

Let τ ∗i (δ1i) ≡ log{f(Ui|δ1i)f(δ1i, h(Vi))} and τi(δ1i) ≡ log{f(δ1i, h(Vi))}, which

correspond to the integrands of the numerator and the denominator in (2.4), re-

spectively. Let δ̂∗1i and δ̂1i be the modes of τ ∗i (δ1i) and τi(δ1i), respectively. We obtain

δ̂1i by solving the equation ∂τi(δ1i)
∂δ1i

= 0, which has an explicit solution,

δ̂1i = ψ12Z
′
2iΣ

−1
i (h(Vi)− b01−X2iβ) ,

7

Hosted by The Berkeley Electronic Press



where 1 is the vector with all of the component to be 1. By setting
∂τ∗i (δ1i)

∂δ1i
= 0, we

obtain δ̂∗1i by iteratively solving the following equation:

δ̂∗1i = BiZ
′
1i

(
Ui − πi(δ̂1i)

)
+ ψ12Z

′
2iΣ

−1
i (h(Vi)− b01−X2iβ) .

From (2.4), we see that we can further write the integral in (2.3) as the following

ratio of the two integrals:

∫
f(Ui|δ1i)f(δ1i|h(Vi))dδ1i =

∫
exp(τ ∗i (δ1i))dδ1i∫
exp(τi(δ1i))dδ1i

. (2.5)

Following the same idea as in Tierney and Kadane (1986), we first derive the second-

order Laplace’s approximations to the numerator and denominator of the ratio in

(2.5). Then, taking the ratio of the two approximations, we have a new approximation

for the integral in (2.3),

∫
f(Ui|δ1i)f(δ1i|h(Vi))dδ1i =

(
| − τ

(2)
i (δ̂1i)|

| − τ
(2)
i (δ̂∗1i)|

)1/2

exp{τi(δ̂
∗
1i)− τi(δ̂1i)}

×
(

1 +
a∗ − a

ni

+ O(n−2
i )

)
,

where a = g(τ
(2)
i (δ̂1i), τ

(3)
i (δ̂1i), τ

(4)
i (δ̂1i)), a∗ = g(τ

(∗2)
i (δ̂∗1i), τ

(∗3)
i (δ̂∗1i), τ

(∗4)
i (δ̂∗1i)), and g

is a known function. For example, when δ1i is one-dimension, denote τ
(k)
i = τ

(k)
i (δ̂1i),

σ2 = −
(
τ

(2)
i

)−1

, we have a = 1
8
σ4τ

(4)
i + 5

24
σ6

(
τ

(3)
i

)2

, a∗ is defined in the same way

except that τi and δ̂1i are replaced by τ ∗i and δ̂∗1i. In Appendix A, we show that our

new approximation has the error of order O(n
−3/2
i ),

∫
f(Ui|δ1i)f(δ1i|h(Vi))dδ1i =

(
| − τ

(2)
i (δ̂1i)|

| − τ
(2)
i (δ̂∗1i)|

)1/2

exp{τi(δ̂
∗
1i)− τi(δ̂1i)}

×
(
1 + O(n

−3/2
i )

)
. (2.6)

The simulations in Section 4 also demonstrate that our approximation is more accu-

rate than the six-order Laplace’s method in finite sample sizes.
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Based on (2.6), we obtain the following final approximate likelihood:

l(Θ; h) = −1

2

n∑
i=1

log |Σi| − 1

2

n∑
i=1

log |Bi|

−1

2

n∑
i=1

(h(Vi)− b01−X2iβ)′ Σ−1
i (h(Vi)− b01−X2iβ)

−1

2

n∑
i=1

log | − τ
(2)
i (δ̂1i)|+

n∑
i=1

ni∑
j=1

(Uijη(πij(δ̂1i)) + log(1− πij(δ̂1i)))

−1

2

n∑
i=1

(
Ui − πi(δ̂1i)

)T

Z1iBiZ
′
1i

(
Ui − πi(δ̂1i)

)
. (2.7)

We maximize the function l(Θ; h) by Newton-Raphson iterative procedure,

Θ(t+1) = Θ(t) + C−1S,

where C = −∂2l(Θ; h)/∂Θ∂Θ′, and S = ∂l(Θ; h)/∂Θ evaluated at Θ = Θ(t). Since

the second derivative of the log-likelihood is difficult to calculate, the well-known

identity

E(∂2l(Θ; h)/∂Θ∂Θ′) = −E[(∂l(Θ; h)/∂Θ)(∂l(Θ; h)/∂Θ)′]

suggests an approximate scoring procedure with C ≈ ∑n
i=1(∂li(Θ; h)/∂Θ)(∂li(Θ; h)/∂Θ)′,

where li(Θ; h) is the contribution of subject i to the approximate log-likelihood. Ex-

pressions for the components of the score vector can be obtained from the authors

upon a request.

2·3 Estimation of the transformation function h given Θ

In this section, we discuss estimation of the transformation function h given all

the parameters Θ. Since

Pr(Vij ≤ v) = Pr(h(Vij) ≤ h(v)) = Φ

(
h(v)− b0 −X ′

2ijβ√
Z ′

2ijψ22Z2ij + σ2

)
, (2.8)
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where Φ is the cumulative distribution function of the standard normal random vari-

able, we obtain an estimate ĥ(v) for h(v) by solving the following estimating equation:

n∑
i=1

mi∑
j=1

(
I(Vij ≤ v)− Φ

(
h(v)− b0 −X ′

2ijβ√
Z ′

2ijψ22Z2ij + σ2

))
= 0. (2.9)

where v ∈ [v0, v1], the range of the observed Vij.

Using the monotone increasing property of the function Φ, we obtain that the

estimator ĥ(v) is a nondecreasing step function in v ∈ [v0, v1] with jumps only at the

observed Vij, where i = 1, · · · , n, j = 1, · · · , ni. Hence, let v1 < · · · < vK be the

set of distinct points of Vij, i = 1, · · · , n, j = 1, · · · , ni, then solving the system of

estimating equations defined by (2.9) is equivalent to solving the following system of

K equations:

n∑
i=1

mi∑
j=1

(
I(Vij ≤ vk)− Φ

(
h(vk)− b0 −X ′

2ijβ√
Z ′

2ijψ22Z2ij + σ2

))
= 0, for k = 1, · · · , K. (2.10)

The Newton-Raphson algorithm can be used to solve the system of K estimating

equations (2.10). We can see later that the discrete property of ĥ provides us with a

large simplification to predict the mean of the original scale. In addition, unlike a tra-

ditional nonparametric approach to estimate the transformation function (Horowitz,

1996; Klein & Sherman, 1998), our approach does not involve nonparametric smooth-

ing, and thus does not suffer from smoothing related problems, for example, selection

of a smoothing parameter.

We estimate Θ and h iteratively based on the approximation likelihood (2.7) and

the system of estimating equations (2.10) until two successive values of Θ do not differ

significantly. An initial value of Θ is required to start the iterations, which can be

obtained by fitting a generalized linear model for Ui and a transformation model for

nonzero with the dependence between models and data being ignored. For simplicity,

we set the starting values for ψ11 and ψ22 to be the identity matrix.

10

http://biostats.bepress.com/uwbiostat/paper346



Let ĥ be the estimators of h, dij(Θ) = Z ′
2ijψ22Z2ij + σ2,

S(w; v, Θ) =
1

n

n∑
i=1

mi∑
j=1

(
I(Vij ≤ v)− Φ

(
w − b0 −X ′

2ijβ√
dij(Θ)

))
,

s1(v) = lim
n→∞

S(100)(h0(v); v, Θ0), s2(v) = lim
n→∞

S(001)(h0(v); v, Θ0),

where h0 and Θ0 are the true values of h and Θ, respectively. Then under the

conditions given in Appendix B, we have

ĥ(v)− h0(v) ≈ s−1
1 (v)

{
S(h0(v); v, Θ0) + s2(v)′(Θ̂−Θ0)

}
, (2.11)

where Θ̂ is the estimate of Θ. Hence, if there exist independent random variablesξi

with E(ξi) = 0 and V ar(ξi) < ∞, for i = 1, 2, · · · , n, such that Θ̂−Θ0 = 1
n

∑n
i=1 ξi +

op(n
−1/2), we have

ĥ(v)− h0(v) =
1

ns1(v)

n∑
i=1

Ωi(v) + op(n
−1/2),

where Ωi(v) =
∑mi

j=1

[
I(Vij ≤ v)− Φ

(
h0(v)−b0−X′

2ijβ0√
dij(Θ0)

)]
+ s2(v)′ξi. This implies that

the distribution of n1/2(ĥ(v) − h0(v)) can be approximated by a normal random

variable with mean 0 and variance Σ = 1
s2
1(v)

EΩ2
i (v). Hence, we can estimate the

nonparametric function h(.) with a parametric convergent rate if we can estimate the

parameters Θ at a rate of n−1/2. The similar conclusion, regarding n−1/2 convergent

rate of the estimated transformation function, can be also found in Horowitz (1996),

Chen (2002), Ye and Duan (1997) and Zhou et al. (2008). The conclusion assures

that the resulting estimator for the mean of the original scale converges to the true

value at a rate of n−1/2.

3 Predicting the mean of the original scale

Given the covariates x = (x′1, x
′
2)
′ and z = (z′1, z

′
2)
′, we want to estimate u(x, z) =

E(Y |x, z), where Y is the response of the outcome for the patient with the covariates

11
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x and z. Unbiased and consistent quantities on the transformed scale may not au-

tomatically retransform into unbiased or consistent quantities on the untransformed

scale. The smearing estimate, proposed by Duan (1983), is a popular method to

consistently estimate an individual’s expected response on the untransformed scale.

Since the random effects, δi’s, are unobservable, it is difficult to extend the smearing

estimator to the two-part model with the random effects.

In this section, we propose a numerical method to estimate µ(x, z). Let π(δ1) =

η−1(x′1α + z′1δ1) and v(δ2) = h−1(b0 + x′2β + z′2δ2 + σε), where δ = (δ′1, δ
′
2)
′ ∼ N(0, ψ),

ε ∼ N(0, 1), δ and ε are independent. With this notation, we obtain the following

expression for µ(x, z):

u(x, z) = E (E(Y |x, z, δ)) = E (π(δ1)E (v(δ2)|δ))
= E

{
η−1(x′1α + z′1δ1)E

[
h−1(b0 + x′2β + z′2δ2 + σε)|δ]} .

From this expression, we see that one way to estimate u(x, z) is to first estimate

E [h−1(b0 + x′2β + z′2δ2 + σε)|δ] for any given δ, which can be achieved by the following

estimator:
1

R1

R1∑

k=1

ĥ−1(b0 + x′2β̂ + z′2δ2 + σ̂εk),

where εk is generated from the standard normal distribution. Then, we can obtain

the following estimator for u(x, z):

û(x, z) =
1

R1R2

R2∑
r=1

R1∑

k=1

η−1(x′1α̂ + z′1δ1r)ĥ
−1(b0 + x′2β̂ + z′2δ2r + σ̂εk), (3.1)

where δr = (δ′1r, δ
′
2r)

′ is generated from the multivariate normal distribution with mean

vector 0 and covariance matrix ψ̂. Next we give an asymptotic result for û(x, z).

Let ζ1 = x′1α+z′1δ1 and ζ2 = b0+x′2β+z′2δ2+σε, π(ζ1) = η−1(ζ1), v(ζ2) = h−1(ζ2),

z01 = (z′, 0′)′, and z02 = (0′, z′)′. Suppose that δ = (δ′1, δ
′
2)
′ is the normally distributed

random vector with mean 0 and covariance matrix ψ, and that ϑ and ε are the

standard normal random vector and standard normal random variable, respectively.

12
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Assume that δ, ϑ, and ε are independent. Denote

%1(x, z, Θ) = E
{
π(1)(ζ1)v(ζ2)

}
, %2(x, z, Θ) = E

{
π(ζ1)v

(1)(ζ2)
}

,

%3(x, z, Θ) = E
{
π(ζ1)v

(1)(ζ2)ε
}

, %4(x, z, Θ) = E
{
π(ζ1)v

(1)(ζ2)s
−1
1 (v(ζ2))s2(v(ζ2))

}
,

%5(x, z, Θ) = E
{
π(1)(x′1α + z′01ψ

1/2ϑ)v(b0 + x′2β + z′02ψ
1/2ϑ + σε)ϑ

}
,

%6(x, z, Θ) = E
{
π(x′1α + z′01ψ

1/2ϑ)v(1)(b0 + x′2β + z′02ψ
1/2ϑ + σε)ϑ

}
,

%′7(x, z, Θ)(Θ̂−Θ) ≡ z′01

(
ψ̂1/2 − ψ1/2

)
%5(x, z, Θ) + z′02

(
ψ̂1/2 − ψ1/2

)
%6(x, z, Θ),

ς(x, z, Θ) = (%1(x, z, Θ)x′1, %2(x, z, Θ)x′2, %3(x, z, Θ), 0)′,

%(x, z, Θ) = ς(x, z, Θ)− %4(x, z, Θ) + %7(x, z, Θ),

Υ(x, z, x∗2, z
∗
2 , v

∗, Θ) = E

{
π(ζ1)v

(1)(ζ2)s
−1
1 (v(ζ2))

(
I(h(v∗) ≤ ζ2)− Φ

(
ζ2 − b0 − x∗2

′β√
d(Θ)

))}
,

where d(Θ) = z′2ψ22z2 +σ2. Then under the conditions given in Appendix B, we have

û(x, z)− u(x, z) ≈ %(x, z, Θ0)
′(Θ̂−Θ0)− 1

n

n∑
i=1

mi∑
j=1

Υ(x, z,X2ij, Z2ij, Vij, Θ0). (3.2)

Hence, if there exist independent random variables, ξi, i = 1, 2, · · · , n, with E(ξi) = 0,

V ar(ξi) < ∞, such that Θ̂ − Θ0 = 1
n

∑n
i=1 ξi + op(n

−1/2), then the distribution of

n1/2(û(x, z)− u(x, z)) can be approximated by a normal random variable with mean

0 and a finite covariance matrix.

4 Simulation

4·1 Performance of the approximate log-likelihood

In this subsection, we investigate the accuracy of our approximate log-likelihood

by comparing the estimates based on our approximation with the estimates based on

the six-order Laplace approximation, proposed by Olsen & Schafer (2001).

In our simulation study, we use the same setting as in Olsen & Schafer (2001). For

each subject, Xi is the matrix of covariates related to fixed effects and is constructed

13
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with three columns: a constant equal to 1, a dummy indicator for a non-time-varying

covariate drawn from Bernoulli(p=0.5), and a time-varying covariate taking values

0, 1 · · · ,m − 1, where m is the number of occasions. The matrix of covariates Zi,

which are related to random effects, are set to be columns of 1’s. The coefficients of

the fixed effects are set to α = (−1,−0.5, 0.4)′ and β = (−0.3, 0.1, 0.4)′. The variance

parameters are set to be ψ11 = 1, ψ12 = 0.2, and ψ22 = 0.5. The homoscedastic

variance of the transformed nonzero response is set to be σ2 = 0.5. The transforma-

tion function is assumed to be identity. We also vary the number of subjects and the

number of occasions in a 2× 2 design with n = 1000 or 200 and ni = m = 10 or 5.

We summarize the behavior of our new estimators and the Olsen & Schafer’s (OS)

estimators of α and β in Table 1.

For each scenario, Table 1 lists the average, standard error (SE), and the root

of mean square errors (RMSE) of the estimators. Both our estimators and the OS

estimators are basically unbiased. However, the standard deviations of our estimators

are smaller than those of the OS estimators in all of the settings considered here. As

a result, our estimators have smaller RMSE than the OS estimators in all of the

settings and hence, are better than the OS estimators.

Although our estimator needs only the first and second derivatives, and the OS

estimator needs the first through sixth derivatives, our estimators are still more ac-

curate than the OS estimators.

4·2 Robustness

Since our method does not require specification of a parametric form for the trans-

formation function, we expect that the resulting estimates and inferences are more

reliable than the parametric method with the misspecified transformation function,

for example, the OS estimators. We want to know whether the added robustness

is gained at the expense of reduced efficiency. To investigate these two issues, we

14
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Table 1: Simulation results when semi-continuous data are generated from a two-part

homoscedastic mixed-effects model

n m Average Empirical SE RMSE

proposed OS proposed OS proposed OS

1000 10 α1 -1.0039 -1.000 0.0668 0.070 0.0669 0.0700

α2 -0.4947 -0.503 0.0808 0.083 0.0810 0.0831

α3 0.3998 0.400 0.0097 0.012 0.0097 0.0120

β1 -0.2993 -0.298 0.0405 0.043 0.0405 0.0430

β2 0.0994 0.096 0.0475 0.051 0.0475 0.0512

β3 0.3999 0.400 0.0036 0.004 0.0036 0.0040

1000 5 α1 -0.9948 -1.000 0.0768 0.089 0.0770 0.089

α2 -0.4907 -0.501 0.0849 0.105 0.0855 0.105

α3 0.3982 0.401 0.0240 0.030 0.0241 0.030

β1 -0.3029 -0.300 0.0530 0.059 0.0531 0.059

β2 0.1010 0.102 0.0601 0.069 0.0601 0.069

β3 0.4004 0.401 0.0123 0.016 0.0123 0.016

200 10 α1 -1.0144 -0.995 0.1434 0.165 0.1441 0.1651

α2 -0.4899 -0.512 0.1784 0.188 0.1787 0.1884

α3 0.4019 0.402 0.0231 0.028 0.0232 0.0281

β1 -0.2932 -0.297 0.0890 0.097 0.0893 0.0970

β2 0.0935 0.097 0.1052 0.117 0.1054 0.1170

β3 0.3996 0.400 0.0080 0.010 0.0080 0.0100

200 5 α1 -0.9876 -0.993 0.1820 0.199 0.1824 0.1991

α2 -0.4925 -0.497 0.1972 0.219 0.1973 0.2190

α3 0.3972 0.399 0.0565 0.067 0.0566 0.0670

β1 -0.2979 -0.303 0.1150 0.133 0.1150 0.1330

β2 0.1012 0.100 0.1356 0.145 0.1356 0.1450

β3 0.3987 0.400 0.0279 0.034 0.0279 0.0340
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examine the performance of the proposed method in comparison with the misspeci-

fied transformation (MT) method, where the transformation function is misspecified,

and the correctly-specified transformation (CT) method, where the transformation

function is correctly specified.

Our proposed model contains key two components, the transformation function,

h, and the distribution of the random effects. We would also like to know the rela-

tive effect of misspecification of the transformation function and misspecification of

the random effect distribution on our inference. To investigate this issue, we want

to compare the performance of the proposed method with a misspecified distribu-

tion function of the random effects with the performance of the MT method with

the correctly specified random effect distribution and a misspecified transformation

function.

We conduct two simulation studies to answer the above three issues. In the first

simulation study, we simulate data from the setting similar to the above simulation in

Section 4.1 except that β = (−0.3, 0.3, 0.4)′ and the transformation function h(v) =

3 log(v). A total of 200 data sets were generated. For each simulated data set,

we obtain estimates for the fixed effect and the mean of original scale µ(x) at the

combination of x1 = 1, x2 = 0, 1 and x3 = (0, 1, 2, 3, 4) using the proposed approach,

the CT method, and the MT method with the misspecified transformation function

h(v) = v4.

The MT method fails to converge for 123 of the 200 samples. The results reported

in Tables 2 and 3 are based on the remaining samples. Table 2 presents the average,

the standard error (SE), the standardized bias (bias as a percent of the SE), and

the RMSE for the fixed effect parameters. The MT estimate is severely biased. In

contrast, the proposed approach yields an estimate with essentially no bias, once

again suggesting that our method is robust.
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Table 2: Simulation results when semi-continuous data are generated from a two-part

mixed-effects heteroscedastic transformation model

proposed CT MT(OS) proposed CT MT(OS)

bias α1 0.0026 0.0022 0.0043 β1 – 0.0044 -0.9814

SE 0.0588 0.0558 0.0530 – 0.0352 0.0476

RMSE 0.0589 0.0559 0.0532 – 0.0355 0.9825

bias α2 0.0104 0.0092 -0.0069 β2 -0.0117 -0.0010 2.6542

SE 0.0654 0.0617 0.0632 0.0633 0.0386 0.0354

RMSE 0.0662 0.0624 0.0635 0.0644 0.0386 2.6544

bias α3 -0.0025 -0.0024 -0.0066 β3 0.0013 -0.0005 3.1341

SE 0.0160 0.0166 0.0146 0.0078 0.0086 0.0097

RMSE 0.0162 0.0167 0.0160 0.0079 0.0086 3.1341

Bias σ2 0.0164 -0.0010 -0.3699 ψ11 -0.1159 -0.1159 -0.1156

SE 0.0534 0.0138 0.0001 0.0783 0.0789 0.0787

RMSE 0.0559 0.0138 0.3699 0.1399 0.1402 0.1399

Bias ψ12 -0.0048 -0.0014 -0.1958 ψ22 0.0176 0.0004 -0.4002

SE 0.0347 0.0340 0.0014 0.0530 0.0287 0.0001

RMSE 0.0351 0.0340 0.1958 0.0558 0.0287 0.4002

Table 3 below presents the average, SE, and RMSE for the estimated µ(x) at x =

(1, 4), (1, 5) and (1, 6). Since the transformation function is involved only in the second

part of the models, the estimates of the regression parameters in the first part of the

models are basically unbiased even when we misspecified the transformation function.

However, misspecification of the transformation function can lead to severely biased

estimates for the parameters related to the second part of the model. In contrast, our

method gives estimates close to the truth value of the parameter with the reasonable

variances, suggesting that our procedure is robust.

For each simulated data set, we also obtain estimates of the transformation H us-

ing the proposed approach. Figure 1 displays the averaged estimated transformation
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Table 3: Simulation Results for the original scaled average based on the same simu-

lation of Table 2

x proposed CT MT x proposed CT MT

(1,1) Bias 0.0200 -0.0018 0.0646 (0,2) 0.0268 -0.0011 0.1167

SE 0.0274 0.0125 0.0128 0.0341 0.0147 0.0146

RMSE 0.0339 0.0126 0.0658 0.0434 0.0147 0.1176

(1,2) Bias 0.0061 -0.0012 0.0942 (0,3) 0.0074 0.0000 0.1489

SE 0.0252 0.0156 0.0153 0.0345 0.0188 0.0181

RMSE 0.0260 0.0156 0.0955 0.0353 0.0188 0.1500

(1,3) Bias -0.0133 -0.0001 0.0966 (0,4) -0.0191 0.0013 0.1374

SE 0.0334 0.0204 0.0190 0.0494 0.0247 0.0221

RMSE 0.0359 0.0204 0.0984 0.0529 0.0248 0.1391

function and their 95% empirical pointwise confidence limits, based on 200 simulated

data sets; Figure 1 shows that our proposed estimate of the transformation function

is very close to the true transformation function.

In the second simulation study, we investigate sensitivity of inferences to the

random effects distribution. We generate the data, according to the same setting as in

the above simulation study, and then we discretize the generated values of the random

effect δ1 to −2,−1, 0, 1, 2 and the generated values of the random effect δ2 to −1, 0, 1.

Table 4 presents the bias, SE, and RMSE for the fixed effect parameters, suggesting

that our estimator basically is unbiased even when we misspecified the random effect

distribution, which implies that our estimator is not sensitive to the random effects

distribution. On the other hand, from Table 2 we know that the misspecification of

the transformation function leads to biased estimates for the covariate effects. Hence,

misspecification of the transformation function has a worse effect on estimation of

covariate effects than misspecification of the random effects distribution does.
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Figure 1: The typical estimates of transformation curve.
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Figure 2: The estimated transformation curve for IMPACT data ( Solid— estimated;
dashed— 95% confidential limit).
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Table 4: Simulation results when the random effects distribution is not normal.

Proposed Proposed Proposed Proposed

bias α1 0.0086 β1 — ψ11 -0.0509 σ2 0.0122

SE 0.0599 — 0.0866 0.0490

RMSE 0.0605 — 0.1005 0.0505

bias α2 0.0056 β2 -0.0080 ψ12 -0.0064

SE 0.0675 0.0630 0.0388

RMSE 0.0678 0.0635 0.0393

bias α3 -0.0033 β3 0.0012 ψ22 0.0973

SE 0.0171 0.0090 0.0570

RMSE 0.0174 0.0091 0.1128

5 Example

The sample used for this study was from a clinical study, examining the effective-

ness of the IMPACT collaborative care management program for late-life depression

(Unutzer et al., 2002). A total of 1801 patients aged 60 years or older with major

depression (17%), dysthymic disorder (30%), or both (53%) were randomly assigned

to the IMPACT intervention (n = 906) or to usual care (n = 895). Intervention

patients had access for up to 12 months to a depression care manager who offered ed-

ucation, care management, and support of antidepressant management. The primary

outcome, the total inpatient cost over the previous 6 month period, was collected at

month 6, 12, 18, and 24. Denote Yij to be the total inpatient cost over the jth half

year for patient i. The two independent variables are X1ij and X2ij, where X1ij is the

treatment indicator, and X2ij is the mean score of the 20 depression items from the

symptom checklist for the jth observation of patient i. With ni = 4 per subject, we

do not have enough information to fit a high dimension random effects model, and
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hence, we fit the following random intercept only model:

logistic(πij(δ1i)) = α0 + X1ijα1 + X2ijα2 + δ1i,

and h(Vij) = β0 + X1ijβ1 + X2ijβ2 + δ2i + σεij,

where δi = (δ1i, δ2i) is a bivariate normal vector with mean 0 and covariance matrix

ψ =

(
ψ11 ψ12

ψ12 ψ22

)
, and εij is a standard normal random variable. To reduce the

computational time, we first apply a log transformation to the nonzero outcome

variable. To compare, we also analyze the cost data by a parametric transformation

model with log transformation (termed “LOG-TRAN”).

We present parameter estimates in Table 5, which shows that the effects of

treatment (X1) on the mean and variance are not significant and the correlations

(ψ12 = −0.0398) across the two parts of the models are not significant. The re-

sults for X2 show that the patients with higher scores of depression are associated

with higher costs and larger variation in cost, although the effect on variance is not

significant. Figure 2 presents the estimate and its 95% confidential interval for the

transformation function. Using the estimates of the parameters and transformation

function, we estimate the average cost of a patient with the given covariate values.

Table 6 gives some average costs. For example, for a patient in the intervention

group (X1 = 1) with a depression score of 1.2 (around the mean of X2), the estimated

average cost and its standard deviation are $1130.028 and $102.4616, respectively.

Estimating the difference of the means of health medical costs between the inter-

vention and control patients as a function of patients’ covariates is also an important

target in econometrics, and hence we present some differences in Table 7, which sug-

gests that the differences in cost between intervention and control patients can vary,

depending on patients’ characteristics.

Our models make some assumptions that should be investigated: normality of

δi and εi, a linear relationships between covariates, and the logit-probability and
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Table 5: The estimates of the parameters for IMPACT data

Proposed LOG-TRAN

α̂1(SE) -2.2363(0.0990) -2.4595(0.1398)

α̂2(SE) -0.0508(0.0806) 0.0390(0.1159)

α̂3(SE) 0.1792(0.0534) 0.2752(0.0601)

β̂1(SE) 20(0) 7.2558(0.1799)

β̂2(SE) 0.2087(0.0925) 0.2227( 0.1566)

β̂3(SE) 0.1355(0.0484) 0.1915( 0.0853)

ψ̂11(SE) 1.1556(0.1228) 1.2460(0.1679)

ψ̂12(SE) -0.0398(0.1022) 0.0835(0.1870)

ψ̂22(SE) 0.4948(0.3153) 1.0850(0.2282)

σ̂2(SE) 1.2281(0.0864) 2.4351(0.2117)

Table 6: The estimates for the mean of original scale for IMPACT data

X1 X2 u0 SE X1 X2 u0 SE

1 0.6 970.7469 85.9139 0 0.6 836.2906 79.3205

1 1.2 1130.0280 102.4616 0 1.2 974.7967 90.8485

1 1.8 1312.3440 134.2079 0 1.8 1133.4890 115.2832

linear relationships between covariates and the transformation of respondents. For

normal mixed-effects models, only a few formal diagnostics have been developed,

and practitioners often rely on informal techniques such as normal quantile plots

of the estimated random effects. Diagnostics for Generalized Linear Mixed Models

(GLMMs) are even more scarce (Olsen & Schafer, 2001).

Here we follow the similar method as used by Olsen & Schafer (2001). We

detect the large discrepancies in the model fit by comparing the observed values

for Ui· =
∑ni

j=1 Uij and Vi· =
∑ni

j=1 log(Vij) with their predicted values Ûi· and
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Table 7: The differences of the mean of cost between two groups

group 1 group 2 difference of mean(SE)

X1 = 1,X2 = 0.6 X1 = 0,X2 = 0.6 134.4563 ( 90.0963)

X1 = 1,X2 = 1.2 X1 = 0,X2 = 1.2 155.2313( 105.2384)

X1 = 1,X2 = 1.8 X1 = 0,X2 = 1.8 178.8550 (122.9108)

V̂i· =
∑ni

j=1 log(V̂ij), obtained by substituting the estimates of Θ, H and empiri-

cal Bayes estimates of δi. Viewing N(0, ψ) as a prior distribution for δi, empirical

Bayes estimates of δi can be obtained by calculating a posterior mean E(δi|Yi) with

the unknown parameters replaced by their estimates. Since the conditional distribu-

tion δi given Yi does not have a closed form, we evaluate the integrals required for

posterior moments by numerical techniques. In the example δi, has two dimensions,

and we use numerical techniques methods to evaluate the related integrals.

Table 8 gives the frequency in each cell defined by the observed and the predicted

(rounded to the nearest integers) value for Ui·. The percentage of total agreement

between the observed and the predicted values is 83.08%. Figure 3 plots Vi· versus

V̂i·, showing no significant deviation. Table 8 and Figure 3 suggest our models are

reasonable.

6 Discussion

In the paper, we have developed a flexible methodology to estimate the mean of the

skewed semi-continuous outcome of a patient and regression parameters in a semi-

parametric two-part mixed-effects transformation model with an unknown transfor-

mation function. The current existing methods to analyzing correlated right-skewed

semi-continuous data require the specification of the transformation, which is a diffi-
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Table 8: The frequency in each cell defined by the observed number of zero cost and

expected number of zero cost among the four observations

Observed number

Expected number 0 1 2 3 4

0 975 2 0 0 0

1 0 424 217 11 0

2 0 0 0 47 8

3 0 0 0 0 0

4 0 0 0 0 0

10 20 30

log(Observation)

0
1

0
2
0

3
0

lo
g
(e

x
p
e
c
ta

ti
o

n
)

Figure 3: Observed log amount of the cost versus expected log amount of the cost.

cult task in practice. Our paper has several new features over the existing methods.

First, our method allows the arbitrary non-parametric transformation function, and

thus is more flexible and robust. The asymptotic distribution theory shows that our
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new estimators for the transformation function converge to their true values at the

parametric rate n−1/2 if the parameters are estimated at the parametric rate n−1/2,

suggesting that the extra flexibility is gained at little cost in efficiency. The simulation

studies in the paper also show that the efficiency of our new estimators is comparable

to the existing parametric method with the correctly specified transformation in finite

sample sizes. Finally, we propose a new and more accurate approximate likelihood

function to handle intractable numerical integration in the marginal likelihood, and

the computational requirement of the new approximate likelihood is rather minimal.

In modeling non-zero data, we need to decide whether to put a parametric as-

sumption on the transformation function or the distribution of the random effects.

In our proposed method, we chose to impose a normal distribution assumption on

random effects but leave the transformation function unknown. Our simulation study

shows that the correctly specified transformation function is more important than the

correctly specified distribution function of random effects in our inferences. Hence,

our simulation study supports our choose. Future research could explore the possi-

bility of allowing both the transformation function and the distribution functions of

random effects unknown.

In our proposed model, we assume that homoscedastic variance for transformed

non-zero costs. In some cases, the homoscedastic variance assumption may be not

met (Manning, 1998; Mullahy, 1998; Zhou et al., 1997a; Zhou et al., 1997b; and Zhou

& Tu, 1999). Mullahy (1998) gave several real situations where two-part regression

models with homoscedastic variance after transforming the nonzero responses yield

inconsistent inferences on µ(x). The heteroscedasticity for the non-zero data may be

complicated. However, on the other hand, it may be difficult to get a good estimate

of the variance if we specify a complicated heteroscedasticity. A possible method for

handling heteroscedasticity of the non-zero data is to replace the second model (2.2)
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with

h(Vij) = X ′
2ijβ + Z ′

2ijδ2i + g(X ′
2ijθ)εij, (6.1)

where g is a known function, and θ is a vector of unknown parameters. In the

model (6.1), heteroscedasticity is modeled by the known function g(.) with a vector

of unknown parameters, θ, hence the heteroscedasticity is not linked to the mean level;

and the mean and variance may be influenced by covariates in different ways. It is

straightforward to extend our proposed method to model (6.1). Another possibility

to model the heteroscedasticity is setting θ = β, as the literature in the generalized

linea model, and leave the variance function unknown.
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Appendix A

In this Appendix, we outline a proof for our approximation (2.6). Denoting Gi(δ1i) =

τ ∗i (δ1i)− τi(δ1i), we have

G
(2)
i (δ1i) = − 1

ni

{
ni∑

j=1

πij(δ1i)(1− πij(δ1i))Z1ijZ
′
1ij

}
.

Note that

a∗ − a = g(τ
(∗2)
i (δ̂∗1i), τ

(∗3)
i (δ̂∗1i), τ

(∗4)
i (δ̂∗1i))− g(τ

(∗2)
i (δ̂1i), τ

(∗3)
i (δ̂1i), τ

(∗4)
i (δ̂1i))

+g(τ
(∗2)
i (δ̂1i), τ

(∗3)
i (δ̂1i), τ

(∗4)
i (δ̂1i))− g(τ

(2)
i (δ̂1i), τ

(3)
i (δ̂1i), τ

(4)
i (δ̂1i))

= Op(δ̂
∗
1i − δ̂1i) + Op(G

(2)(δ̂1i) + G(3)(δ̂1i) + G(4)(δ̂1i)).

From the above expression, we see that dependence of G(k)(δ1i), for k ≥ 2 on δ1i

is through Πij(δ1i) = πij(δ1i)(1 − πij(δ1i)), and this dependence is negligble. This

negligibility can be justified by using the same argument as in Bates and Watts (1980)

and Pinheiro and Bates (2000) for assessing parameter-effects on nonlinearity. There,

they showed that the space spanned by the columns of Πij(δ1i) depended only on the

intrinsic curvature of the nonlinear model, but not on the parameter-effects curvature

in the tangent plane. Therefore, Πij(δ1i) may be assumed to vary slowly with δ1i. This

29

Hosted by The Berkeley Electronic Press



result, coupled with δ̂∗1i − δ̂1i = Op(n
−1/2
i ), gives us that a∗ − a = Op(n

−1/2
i ). This

completes the proof of the approximation (2.6).

Appendix B

To show our asymptotic results, we need the following conditions.

1. Suppose that [v0, v1] is the domain of h. In practice, this would be the range

of the observed and fitted Vij’s. Assume that h is strictly increasing and continuous

for v ∈ [v0, v1].

2. There exists a sequence {Θ̂} such that Θ̂−Θ0 → 0.

3. (X1i, X2i, Z1i, Z2i) has bounded support.

4. Denote Ξ = {(x, z) : h−1
0 (v0) <= b0 + x′2β0 + z′2δ2 + σε <= h−1

0 (v1) for δ2 ∼
N(0, ψ220) and ε ∼ N(0, 1)}, suppose Pr(Ξ) > 0.

5. n/R1 = o(1) and n/R2 = o(1).

6. Suppose that %j(x, z, Θ), j = 1, · · · , 7 are continuous functions of Θ.

The proof of (2.11).

By the monotonicity and continuity of Φ, for large n, any η > 0 and Θ ∈ {Θ :

‖Θ−Θ0‖ ≤ η}, uniformly in v ∈ [v0, v1], there exists a unique ĥ(v; Θ) such that

S(ĥ(v; Θ); v, Θ) = 0, (A.1)

where S(w; v, Θ) is defined in Section 3. Since S(h0(v); v, Θ0) → 0, we have ĥ(v; Θ0) →
h0(v), so that ĥ(v; Θ̂) → h0(v) almost surely uniformly in v ∈ [v0, v1].

Now we consider the expansion of ĥ(v) = ĥ(v; Θ̂). Using a Taylor series ex-

pansion of S(ĥ(v; Θ̂); v, Θ̂) with respect to ĥ(v; Θ̂) around h0(v), and noting that
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S(ĥ(v; Θ̂); v, Θ̂) = 0, we obtain

ĥ(v; Θ̂)− h0(v) ≈ −
(
S(100)(h0(v); v, Θ̂)

)−1

S(h0(v); v, Θ̂).

Then using a Taylor series expansion of S(h0(v); v, Θ̂) with respect to Θ̂ around Θ0,

we get

ĥ(v; Θ̂)− h0(v) ≈ s−1
1 (v)

{
S(h0(v); v, Θ0) + s2(v)′(Θ̂−Θ0)

}
. (A.2)

This result, coupled with the condition 2 and the expression of S(w; v, Θ), leads to

(2.11).

The proof of (3.2).

Replace Θ0, h0 with Θ and h for notational simplicity. Denote

un(x, z) =
1

R1R2

R2∑
r=1

R1∑

k=1

{π(ζ1r)v(ζ2rk)} ,

where ζ1r = x′1α+z′1δ1r, ζ2rk = b0 +x′2β+z′2δ2r +σεk, π(ζ1) = η−1(ζ1), v(ζ2) = h−1(ζ2)

and δr = (δ′1r, δ
′
2r)

′ ∼ N(0, ψ̂). Consider (3.1) and use the expansion,

û(x, z)− un(x, z)

≈ 1

R1R2

R2∑
r=1

R1∑

k=1

π(1)(ζ1r)v(ζ2rk)x
′
1 (α̂− α) +

1

R1R2

R2∑
r=1

R1∑

k=1

π(ζ1r)v
(1)(ζ2rk)x

′
2(β̂ − β)

+
1

R1R2

R2∑
r=1

R1∑

k=1

π(ζ1r)v
(1)(ζ2rk)(σ̂ − σ)εk − 1

n

n∑
i=1

mi∑
j=1

Υ(Xij, Zij, Vij)

− 1

R1R2

R2∑
r=1

R1∑

k=1

π(ζ1r)v
(1)(ζ2rk)s

−1
1 (v(ζ2rk))s2(v(ζ2rk))

′(Θ̂−Θ)

≈ (ς̃(x, z, Θ)− %̃4(x, z, Θ))′ (Θ̂−Θ)− 1

n

n∑
i=1

mi∑
j=1

Υ̃(Xij, Zij, Vij), (A.3)

where ς̃ , %̃4 and Υ̃ are ς, %4 and Υ defined in Section 4, but with (δ′1r, δ
′
2r)

′ ∼ N(0, ψ̂).

31

Hosted by The Berkeley Electronic Press



Denote u by ũ if δ = (δ′1, δ
′
2)
′ ∼ N(0, ψ̂), then

un(x, z)− ũ(x, z) =
1

R2

R2∑
r=1

{
1

R1

R1∑

k=1

π(ζ1r)v(ζ2rk)− π(ζ1r)E [v(ζ2rk)|δr]

}

+
1

R2

R2∑
r=1

{π(ζ1r)E [v(ζ2rk)|δr]− E {π(x′1α + z′1δ1)E [v(b0 + x′2β + z′2δ2 + σε)|δ]}}

= O(R
−1/2
1 ) + O(R

−1/2
2 ). (A.4)

Furthermore, we have

ũ(x, z)− u(x, z)

≈ z′01

(
ψ̂1/2 − ψ1/2

)
E

{
π(1)(x′1α + z′01ψ

1/2ϑ)v(b0 + x′2β + z′02ψ
1/2ϑ + σε)ϑ

}

+z′02

(
ψ̂1/2 − ψ1/2

)
E

{
π(x′1α + z′01ψ

1/2ϑ)v(1)(b0 + x′2β + z′02ψ
1/2ϑ + σε)ϑ

}
,(A.5)

where ϑ and ε are independent standard normal random vector and variables, re-

spectively, z01 = (z′, 0′)′, z02 = (0′, z′)′. The result (3.2) follows from (A.3),(A.4) and

(A.5).
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