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Nonlinear Tube-Fitting for the Analysis of Anatomical

and Functional Structures

Jeff Goldsmith, Brian Caffo, Ciprian Crainiceanu,

Daniel Reich, Yong Du, Craig Hendrix

20 April 2009

Abstract

We are concerned with the estimation of the exterior surface of tube-shaped anatom-
ical structures. This interest is motivated by two distinct scientific goals, one dealing
with the distribution of HIV microbicide in the colon and the other with measuring
degradation in white-matter tracts in the brain. Our problem is posed as the esti-
mation of the support of a distribution in three dimensions from a sample from that
distribution, possibly measured with error. We propose a novel tube-fitting algorithm
to construct such estimators. Further, we conduct a simulation study to aid in the
choice of a key parameter of the algorithm, and we test our algorithm with validation
study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm
to a colon image produced by single photon emission computed tomography (SPECT)
and to a white-matter tract image produced using diffusion tensor imaging (DTI).

1 Introduction

A common problem in biomedical imaging research is to mathematically model anatomical

structures and to summarize them in an appropriate space. In this manuscript, we focus on

modeling tube-like anatomical structures, such as the colon or white matter fiber bundles

in the brain. In our setting, the objects of measurement are measured by biological signals

represented in a two- or three-dimensional array obtained via imaging or some other indirect

measurement of anatomy or function. Finding the best mathematical representation of the

tube to quantify the anatomical or functional image remains a difficult - and neglected

- problem in statistics. In this manuscript, we develop an algorithm for fitting tubes to

collections of points and apply this algorithm to data from two motivating examples based

on different medical imaging modalities.
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Figure 1: Example SPECT colon image shown from two angles. Sizes represent image

intensity.

Our first application is to single-photon-emission computed tomography (SPECT) im-

ages from an experiment to evaluate the distributional penetrance of anti-human immunod-

eficiency virus (HIV) microbicidal lubricants in the colon. SPECT images are produced by

applying computed-tomography techniques to projections of photons emitted by a radioac-

tive tracer. In this experiment, a radiolabelled over-the-counter lubricant was distributed in

a subject’s colon. Some example data is shown in Figure 1, where the size corresponds to

the concentration of the tracer at that location.

Knowledge of the distributional penetrance of the tracer, along with knowledge of the

distribution of HIV-infected semen after intercourse with an infected partner, would give cru-

cial information regarding efficacy of the treatment for preventing transmission. Currently,

we study only the distributional penetrance of the lubricant via SPECT imaging. Our goals

are to obtain an accurate tube through the tracer to outline the colon, along with a metric

to measure the tube’s extent at various orthogonal cross-sections.

Our second application is to diffusion tensor imaging (DTI) tractography. DTI is a mag-

netic resonance imaging (MRI) technique that measures the diffusivity of water in the brain

along several gradients. Such information is useful as water diffuses anisotropically along

white-matter tracts. Hence, DTI gives more detailed images of white-matter anatomy com-

pared to standard MRI techniques. In fact, anisotropic diffusion can be used to reconstruct

bundles of white-matter tracts, a process called tractography [3, 4, 31, 28]. An example tract

is given in Figure 2.
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Figure 2: Example DT tract image.

Tractography holds great promise as a quantitative measure of white-matter health,

though tractography methods are still in development. An example of potential applica-

tion of tractography is to the study of multiple sclerosis (MS), which causes demyelination

in the white-matter. (Myelin is the fatty insulation that surrounds axons and that is found

primarily in the white-matter.) Individuals with MS can suffer profound disability, such as

loss of vision and motor function. The ability to quantify tissue damage using DTI trac-

tography has important clinical and research implications. Several parameters of the tracts,

including shape, volume, and anisotropy may be useful for monitoring the progression of

MS.

In both of these applications we seek a method of mathematically representing the tracer

or anatomical structure with an envelope or tube that “represents” the object in imaging

space. Here, what is meant by “represents” is context- and modality-specific, as different

imaging techniques and settings can result in vastly different goals for estimating the tube.

A strength of our proposed method is its ability to accommodate different settings.

We distinguish the tube-fitting problem from the volume of excellent work on simultane-

ous confidence bounds around estimated functions. In our case, the tube is not a measure

of uncertainty but is instead is the estimand of interest. Our procedure follows these steps:

i. fit a curve through the center of the object; ii. calculate tangent lines along the curve;

iii. calculate planes normal to the tangent lines; iv. project nearby points onto these planes;

v. fit a circle, ellipse or convex hull to the points in the plane. The resulting object rep-

resents an estimate of the structure. The curve from i. represents the “spine” of the tube.

It is also useful in our applications to represent the metric by which measures of extent
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of the tube are taken. This component relies on existing methodology; the remaining four

and the application to two imaging modalities represent the methodological advances of this

manuscript.

We apply the tube-fitting algorithm to an example of each type of image. The results

indicate that the procedure could be used in the SPECT application as a replacement for the

an invasive sigmoidoscope procedure, which is currently used instead of image processing.

In the second application, our algorithm is an improvement over the current approach that

examines tracts by looking at a sequence of axial slices along the image. Taking measure-

ments along axial slices does not produce satisfactory results when the long axis of the tube

is not normal to the axial plane (see Section 6).

The manuscript is structured as follows. Section 2 describes the data sets in detail.

Section 3 outlines the modified-principal-curve algorithm that serves as the basis of the tube-

fitting procedure. Section 4 gives the detailed tube-fitting algorithm. Section 5 provides a

validation study of the algorithm. Section 6 presents the application to SPECT and DT

images. Section 7 is a discussion.

2 Motivating Data Sets

2.1 SPECT Colon Imaging

Our SPECT colon data arise from an experiment designed to study the viability of microbi-

cide lubricant for HIV transmission during anal intercourse. SPECT imaging uses a radioac-

tive isotope as the source signal. Projections of emitted photons are collected via gamma

cameras mounted on a gantry that are rotated around the subject. Computed tomography

algorithms are used to convert the projection images into a three dimensional image. The

principal benefit of SPECT imaging is the ability to image biological interactions with the

tracer, rather than simply imaging anatomy.

The experiment was designed to simultaneously image the distribution of surrogates for

the microbicide lubricant and the viral-mixed semen to assess if the coverage of the lubri-

cant is sufficient. The experiment used an over-the-counter lubricant as a surrogate for the

microbicide, which was mixed with a radioactive tracer (TC-sulfur colloid). A radiolabeled

surrogate for the viral-mixed semen is being used for extensions of the experiment, though

the data considered here contains only the lubricant.

Ten milliliters of the radiolabeled lubricant was injected into the subject’s colon, who

subsequently underwent receptive anal intercourse. The subject was then imaged using a

dual-head VG SPECT imaging system (GE Medical Systems, Waukesha, WI) equipped with

a low-end X-Ray computed tomography system (Hawkeye). The image was reconstructed
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using an ordered subsets EM algorithm and filtered as provided with the scanner software

(GE eNTEGRA workstation, version 1.04). We present analysis of the reconstructed SPECT

image of the distributed lubricant.

2.2 Quantification of DTI Tractography

As mentioned above, DTI [3] has two major values as an imaging modality its sensitivity

to tissue microstructure [6] and its ability to guide tractography of the major white matter

tracts [32]. This is due to DTIs sensitivity to diffusion anisotropy [5] the tendency of water to

diffuse in a particular direction, which, in the brain and spinal cord, is often along the course

of an axonal tract. By combining analysis of tissue microstructure with tractography, we can

limit our focus to one or several tracts with specific functional correlates for example, motion,

vision, and language. Within these tracts, we can analyze not only quantities derived from

DTI including anisotropy, absolute and directional diffusivity of water, and tract volume

but also quantities derived from other MRI sequences that have been coregistered to the

DTI [37]. This offers the possibility of a comprehensive, multimodal approach to analyzing

the structure-dysfunction relationship in the central nervous system.

To compare tract-specific imaging results across individuals, a normalization procedure is

required. There are two general approaches: whole-brain normalization, which involves warp-

ing brains to match one another or some canonical atlas, and tract-specific normalization,

which focuses specifically on the tract of interest. The former approach is computationally

intensive and may require sacrificing optimal registration of the tract of interest to achieve

acceptable registration of the whole brain. We have introduced an approximate tract-specific

normalization approach that samples tracts in a slice-by-slice manner [37] this approach has

yielded promising correlations between tract-specific MRI quantities and clinical disability

scores [38, 35]. However, because white matter tracts in the brain do not typically run

perpendicular to the cardinal imaging planes (axial, coronal, and sagittal), a parametric ap-

proach that accounts for each tracts specific shape and anatomical course would reduce noise

and might increase sensitivity for detection of relevant abnormalities. The parameterization

would be different for each tract but would ideally be generated by an algorithm that could

be applied automatically to any tract.

Details of our MRI acquisition protocol have been described [36]. On a 3-Tesla Philips

Intera scanner, we obtained whole-brain DTI images in the axial plane (2.2 x 2.2 x 2.2

mm voxels interpolated on the scanner to 0.8 x 0.8 x 2.2 mm; parallel imaging with a

sensitivity-encoding reduction factor of 2; 2 averages; 32 non-coplanar gradient directions

with a nominal b-value of 700 s/mm2; and a scanner average of 5 minimally diffusion-weighted

scans with b33 s/mm2). We coregistered all images to the first minimally diffusion-weighted

scan using the Automatic Image Registration (AIR) algorithm [42] with a 6-parameter rigid-
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body transformation, and we corrected the gradient directions for the rotational component

of the transformation. We then estimated the diffusion tensor in the standard fashion [2],

diagonalized the tensor to obtain its eigenvalues and eigenvectors, and calculated maps of

anisotropy and diffusivity. These analyses were performed in DtiStudio [25], as well as with

custom software purpose-written in Matlab (The Mathworks, Natick, MA).

We used the DTI datasets to obtain 3D reconstructions of the corticospinal tracts using

the fiber association by continuous tractography method [32, 33, 34]. We reconstructed the

tracts using fractional anisotropy and the principal eigenvector of the diffusion tensor. We

used every voxel in the brain with fractional anisotropy > 0.13 as a potential starting point

for tractography and halted individual tracts once a voxel with fractional anisotropy < 0.13

was encountered or when the reconstructed tract turned at an angle steeper than 40 degrees

from one voxel to the next. We chose multiple restrictive regions of interest to limit the

reconstructed corticospinal tracts to their known anatomical course; these regions of interest

have been described previously [36] and were drawn in the rostral medulla, rostral pons, and

subcortical white matter. We manually excluded the rare spurious fibers that were included

in this reconstructions but that clearly fell outside the major portion of the corticospinal

tract.

3 Modified Principal Curve Algorithm

To construct our tube, we first need a fitted curve that acts as a centerline for our data. Sta-

tistical analysis for three-dimensional curve-fitting and centerline calculation has received lit-

tle attention in the statistical community. (We emphasize the difference between fitting non-

parametric functions, a process well studied in the smoothing literature and non-parametric

curve-fitting.) However, curve fitting has received a great deal of attention in the computer-

vision and medical-image-processing literature. Relevant literature exists in the field of vir-

tual colonoscopy and localization of polyps (see for example, [30, 39, 40, 23, 12, 18]). These

approaches generally require connected curves, and are not directly applicable to the range

of problems that we consider, which may have interrupted structures or may be a voxel-wise

reduction of connected-curve data. Also relevant from the image processing literature is the

tremendous volume of work on Bezier curves and B-splines (see the review in [14]). Though

we have explored Bezier approaches, we do not utilize them because of the large amount of

user input required to appropriately place knots.

Another popular collection of techniques treats the points of the image as a networked

graph and uses combinatorial algorithms to find globally optimal paths [15, 16, 11, 13, 7, 8].

Dijkstra’s algorithm is often used to find solutions [19].

Perhaps the most statistical approach that we have encountered relies on the use of
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principal curves [20, 22, 21]. These generalizations of principal components find a curve

achieving a local minimum for the sum of the orthogonal distances of the points onto the

curve. This approach is useful in statistical methods of image analysis [1, 9]. Numerous

modifications of the principal-curve idea have been published (see the discussion in [26]). In

addition there are related stochastic search algorithms for finding centerlines, as considered

in [17]. Our approach in this manuscript utilizes the modified-principal-curve algorithm

presented in [9]. This procedure can accommodate interrupted curves, constrained points

and can fit low variation curves that the original algorithm could not. We briefly describe

the procedure below.

To start, we need a method for representing a curve. The study of differential geometry

has revealed several equivalent methods for representing real-valued curves [14, 41, 27], in-

cluding implicit representations, the set of points {(x, y, z) ∈ R3 | F (x, y, z) = G(x, y, z) =

0}, for surfaces F and G and parametric representations. We focus entirely on paramet-

ric representations, of which implicit representations are a special case [27]. An allowable

parametric representation sets f(t) = {fx(t), f y(t), fZ(t)} : [a, b] → R3, where [a, b] is an

interval in R and at least one of dfx(t)/dt, df y(t)/dt or df z(t)/dt is non zero. We assume

the constraint t ∈ [0, 1] for identifiability. However, this assumption alone does not uniquely

specify a curve. Indeed, if the curve is considered to be the location of a particle at time t,

then the same curve can arise from particles following the same path at different rates.

Given this parametric curve representation, we view the process of fitting a curve through

three-dimensional coordinates as inherently a missing-data problem. That is, let {(Xi, Yi, Zi)}ni=1

be a collection of realized values for the coordinate functions. The process of finding a curve

through them largely amounts to finding a reasonable estimates for the missing data {ti}ni=1.

However, estimating the missing time data, {ti}ni=1, is a difficult process.

Here {Xi, Yi, Zi}ni=1 are lattice values of points in the image surviving a thresholding

procedure for noise reduction. In addition, to improve computing times, we often work with

a subset of the points, sampled uniformly, as the curve is often well defined with much fewer

points. This is not necessary for the DTI tractography example, but it speeds up computing

substantially at no loss of quality-of-fit for the SPECT colon data.

The basic principal curve algorithm is a blocked-maximization algorithm that iterates

between two steps: calculating the time points and fitting curves to the coordinate data:

{(Xi, ti)}, {(Yi, ti)}, {(Zi, ti)}. Suppose that an initial estimate of f , say f̃ , is given. Then,

the ti are calculated as:

ti = argmint∈[0,1] || f̃(t)− (Xi, Yi, Zi) || . (1)

The estimate, f̃ is then updated by fitting a smoother between the {Xi} and the {ti}, the {Yi}
and the {ti}, and the {Zi} and the {ti}, separately. We use cubic regression splines for this
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portion of the algorithm, though other smoothers could be used. However, regression splines

allow for easily calculated derivatives on the coordinate function. The steps of updating the

{ti} and f̃ are iterated until the change in f̃ between successive steps is sufficiently small.

Several modifications to the principal curve algorithm outlined above are proposed by [9].

First, the modified-principal-curve approach allows for user-specified end points. Second, it

molds the curve by gradually increasing the degrees of freedom in the regression splines, so

that gross features of the curve are captured before fitting finer details. This provides for

better fits to complex curves. Third, the modified approach incorporates image intensities to

adjust the emphasis placed on high- and low-intensity points in the curve-fitting. Fourth, a

grid search is used to perform the minimization in the second step of the algorithm to speed

up convergence. Finally, the stopping criterion is based on relative change in mean square

error. As described originally, the modified-principal-curve-fitting algorithm also allows for

user-specified interior points, though constrained interior points did not lead to better fits

in our applications.

The modified principal curve algorithm is semiautomated, requiring user defined end-

points and, in some cases, adjustment of the final number of degrees of freedom used in the

regression splines. This algorithm provides a differentiable curve that acts as a centerline

through the data. We emphasize, however, that the algorithm used to construct the center-

line curve functions independently of the algorithm used to fit the tube. So, for example,

other less automated procedures, such as using B-splines with user-selected knot points,

could be used for this step.

4 Tube-Fitting Algorithm

4.1 Background

In the previous section, we outlined the curve-fitting algorithm, which provides a centerline

to serve as the basis for our tube-fitting algorithm. Briefly, our tube-fitting algorithm consists

of the following steps: i. select a starting point on the fitted curve; ii. identify nearby image

points; iii. project nearby image points onto the plane orthogonal to the fitted curve at the

starting point; iv. fit a bivariate normal distribution to the (now two dimensional) points

in the orthogonal plane; v. use a level set of the bivariate normal to define the tube at the

chosen starting point on the fitted curve. We repeat these steps as often as desired. We now

examine these steps in greater detail.

Let f(t) be a centerline curve at t. We define the tube around the curve f at t to

be an ellipse in the plane orthonormal to f(t) such that f(t) ∈ G(t). To elaborate, the

function g(t) = ∇f(t)/||f(t)||, where ∇ is the gradient function and || · || is the Eu-
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Figure 3: The first plot shows an example fitted curve, tangent line at a point t0 and the

normal plane to the tangent line at the point. The second plot zooms in on the normal plane

and displays the local orthogonal of points onto the normal plane. The third plot shows the

convex hull fit to the data projected onto the normal plane.

clidean norm, gives the unit tangent vector to the curve f at point t. Then the set

G′(t) = {w ∈ R3 | g(t)′{w − f(t)} = 0} is the normal plane to g(t) passing through the

point f(t), and, regarding the plane G′(t) as the cartesian plane for convenience, we take

G(t) to be a set of the form {x, y ∈ R | Ax2 + Bxy + Cy2 + Dx + Ey ≥ F}. The object of

interest is then the collection of points {d(t), G(t)}, where

d(t) =

∫ T

0

√{
d

dt
f̂x(t)

}2

+

{
d

dt
f̂ y(t)

}2

+

{
d

dt
f̂ z(t)

}2

dt, (2)

is the distance along the curve and G(t) is the ellipsoidal cross section of the tube at time t.

By choosing to restrict the shape of the compact set G(t) to an ellipse, we necessarily

restrict our algorithm to those structures with ellipsoidal cross sections. A more general

definition is possible: define tube around the curve f at t to be a compact collection of points

G(t) in the plane orthonormal to f(t) so that f(t) ∈ G(t). However, such a generalization

was not needed in either of our applications.

In this section, we are concerned with the construction of an estimate of G(t) from

imaging data. This task is complicated by the limitations of our imaging modalities. For the

SPECT image, the location of the radioactive tracer is measured with error, meaning that

some of the image points {Xi, Yi, Zi}ni=1 do not lie inside the object of interest {d(t), G(t)}.
For the specific DTI tract in question, there is less noise. Below we outline a procedure for

estimating G(t) accounting for noise in the image.

4.2 The Algorithm

We first overview our approach before discussing details. For any point on the curve with

associated latent point, we project nearby points onto the orthogonal plane described above.

9
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We then rotate the projected points to a two-dimensional coordinate system. In that co-

ordinate system we then estimate G(t). Finally, we rotate the results back to the original

coordinate system.

We begin with a point on the fitted curve, say P0, and corresponding latent point t0 ∈
[0, 1]. The point, P0, does not have to be, and will typically not be, the projection of an

observed point onto the curve, nor does it have to lie on the lattice defined by the imaging

coordinates. We then select “nearby” points to estimate G(t0). Let {Pi}ni=1 be the points

used in the curve-fitting procedure, Pi = (Xi, Yi, Zi). These are the image points surviving

the thresholding and sampling procedure, and depending on the imaging procedure may be

a noisy version of the underlying structure. We define nearby points from our collection of

coordinates based on the proximity of their associated {ti}ni=1 to t0, where ti is the value

of the latent variable t such that minimizes the distance between f(t) and Pi. Specifically,

we project every observed point onto the final estimated curve and calculate its associated

ti via (1). If the modified principal-curve algorithm is used to fit the centerline f(t), the

collection {ti}ni=1 is calculated as a byproduct of the final steps of the algorithm. Thus

proximity in terms of t is a measure of the nearness of the projections of the Pi onto f(t).

The neighborhood of points to be projected onto the orthogonal plane is defined as

{Pij} = {Pi | |t0 − ti| < tr}. (3)

where tr is the range of the time window. We use the points {Pij} to estimate G(t0).

Intuitively, measuring proximity in terms of the latent variable t allows us to select the

nearest neighbors of P0, defining “nearness” as distance on the curve f(t). This strategy for

defining a neighborhood of observed points around P0 has major benefits over competing

methods, such as using a standard neighborhood based on the Euclidean distance between the

observed points and P0. Specifically, for P0 near high curvature in the fitted curve, observed

points can then overly contribute to the fitted tube at multiple locations. See Figure 4

for a two-dimensional illustration. The blue points in the left panel are in the Euclidean

neighborhood structure of P0, and include points that lack face validity for contributing to

the estimate of G(t0). In contrast, the right panel shows that the neighborhood defined

as (3) has much better behavior. We note that in areas of low curvature, our method for

choosing {Pij} coincides with the method using Euclidean distance.

For our applications, we have found that choosing .05 ≤ tr ≤ .2, depending on the total

number of image points, includes enough locations to estimate the tube’s shape without

employing locations that are very distant (recall that our curve-fitting algorithm specifies

0 ≤ t ≤ 1). However, we emphasize that truncating points in this way is done primarily for

computational purposes. In estimating G(t0) we weight points (see below) by their distance

in t, so that further away points contribute less to the current estimate of G(t0). Hence all
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Figure 4: Comparison of methods for defining the neighborhood around P0. In the left, the

neighborhood is defined as though points with a Euclidean distance from P0 less than 2; in

the right, we use a t-window with tr = .2. In both, the point P0 is shown in green, and the

points in the set {Pij} are shown in blue.

points could be used; however, as for common kernel-smoothing procedures, the above filter

can eliminate unnecessary computing for points with extremely low weights.

Next, we project the image points close to P0 into the plane orthogonal to the fitted

curve at time t0. We define the orthogonal plane as above, using the normalized derivative

of the fitted curve as a normal vector, say n, and the point P0 as a point in the plane, so

that the plane consists of all points r satisfying n · (P0 − r) = 0, where · represents a vector

dot product. An intuitive approach is to project each point onto the orthogonal plane in

the standard sense, taking the projection of Pi to be that point in the plane with minimum

Euclidean distance. However, we find that in areas of high curvature this approach gives

poorly performing projections. This stems from the fact that these projections skew toward

the interior of the curve, rather than remaining centered around the fitted curve. Figure 5

illustrates this point in two dimensions, showing standard projections and projections using

our novel approach for a sample of points in a time window. A three dimensional illustration

appears in Section 5.
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Figure 5: Two projection methods shown in an area of high curvature: in green, standard

projections minimizing the distance between a point and the line; in red, our modified

projections that maintain a point’s distance from the fitted curve. Again, P0 is highlighted

in green and the {Pij} are shown in blue.

Instead, we use a method that maintains a point’s distance and direction from the center-

line in its projection into the orthogonal plane. Conceptually, our method stretches the space

containing the centerline f(t) and the points Pi around it so that f(t) is linear. Standard

orthogonal projections are used in the transformed space to project the {Pij} into the plane

normal to f(t0). This approach avoids the issues described above that arise when standard

projections are used in the observed, non-transformed space. Our method is carried out in

the following steps. Let P̃i = f̃(ti) be the projection of the point Pi onto the fitted curve.

Consider the plane orthogonal to f̃(ti). By definition, both Pi and P̃i lie in this plane. We

rotate and translate this plane so that: the plane is parallel to the axial plane of the image

(i.e. is horizontal), the height of the plane is Z = 0, and the point P̃i is at the origin. To

accomplish this, we let n = g(ti) = ∇f(ti)/||f(ti)|| and express the plane orthogonal to P̃i,

n · (P̃i− r) = 0, as points r = {x, y, z} satisfying nxx+nyy+nzz+d = 0, where d = −n · P̃i.
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Figure 6: Local linearization in an area of high curvature. Keeping with previous figures, P0

is shown in green and {Pij} are shown in blue.

Next, we sequentially apply the rotation matrices

Qx =

 1 0 0

0 cos(θx) sin(θx)

0 sin(θx) − cos(θx)

 and Qy =

 cos(θy) 0 sin(θy)

0 1 0

sin(θy) 0 − cos(θy)

 (4)

where θx = arctan(−ny

nz
) and θy = nx

nz
cos(θx) to the points

[
Pi, P̃i

]
in the orthogonal plane

first with respect to the X-axis and then the Y . The resulting rotated plane is parallel to

the XY -plane. Finally, we subtract the Z coordinate from this plane and translate so that

P̃i is at the origin. Let P ′i be this affine transformation of the observed point Pi. Applying

these steps to P0 projects the plane orthogonal to the fitted curve at t0 into the XY plane

and places P ′0 at the origin.

Notice that P ′i has Z coordinate 0 and its distance from the origin is equal to the distance

between Pi and its projection onto the fitted curve, P̃i. We perform this process for all points

in the neighborhood of P0, {Pij}, to obtain a set of rotated and translated points, {P ′ij}.
These points in two dimensional space have distance and direction from the origin that is

the same as their distance and direction from the fitted centerline. In effect, we have locally

linearized our fitted curve and collapsed the locations in the current t-window into a single

plane. This is demonstrated in Figure 6.

We use the {P ′ij} to estimate the tube G(t0). Hence, our task is to choose a suitable

shape surrounding these points to serve as our estimate of the tube in the plane orthogonal

to the curve at P0. This choice necessarily restricts the class of estimable structures to those

with the specified cross sectional shape. Our first inclination was to use the convex hull
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– the smallest closed set containing the points – because it is flexible and comparatively

unrestrictive (this approach is analogous to using â = X(1) and b̂ = X(n) to estimate the

endpoints of the support of s uniform distribution). However, such estimates do not account

for any noise in the measurements inherent in some imaging techniques and would only

be acceptable for very high resolution images without noise. Moreover, convex hulls can

not accommodate tube cross sections that are not closed, nor can a tube constructed from

convex hulls change smoothly along the centerline f(t). A circle centered at the origin, i.e.

the level set of a bivariate normal distribution with no correlation, was too restrictive for

the shapes seen in practice. Figure 7 shows an example set {P ′ij} for which a circle is a poor

shape for constructing G(t0). Therefore, we use a level set of a bivariate normal distribution,
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Figure 7: {Pij} used to estimate the tube G(t0). This example comes from the descending

colon in our SPECT application. Here, P ′0 is shown in green and the set {P ′ij} used to

estimate G(t0) is shown in blue.

an ellipse, to define G(t0). This choice coincides with observed sets {Pij} as well as our

scientific collaborators’ knowledge of the anatomical structures in our motivating data sets;

for other applications, a different choice for the shape of G(t0) may be needed. Let {wij}
be the collection of normalized weights. Then the estimated bivariate normal has mean and

variance

µ̃ =
J∑
j=1

wijP
′
ij

and Σ̃ =
J∑
j=1

wij (P
′
ij
− µ̃)(P ′ij − µ̃)T (5)

where 1 ≤ j ≤ J indexes ij.

We choose weights {wij} so that more distant points have a smaller impact on the density

estimation than nearer points. Specifically, points further away from P0, as defined by the

14

http://biostats.bepress.com/jhubiostat/paper186



distance from tij to t0, influence the fit less. We use a cosine-transformed distance as the

weight:

wij =
cos
[

(tij−t0)π

r

]
+ 1∑J

j=1 cos
[

(tij−t0)π

r

]
+ 1

(6)

with r the half width of the t-window. This weighting scheme has the desired effect of

emphasizing nearby points while smoothly decreasing to zero for more distant points. An

example of the weighting scheme is shown in Figure 8. We note that other weighting schemes

that decrease to zero at the tails, specifically kernel weighting schemes, give very similar

results. Schemes that do not decrease to zero, like one that gives uniform weight to all points

in the t window, are less desirable because the resulting tube is not necessarily smooth.

|t0-t|

W
ei
gh
ts

-r 0 r

0.
00
0

0.
00
2

0.
00
4

Figure 8: Weights for t0 = .1875 and r = .1.

The tube at point t0 in the rotated space, G′(t0) say, is then estimated by the level set:

Ĝ′(t0) =
{
P ∈ R2

∣∣∣ |2πΣ̃|−1/2 exp{−(P − µ̃)′Σ̃−1(P − µ̃)}/2} > l
}

(7)

where l is chosen so that∫
P∈Ĝ′(t0)

|2πΣ̃|−1/2 exp{−(P − µ̃)′Σ̃−1(P − µ̃)}/2}dP = 1− α. (8)

Typically the choice of α will be context-specific, depending on the shape of the ellipse G(t0)

and the measurement error variance (if any exists). In Section 4.3, we explore the effect of

α on the resulting estimate Ĝ(t0).
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As a final step, we project the ellipse (and the P ′j , if necessary) into the plane orthogonal

to the fitted curve at t0. This transformation, from Ĝ′(t0) to Ĝ(t0), is achieved by inverting

the steps that take P0 to the origin of the XY plane. Specifically, we translate the ellipse

horizontally by the amounts that place P0 at the origin and vertically by adding in the Z

coordinate of the rotated plane. Finally, we multiply by Q−1
y and Q−1

x , where the matrices

are defined in equation 4 with n = g(t0), to rotate the ellipse back into the plane orthogonal

to f(t) at t0.

In some cases, the image data contain additional information regarding the points {Pi}.
For instance, the SPECT data incorporate concentrations {Ci} of the radioactive tracer used

to generate the images. In these situations, accurate cross-sectional values of the additional

image parameters can be calculated from the {Cij}.
Though starting points can be chosen arbitrarily, we generally choose points equally

spaced and a relatively small distance apart on the fitted curve. The tube-fitting algorithm

proceeds iteratively along the fitted curve, repeating in full the steps detailed above for each

of the selected points. This results in a fitted tube that gives an adequate level of detail

about the shape of the imaged object without being computationally prohibitive.

4.3 Choosing α

As previously mentioned, the underlying modality and noise characteristics of the image

impacts how one selects the cross-sectional ellipse covering the structure. In other words,

how to select α in the level set of the bivariate normal. Our two examples highlight the

difficulty in obtaining a universal rule. The SPECT image is clearly very noisy, as is required

by the underlying Poisson decay of the tracer and the other sources of noise imposed during

image acquisition and reconstruction. The DTI tract, on the other hand, appears nearly noise

free. However, there is noise in the underlying DTI image and potential noise and bias from

the tractography algorithm. However, without repeat scans, it is impossible to characterize

this variability in the DTI image. Therefore, we seek the most accurate representation of the

tract image, acknowledging that there are sources of noise and bias that are not represented

or quantified. Thus, the choice of α differs greatly in these two applications.

To elaborate on this choice, we have two competing goals: i. to maximize the coverage

of the true ellipse G(t0) by our estimated ellipse Ĝ(t0); and ii. to avoid choosing Ĝ(t0)

excessively large through the inclusion of points not in G(t0). To characterize these goals,

we examine the quantities

TP =
A{G(t0) ∩ Ĝ(t0)}

A{G(t0)}
and FP =

A{G(t0)
c ∩ Ĝ(t0)}

A{G(t0)}
(9)

where A(·) gives the area of the designated shape. These quantities, TP and FP , can be
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thought of respectively as the true and false positive rates normalized to the area of G(t0),

so that 0 ≤ TP ≤ 1 and 0 ≤ FP . These quantities are analogs of the true and false positive

rates from the analysis of classification data.

As discussed above, because it depends highly on the distribution of measurement errors

and other factors, the choice of α will be context-specific. We therefore advise a validation

study tailored to application at hand, if such a study is possible. Indeed, in Section 5 we

present validation data both to confirm the tube-fitting algorithm and to aid in selecting α

for our SPECT imaging application. However, a study of this kind is not always possible,

so here we present a brief simulation designed to provide a basis for evaluating the interplay

between the choice of α. and noise levels in the image.

We posit an underlying collection of true points from an ellipse and add spherical noise.

The goal is to estimate the ellipse. Thus two sources of variation are considered, the sampling

of underlying true points and noise. The simulation consisted of the following steps:

1. Points are sampled uniformly from the interior of the underlying ellipse G;

2. Normal errors with variance matrix Σ = σ2I2x2 are added to the sampled points to

give observed points;

3. From the observed points, a bivariate normal is estimated and used to construct Ĝ for

a range of α values;

4. TP and FP are calculated for each of the α values.

These steps are iterated 100 times each for a variety of ellipse shapes and measurement

error variances. Figure 9 shows some of the ellipses G used in our simulation, as well as a

representative collection of sample points and observed points.

We found that two main factors should contribute to the choice of α: the measurement er-

ror variance and the eccentricity of the ellipse. The eccentricity of an ellipse with semi-major

and -minor axes A and B, respectively, is defined as e =
√

A2−B2

A2 . For low measurement

error variance, say σ = .1 ∗ B, the eccentricity of the ellipse is irrelevant: taking α = .12

gives TP = .95 and FP = .1. For large measurement error variance, the eccentricity of the

ellipse is quite important. Indeed, for an ellipse with A = B and σ = B, α = .62 yields

TP = .95 and FP = .2, while for an ellipse with A = 4B and σ = B, the same choice of

α gives TP = .55 and FP = .05. Figure 10 shows the results of our simulation study. We

present these results in two ways. First, keeping the eccentricity of the ellipse constant, we

examine the effect of varying σ on TP and FP . Second, we keep σ constant and allow the

shape of the ellipse to vary. Finally, we note that the results presented here hold for ellipses

in other scales; that is, TP and FP as a function of α are the same for A = B = 10 and

σ = 5 and for A = B = 100 and σ = 50.
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Figure 9: The left panel shows several of the true ellipses used in our simulation. On the

right, we show the points sampled uniformly from an ellipse in black and the points observed

with measurement error in red.

5 Validation

Before applying our tube-fitting algorithm to image data, we pursued a brief validation study

using mathematical phantoms. A mathematical phantom is simply a shape, created digitally,

which is then passed through a computational model of the imaging process. Accurate

computational models of diffusion imaging are not available due to the inherent complexity

of nuclear spin systems and water diffusion. On the other hand, very accurate models

for some transmission and emission imaging, such as X-rays, planar scintigraphy, SPECT,

PET (positron emission tomography) and CT (X-ray computed tomography) are available.

In these cases the imaging process is perhaps simpler to model than in MRI and highly

accurate models of the imaging physics have been created. To generate the SPECT images

for validation, we used system models implemented in the Division of Medical Imaging

Physics in the Department of Radiology at the Johns Hopkins University. In this method,

the projection data of the phantom were obtain using analytical projector that models all of

the important components of the images physics, including photon interactions inside both
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Figure 10: Results of the simulation for choosing α. For all panels, the solid line represents

TP and the dashed line FP . In the top row, each panel fixes the shape of G and varies σ,

while in the bottom row σ is fixed for each panel and the shape of the ellipse changes.

the phantom and the detector system. The 3D SPECT images were then reconstructed from

the projection data using an iterative statistical algorithm.

Our phantom is a three-dimensional coil of fixed diameter; we also investigated coils with

monotonically increasing or decreasing diameters, with very similar results. The phantom

was projected using the analytical projector described above with effects of attenuation

and detector resolution blur. Poisson noise with data-derived means was also added to the

projection data. Several noise levels were investigated to mimic images taken at baseline,

three hours, 10 hours and 24 hours after introduction of the tracer. (Later images are noisier

than earlier images.) The SPECT images were reconstructed using OS-EM algorithm [24].

Each image had an imaging space of over 20,000 non-background voxels. To speed up

curve-fitting and tube-fitting algorithms, we randomly sampled 1,000 locations among these,

separately for each validation image. The algorithms were run on the sampled locations,

and the resulting fitted tube was compared to the true underlying anatomical structure.
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Additionally, we varied the level set of the bivariate normal used to define the tube at each

point along the fitted curve, which is equivalent to varying the choice of α. Particularly,

we were interested in the proportion of points included in the tube that were indeed in the

anatomical structure (true positives), the proportion of points included in the tube that are

not in the structure (false positives), and the effect of α – the level of the bivariate normal

used in constructing Ĝ′(t0) – on these rates. Our goals are to maximize the true positive

rate while minimizing the false positive rate; that is, we want our tube to be large enough

to capture the structure but not so large as to include extraneous points.

There are two important differences between our current validation study and the sim-

ulation study in Section 4.3. The first is that our current study is tailored to the SPECT

application, and is therefore preferable for selecting α in this setting. Second, the true and

false positive rates discussed here are taken over the entire fitted tube, rather than at a single

fitted ellipse as in our previous simulations.

It is worth noting that the fitted tube captured the shape of the anatomical structure

quite well, even in noisier images. As seen in the left panel of Figure 11, the false positives

and false negatives occurred primarily in a thin layer on the outer surface of the anatomical

structure. These errors are at least in part due to variations in the fitted curve and tube

Figure 11: False positives (black) and false negatives (red) in tubes fitted to a SPECT scan

at 10 hours. Tubes were constructed using our local linearization method of projecting (left)

and standard orthogonal projections (right).

induced by randomly sampling 1,000 points from the more that 20,000 non-background voxels

rather than to a general deficiency in the tube-fitting algorithm. All other errors occurred

at the endpoints of the tube, due to the placement of the user specified endpoints in the
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the curve-fitting algorithm. We include in the right panel of Figure 11 a similar image for

a tube constructed using standard orthogonal projections. Here, the false positives occur

almost exclusively on the interior side of the structure and the false negatives occur almost

exclusively on the exterior side; this is consistent with our concerns above, namely that

orthogonal projections skew toward the interior of the fitted curve. These observations

reinforce our projection method and give us confidence in the ability of the tube-fitting

algorithm to accurately reproduce an imaged structure.

Figure 12 shows the true and false positive rates as a function of 1 − α. From these

graphs we see that for a fixed α, noisier images contain greater rates of both true and false

positives; the noise in the image leads to a wider fitted tube. We also note that the α level

set used to construct the tube does not correspond to the true positive rate. Hence, it must

be viewed as a tuning parameter used to balance the true and false positive rates. Based

on these figures, we select .8 ≤ 1− α ≤ .9, depending on the amount of noise in the image.

For noiseless images (shown in Figure 12 as “Truth”), choosing 1 − α = .9 gives a true

positive rate ≈ .95 and a false positive rate ≈ .15; for our noisiest image (24 hours after

baseline), choosing 1 − α = .8 gives similar rates. We note that our selection is based on

visual inspection rather than a well-defined optimizing procedure.
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Figure 12: True positive and false negative rates for each of the five validation images as a

function of the level used to determine the fitted tube
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6 Applications

6.1 SPECT Images

We first consider the SPECT colon image, which was taken shortly after introduction of the

tracer. We first filtered the image with a simple histogram filter to remove the background.

Next we sampled a subset of the non-background points to both fit the curve and the tube.

We used the modified principal curve-fitting algorithm with K = 5 final degrees of freedom

to find the centerline. Next, we employed the tube-fitting algorithm with a time window

width r = .2 and α = .15. Other time windows produced generally similar results. However,

shorter windows are more sensitive to local variations in the density of sampled points,

whereas longer windows oversmooth and lose some gross anatomical features.

Figure 13 shows the sampled colon data, the fitted curve, and the fitted tube colored

according to tracer concentration. As described above, the tracer concentration at each

point along the curve was taken to be the summed concentration of those points used to

define the tube at that point. Though the fitted tube plausibly recreates colon anatomy

in terms of shape and width, we are unable to make a comparison between the fitted tube

and the subject’s colon. SPECT-CT scanners typically produce poor CT scans; therefore

we lack good anatomical images that could be used to make this comparison. However, a

benefit of the tube-fitting method is that it allows us to recreate the colon without radiating

participants unnecessarily or requiring additional expensive equipment.

Figure 13: Three steps of the tube-fitting process. Farthest left is the sampled data from

the SPECT image; center is the centerline produced by the curve-fitting algorithm; right is

the fitted tube, shaded by tracer concentration (red is higher concentration, black is lower).

Figure 14 shows the concentration-by-distance curve. To find distance along the curve,

we initially employed the arc-length formula 2 using the final fitted curve. Though often the
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gradient of the fitted curve is easy to calculate, a closed-form solution for the integral is not

available. We have found that simply calculating distance using the function value along the

fine grid of values of t used to create the tube is equally accurate. That is, we simply use

linear approximation between equally spaced latent time points to measure distance along

the curve.

Computing the concentration at each distance from the curve onset can be accomplished

in a variety of ways. Using the the neighborhood of t0 described in section 4, we can define for

each ellipse the collection of intensities {Cij} for those points {Pij} that are used to estimate

the tubeG(t0). A straightforward approach defines a proxy for the concentration as
∑J

j=1Cij .

However, a more accurate measure of concentration is
PJ

j=1 Cij

A
, where A = area{Ĝ(t0)},

which takes the cross-sectional area of the colon into account. We compare these methods

for finding concentration to those using a voxel-wise squared neighborhood approach [9].

This approach consists of finding all image points that fall within a cube of a given edge

length and summing the concentrations of those points. Three comparative drawbacks are

apparent in this method: i as in the case of the projections above, points that are near

in terms of Euclidean distance but not t-distance may be included; ii there is no way to

account for the width of the colon at each point; and iii the voxel-neighborhood approach

is significantly more computationally intensive, especially for larger cube sizes. Notice in

figure 14 that the voxel-neighborhood approach potentially underestimates concentration by

averaging background voxels along with non-background.

6.2 DTI images

Our second application is to a diffusion-tensor tractogram of the intracranial portion of the

corticospinal tract; this tract runs from the cerebral cortex of the posterior frontal lobe to

the spinal cord and consists primarily of motor axons.

As with the colon application, we begin by implementing the curve-fitting algorithm to

the image data to find a centerline. Though the imaged tract has less apparent complexity

than the colon, to achieve an optimal fit we use K = 8 as the final degrees of freedom. It is

also worth noting that the image contains only 231 locations, so no sampling is necessary.

(The point density of DTI-derived tractograms can be highly variable, and, as noted above

in Section 2.2, there is substantial undersampling bias for tractograms of the corticospinal

tract.) Next, we employ the tube-fitting algorithm with time-window width of r = .4 and

α = .1. The time-window width is much wider than in the case of the colon application

due to the relative sparsity of points: a wider window is necessary to fit reasonable bivariate

normals, though such a wide window may smooth some of the finer details of the tract. A

lower α is chosen because of the low noise level in the tract image.
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Figure 14: Concentration by distance from beginning of curve (near the anus). Concentration

calculated using t-window and voxel-neighborhood approaches. Each curve is normalized to

its maximum value.

Figure 15 superimposes the fitted tube on the anatomic image from which it is gener-

ated. The shading on this tube is constant because there is no intensity data associated with

the tractography results (though see the discussion). However, useful plots may be formed

by examining the area of orthogonal cross-section by distance along the tract. Addition-

ally, the tract parameterization can enable location-specific measurement of underlying MRI

quantities if the tube position is used as a region-of-interest.

We approximate the volume of the imaged tract as follows. Recalling that the level set

of a bivariate normal is an ellipse, we calculate the cross-sectional area of the tube at many

points along the curve using the formula Area = πab, where a and b are one half the ellipse’s

major and minor axes respectively. Multiplying this area by the (very small) distance to

the next point on the curve and summing the resulting volumes give a Reimann-sum-like
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Figure 15: Fitted tube superimposed on the anatomic image.

approximation to the tract volume. Longitudinal measurements of tract volume or density

for a multiple sclerosis patient is of clinical interest as a measure of disease progression.

7 Discussion

We have introduced a novel method for fitting three-dimensional tubes to imaging structures.

Notably, we demonstrated the utility of the method on two very distinct imaging applications

under different imaging modalities. In the colon SPECT imaging application, the tube-fitting

method greatly improves upon previously used method of voxel-wise square neighborhoods.

Moreover, our method produces an accurate mathematical model of the structure. Such

characterization of the object of interest could be useful for subsequent shape analysis and

for defining new measures of extent, volume, and other features of anatomical structures.

With regard to future applications, we note that the ongoing SPECT study is now collect-

ing dual-isotope images, with the goal of comparing the relative distribution of microbicidal

lubricants and HIV-infected semen in the colon. Surrogates for both are tagged with tracers

emitting gamma photons with different are injected at the same time and are simultaneously

imaged. Such dual-isotope studies may lead to drastically improved fits – using image data

from both tracers greatly increases the number of points available for our curve- and tube-

fitting algorithms. However, these studies raise the problem of accurately distinguishing

and characterizing two tracer distributions in the colon. Moreover, the study now collects
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images serially at several time points, giving us the opportunity to study changes in the

concentration-by-distance curves over time. We are currently investigating the use of the

accompanying X-ray computed tomography image for registration across time. Also, de-

termining an anatomical landmark to compare curves across subjects remains difficult. We

anticipate that bone landmarks from the CT image could be used to solve this problem,

though we acknowledge that the colon can be fairly mobile across time and it’s relation to

bones may not be straightforward.

In the case of DTI tractography, the application of the tube-fitting algorithm to longi-

tudinal images of multiple sclerosis patients will provide measures of disease progression.

Ideally, one could use these measures to provide clinical evidence for the effectiveness of

treatments. Validating the prediction performance of such measures remains an important

problem. Moreover, the curve-fitting technique may not be applicable to all tracts (see

Figure 16), and without an accurate centerline or without additional assumptions such as

spatial contiguity of all points within the tract (so that the sampled tracts shown here can be

considered non-random undersamplings), the tube-fitting algorithm will not work. Also, we

are currently only using tracts created after ample preprocessing. Quantities derived from

the original DTI image, such as anisotropy or diffusivity measurements, may produce more

informative summaries of the tube. It is also possible that tube-fitting for this problem is

best integrated into the tractography algorithm, which we have currently treated as a com-

pletely separate preprocessing step. Alternatively, the tensor itself could potentially be used

to derive the individual tubes, obviating the need for tractography. However, we note that

the fact that our algorithm only relies on existing tractography algorithms is also a strength,

as it can be immediately applied.

We also note that one of the most important white matter tracts, the corpus callosum,

which connects the left and right hemispheres of the brain, is not a tube-like structure.

Instead it is more of a surface, with no clear centerline. Clearly to analyze such structures

a different approach is necessary. We are investigating the possibility of using principal

surfaces for this task [29, 10].

A related problem germane to both application is the study of curves and tubes across

individuals and across time. For example, the analysis of the volume/distance curves or the

analysis of other features estimated by the tube remains an open question.

The curve-fitting algorithm itself could be improved. As seen above, it is not universally

applicable. Moreover, a more automated algorithm with less user input is desirable. We are

currently experimenting with a new stochastic search algorithm for finding centerlines, such

as the use of genetic algorithms and simulated annealing. A benefit of these approaches is

the wide range of objective functions can be constructed to force a desired curve fit.

The tube-fitting algorithm presented here is a novel approach for the estimation of the
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Figure 16: Example corticospinal tracts for which the curve-fitting algorithm (and therefore

the tube-fitting algorithm) fails.

the support of distributions in three dimensions. It is limited in that it requires the support

to have a reasonable centerline and in that it uses ellipses to estimate the cross sectional

extent. However, it has proved a useful algorithm in two applications and holds a good deal

of potential to be utilized in the field of medical imaging.
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