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Summary: Receiver operating characteristic (ROC) curves can be used to
assess the accuracy of tests measured on ordinal or continuous scales. The
most commonly used measure for the overall diagnostic accuracy of diagnostic
tests is the area under the ROC curve (AUC). A gold standard test on the true
disease status is required to estimate the AUC. However, a gold standard test
may sometimes be too expensive or infeasible. Therefore, in many medical
research studies, the true disease status of the subjects may remain unknown.
Under the normality assumption on test results from each disease group of
subjects, using the expectation-maximization (EM) algorithm in conjunction
with a bootstrap method, we propose a maximum likelihood based procedure
for construction of confidence intervals for the difference in paired areas under
ROC curves in the absence of a gold standard test. Simulation results show
that the proposed interval estimation procedure yields satisfactory coverage
probabilities and interval lengths. The proposed method is illustrated with
two examples.

Key words and phrases: Area under the ROC curve, EM algorithm, boot-
strap method, gold standard test, maximum likelihood estimation.
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1. Introduction

One of the primary objectives in any diagnostic test evaluation study is to

compare the diagnostic accuracy of the new diagnostic procedure with that of a

current procedure, and one of the common measures for the overall diagnostic

accuracy is the area under the receiver operating characteristic (ROC) curve (AUC)

[1, 2]. The difference in the AUCs can be used as a measure for comparison of

diagnostic accuracy between two diagnostic tests.

When the gold standard (GS) test on the disease status is available, several

methods have been proposed to compare the difference in the AUCs. The non-

parametric method presented in DeLong et al. [3] and the maximum likelihood

estimation under the normal assumption provided by McClish [4] are the two most

commonly used methods for this problem. Most recently, Li et al. [5] proposed

an exact interval estimation based on the concept of a generalized pivotal quantity

and showed that their method outperforms both the nonparametric method and

the maximum likelihood method in their intensive simulation study.

However, a GS test may not always exist or may be too expensive or infeasi-

ble. Therefore, in many diagnostic accuracy studies, an imperfect GS test is used

to evaluate the accuracy of tests instead, which can result in biased estimates of

diagnostic accuracy. The statistical inferences for ROC analysis without the GS

test remain relatively unexplored. Henkelman et al. [7] considered the estimation

problem of ROC curves of continuous-scale tests in the absence of a GS test and

showed that ROC curves of two or more continuous-scale tests could be estimated

in the absence of a GS test under the multivariate normality assumption on test

results of a diseased and non-diseased subjects. Beiden et al. [8] also proposed

maximum likelihood (ML) estimates of the ROC curves of continuous-scale tests

using the EM algorithm.

For binary and ordinal scale test data, some methods were proposed for estimat-

ing sensitivity and specificity of the two diagnostic correlated tests in the absence of

a GS test. For example, Enøe et al. [9], Dendukuri et al. [10], and Georgiadis et al.

[11] applied Bayesian modeling to solving binary scale diagnostic testing problems,
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and Zhou et al. [12] developed a nonparametric maximum likelihood method for

estimating ROC curves and AUCs of ordinal-scale tests in the absence of a GS test.

Choi et al. [13] proposed a Bayesian method for construction of the difference

between AUCs of the two correlated tests under the no-gold-standard (NGS) situ-

ation, and their method is based on the assumption that observed data come from

a mixture of two bivariate normal distributions. Branscum et al. [14] proposed

another Bayesian approach for ROC curve estimation, based on mixtures of Polya

trees, which allows more flexibility, especially if the underlying distributions of test

results are multimodal. Although the Bayesian methods appear to perform well in

a limited simulation study, the methods still require a carefully chosen prior for the

model parameters. Branscum et al. [14] cautioned the use of noninformative priors

in Bayesian analysis of NGS diagnostic testing problems and advocated the use of

real and informative prior in such the Bayesian analysis. In addition, the Bayesian

methods may be sensitive to the bivariate parametric distributional assumption on

test results, as noted in Choi et al. [13].

All the proposed methods above, except Choi’s method, for dealing with the

absence of a GS test focus on point estimation of ROC curves, not on interval

estimation. In this paper, we focus on interval estimation for the difference in

paired AUCs under the NGS situation. Using the EM algorithm in conjunction

with the bootstrap method, we propose a new likelihood-based procedure for the

construction of confidence intervals for the difference in paired AUCs under the

NGS case. We present the proposed methods in Section 2, and carry out the

simulation in Section 3 to compare the performance of the proposed method with

existing methods. In Section 4, we illustrate the use of the proposed method with

two published data sets. Finally, we conclude the article with some discussion and

final remarks in Section 5.

2. The Proposed Methods

Let T1 and T2 be test results of two diagnostic tests on the same patient whose

disease status is denoted by D. If the patient is diseased, then D = 1; and if

the patient is non-diseased, then D = 0. We denote the results of the two tests
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on a diseased patient by X1 and X2, respectively, and those on a non-diseased

patient by Y1 and Y2, respectively. Furthermore, let P (Xj > c) = SX,j(c) and

P (Yj > c) = SY,j(c) be the true positive and false positive fractions at a threshold

c for diagnostic test j, respectively. For diagnostic test j, an ROC curve plots

{SY,j(c), SX,j(c)} for all possible values of threshold c. We can also write the ROC

curve as a function of t = SY,j(c), given by ROCj(t) = SX,j(S−1
Y,j(t)), where S−1

Y,j(t) is

the inverse function of SY,j(t). The AUC for diagnostic test j is Aj =
∫ 1
0 ROCj(t)dt,

which can be shown to be Aj = P (Xj ≥ Yj).

Assume that two test results of a diseased subject, X1 and X2, follow a bivariate

normal distribution,

X =


 X1

X2


 ∼ N2(µD,ΣD),

and that test results of a non-diseased subject, Y1 and Y2, also follow a bivariate

normal distribution,

Y =


 Y1

Y2


 ∼ N2(µD̄,ΣD̄).

Here

µD =


 µ1D

µ2D


 , ΣD =


 σ2

1D ρD

ρD σ2
2D


 , µD̄ =


 µ1D̄

µ2D̄


 and ΣD̄ =


 σ2

1D̄ ρD̄

ρD̄ σ2
2D̄


 .

The vector of parameters in this setting is given by

θ′ = (p, µ1D, µ2D, µ1D̄, µ2D̄, σ2
1D, σ2

2D, σ2
1D̄, σ2

2D̄, ρD, ρD̄),

where p = P (D = 1). It is worth noting that under our model, the conditionally

independent assumption is a special case with ρD = ρD̄ = 0.

The AUC for diagnostic test j under the above setting can be further expressed

as Aj = Φ(ηj),

where

ηj =
µjD − µjD̄√
σ2

jD + σ2
jD̄

, for j = 1, 2,
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and Φ(·) is the standard normal distribution function.

If a GS test on the true disease status exists, then X and Y are available. Thus,

the ML estimate of θ can be easily derived, and the interval estimation for ∆ can

be obtained using a bootstrap method. We summarize this estimation method in

Appendix A. However, if a GS test is not available, then X and Y are missing, and

the derivation is not so straightforward. We propose ML-based interval estimation

for ∆ using the EM algorithm and bootstrap method under the NGS situation.

2.1 EM algorithm

The EM algorithm is a general purpose algorithm to iteratively compute the

ML estimates when observed data can be viewed as incomplete data. Let tji be

the observed result of the jth test on the ith subject, Di be the unobserved disease

status of the ith subject, and p = P (Di = 1). Let ti = (t1i, t2i), t = (t1, . . . , tn),

and D = (D1, . . . , Dn). Recall that X and Y follow N2(µD,ΣD) and N2(µD̄,ΣD̄),

respectively. If D had been observed, then the complete data log-likelihood function

would be given as follows:

lc(θ|t,D) =
n∑

i=1

[Di log(pfX(ti)) + (1−Di) log((1− p)fY(ti))],

where fX(t) is the density function of N2(µD,ΣD), and fY(t) is the density function

of N2(µD̄,ΣD̄). Let θ(m) denote the estimate of θ after the mth iteration of the EM

algorithm. The following E-step and M-step are used to find θ(m+1), an updated

estimate of θ.

• E-step: The E-step computes the conditional expectation of lc(θ) under the

observed data t and the current parameter estimate, θ = θ(m). That is,

E(lc(θ)|t, θ = θm) =
n∑

i=1

P (Di = 1|ti, θ
(m)) log(p)fX(ti) + P (Di = 0|ti, θ

(m)) log(1− p)fY(ti).

If we define z
(m)
id as

z
(m)
id = P (Di = d|ti, p

(m), µ
(m)
1D , µ

(m)
2D , µ

(m)

1D̄
, µ

(m)

2D̄
, σ2(m)

1D , σ2(m)

2D , ρ
(m)
D , σ2(m)

1D̄ , σ2(m)

2D̄ , ρ
(m)

D̄
),
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we can show that

z
(m)
i1 =

p(m)f
(m)
X (ti)

p(m)f
(m)
X (ti) + (1− p)(m)f

(m)
Y (ti)

, (1)

z
(m)
i0 =

(1− p)(m)f
(m)
Y (ti)

p(m)f
(m)
X (ti) + (1− p)(m)f

(m)
Y (ti)

, (2)

and

E(lc(θ)|t, θ = θm) =
n∑

i=1

z
(m)
i1 log(pfX(ti)) + z

(m)
i0 log((1− p)fY(ti)). (3)

• M-step: The M-step finds the updated estimate θ(m+1) for θ by maximizing

E(lc(θ)|t, θ = θm) with respect to θ. The elements of θ(m+1) are summarized in

Appendix B.

The convergent value of θ(m+1) in the EM algorithm is the ML estimate of

θ. Finally, plugging the ML estimate of θ into ∆ = A1 − A2, we obtain the ML

estimate of ∆, ∆̂.

2.2 Bootstrap method

Due to the complicated variance form of ∆̂, we use a bootstrap method to obtain

its variance estimate. Then, ∆̂ and its variance estimate are used to construct the

confidence interval of the difference in paired AUCs in the absence of a GS test.

An equal-tailed 100(1−α)% bootstrap confidence interval for ∆ = A1−A2 can be

obtained from the following procedure.

Step 1: Set initial values for p, µD, ΣD and µD̄, ΣD̄.

Step 2: Use the EM algorithm to obtain ∆̂, based on the observed data, t =

(t1, t2, . . . , tn), .

Step 3: Generate B bootstrap samples, t? = (t?
1, t

?
2, . . . , t

?
n), from the observed

data, t, without replacement, such that each bootstrap sample has a size n, where

B = 200.
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Step 4: Use the EM algorithm to estimate ∆ = A1 − A2 for each bootstrap

sample. Then, from these B bootstrap estimates of ∆, we can form the sample

variance estimate for the variance of ∆̂, denoted by v̂ar(∆̂boot).

Step 5: Use the resulting ∆̂ in Step 2 and v̂ar(∆̂boot) in Step 4 to construct

(1− α)100% confidence interval for ∆ as follows:

(∆̂− z1−α/2

√
v̂ar(∆̂boot), ∆̂ + zα/2

√
v̂ar(∆̂boot)).

3. Simulation Studies

Three simulation studies were conducted. The first simulation would evaluate

how much efficiency the proposed ML method might lose if the GS information was

used in estimation. We compared the coverage probabilities of our proposed ML-

based method under the NGS with those of the ML-based method under existence

of a GS test. The second simulation would assess the relative performance of our

method in comparison of the existing method under the NGS case. We compared

the performance of the proposed ML-based method under the NGS with Choi’s

method, which also does not require the existence of a GS test. The third simulation

study would assess the performance of our method for non-normal data. We assessed

performance of the proposed ML-based method when test data were skewed.

3.1 Simulation study I

We chose the same simulation parameters as those in Li et al. [5]. First, we

generated a random sample of two test results of n1 diseased subjects, X1, ...,Xn1 ,

from N2(µD,ΣD) and a random sample of two test results of n− n1 non-diseased

subjects, Y1, ...,Yn−n1 , from N2(µD̄,ΣD̄). Without loss of generality, the mean

and variance vectors of Yi′ - (µ1D̄, µ2D̄) and (σ2
1D̄, σ2

2D̄) - were fixed at (0, 0) and

(1, 1), respectively, and the variance vector of Xi - (σ2
1D, σ2

2D)- was fixed at (1, 1).

The true disease prevalence p was chosen to be 0.1, 0.3, or 0.5. We varied the

sample size (n) to be 40, 70, 100, 150, 200, or 500. Data were generated under the

following three conditions for the ROC curves of the two tests: (i) both diagnostic
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tests had large AUCs; (ii) one had large AUC, while the other had a small AUC;

and (iii) both had small AUC. Specifically, for achieving conditions (i), (ii), and

(iii), we chose the mean vector of Xi, (µ1D, µ2D), to be (2.326, 1.812), (2.326, 0.545)

and (0.742, 0.545), respectively, leading to the value of ∆ = A1 − A2 being 0.05 in

(i), 0.30 in (ii), and 0.05 in (iii). Finally, the correlation coefficients between X1 and

X2 and between Y1 and Y2 were chosen. Since σ2
1D, σ2

2D, σ2
1D̄ and σ2

2D̄ were all fixed

at 1, ρD and ρD̄ were the conditional correlations, respectively, which were set to be

0.5 (medium correlations between two diagnostic tests) or 0.99 (high correlations

between two diagnostic tests).

For each specified parameter combination, the data were generated 5,000 times

independently. We applied the proposed method to each simulated data set to

obtain the 95% confidence interval of ∆. The actual coverage probability was

computed by the proportion of the 5,000 simulated confidence intervals that covered

∆, and the expected interval length was computed by the average of the 5,000

confidence intervals.

We display the simulation results in Tables I, II, and III.

Insert Tables I, II and III here

From the results in Tables I, II, and III, we drew the following conclusions.

(1) Under both the GS and NGS situations, the proposed ML-based intervals had

the empirical coverage probabilities that were close to the nominal confidence

level 95% for most cases and were slightly liberal for some of the smaller

sample sizes. In addition, the proposed method performed better when the

disease prevalence was 0.5 than when the disease prevalence was 0.1 or 0.3.

Also, the empirical coverage probabilities of the proposed method performed

better for high correlations between paired tests (ρD = 0.99 and ρD̄ = 0.99)

than for low correlation cases.

(2) The coverage probabilities of the proposed ML-based interval under the NGS

case were slightly higher than those of the ML-based method under the GS

7
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case. However, the expected interval lengths under the NGS case were larger

than those under the GS case and could be much larger when the correlations

between two paired tests were 0.5. These results are consistent with current

knowledge in the statistical literature about estimation of diagnostic tests in

the NGS case.

3.2 Simulation study II

To compare the relative performance of the proposed ML-based method against

the existing method of Choi’s et al. [13], we chose the same simulation parameters

as in Choi et al. [13]. We report the simulation results in Table IV. Note that

in Table IV, we directly cited the simulation results for Choi’s method from the

original paper.

Insert Table IV here

Table IV shows that the proposed ML-based method under the NGS case had

smaller bias and slightly better coverage probability than Choi’s method under the

NGS case.

3.3 Simulation study III

To investigate robustness of the proposed ML-based method under the NGS

case when data do not follow a normal distribution, we generated data from a

bivariate skewed exponential distribution with the difference of the AUCs of 0.05

(∆ = 0.05) using the method described in Liu et al.[17]. We display the simulation

results in Table V.

Insert Table V here

From Table V, we conclude that when p = 0.5 and the correlations between the

two diagnostic tests were high, the coverage probabilities of the proposed ML-based

method under both the GS and NGS cases were close to the nominal confidence

8
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level of 95%. When p was less than 0.5, coverage probabilities of the proposed ML-

based method under the both GS and NGS cases were also close to the nominal

level when the sample size was greater than 100, but could be much less than the

nominal level when the sample size was small. The expected interval length of the

proposed ML-based method under the NGS case was much larger than that of the

ML-based method under the GS case.

4. Numerical Examples

4.1. The study of pancreatic cancer serum biomarkers

We first consider the pancreatic cancer data from a case-control study, reported

in Wieand et al. [18]. This case-control study included 90 cases with pancreatic

cancer and 51 controls who did not have cancer but had pancreatitis. Serum samples

from each patient were assayed for CA-125 (a cancer antigen) and CA-19-9 (a

carbohydrate antigen), both of which were measured on a continuous positive scale.

Although each patient had a disease status based on a GS test, we first treated

the disease status of each patient as unknown and used the proposed method to

calculate the difference of areas under the ROC curves of CA-125 and CA-19-9 and

construct a 95% confidence interval without the use of the GS information. Then,

using the GS information on the disease status for each patient, we also derived the

confidence interval for the difference of areas under the ROC curves of CA-125 and

CA-19-9.

Because the pancreatic cancer data were skewed, we took the log transformation

of the data to make the data approximately meet the bivariate normality assump-

tion. The estimated prevalence, p, of pancreatic cancer under the NGS was 0.69.

Note that the sample proportion of pancreatic cancer was 0.64. Under the NGS

case, the resulting 95% confidence interval for the difference between the AUCs of

two biomarkers was (−0.181, 0.324). On the other hand, using the GS information,

we obtained the resulting 95% confidence interval of (0.080, 0.295). It was notewor-

thy that the AUC estimates of CA-19-9 and CA-125 under the NGS situation were

0.83 and 0.66, respectively, while the corresponding AUC estimates under the GS

9
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case were 0.88 and 0.68, respectively. Since the confidence interval excluded zero

in the GS and contained zero in the NGS, the use of the GS information in this

example would lead to a different conclusion from the one obtained without the use

of the GS on the disease status. We also noted that the 95% confidence interval of

the difference in AUCs in the GS case was much narrower than in the NGS case.

4.2. The study of accuracy of magnetic resonance angiography (MRA)

readings by two readers

This example, presented in Masaryk et al. [19], was a study on atherosclerosis of

the carotid arteries. Although each patient in this data set had the GS information

available, due to potential error in the gold standard procedure, we used this data set

to contrast the results observed without using the GS information with the results

observed with using the GS information. In the study, each of two radiologists

assessed 65 carotid arteries (left and right) in 36 patients using MRA. Thirty three

patients had MRA test results from the left artery, and 32 patients from the right

artery. We compared the accuracy of readings between these two radiologists, based

on the AUC. In this study, we only used the data of the left artery to estimate

the difference between the two corresponding AUCs. Because the values of the

data range from −122 to 100, we added 150 to each observation to make all values

positive. Since the data were skewed, based on visual assessment of the data values,

we chose the log transformation to make the data have approximately bivariate

normal distributions. Without using the GS information on the disease status, we

obtained the estimated prevalence of left artery disease, p, to be 0.40. Note that

the sample proportion of disease was 0.36. In the NGS case, the resulting 95%

confidence interval was (−0.112, 0.134). Using the GS information on the disease

status, the 95% confidence interval was (−0.027, 0.005). The AUC estimates of two

readers without using the GS information were 0.93 and 0.95, respectively, while

the corresponding AUC estimates, when using the GS information, were 0.90 and

0.94, respectively. Although the confidence interval derived for the NGS case is

wider than that for the GS case, both the intervals included zero. Hence, there was

no strong evidence to indicate that the accuracy of MRA readings obtained from
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the two readers was significantly different.

5. Discussion and Final Remarks

Under the normality assumption on the diagnostic test results from each dis-

eased group of subjects, and using the EM algorithm in conjunction with the boot-

strap method, we proposed a procedure for the construction of confidence intervals

for the difference in paired AUCs without the existence of a GS test on the true

disease status of a patient. The proposed methods performed well for finite sample

sizes in our simulation studies. An R program for computation of the proposed

ML-based method is available from the authors upon request.

Our method is based on the percentile bootstrap method. Obuchowski and

Lieber [20] assessed the adequacy of various bootstrap confidence intervals for the

AUC when test results were continuous and when sample sizes were small, and

they found that bootstrap percentile t confidence interval is preferable. To see

whether the use of the bootstrap t method could improve the performance of our

method, we conducted one additional simulation study. In this simulation study,

we generated test results of a diseased and non-diseased subject from a bivariate

normal distribution with σD = 0.5 and σD̄ = 0.99, respectively, and the other

parameter estimates shown in Table VI.

Insert Table VI here

From Table VI, we observe that the empirical coverage probabilities of the

bootstrap percentile t confidence interval and the proposed bootstrap confidence

interval are both close to the nominal confidence level 95% in both the GS and NGS

cases. In general, these two bootstrap methods appear to have similar performance

in both the GS and NGS cases.

Hui and Zhou [21] reviewed the statistical methods for estimating the diagnostic

accuracy of one or more new tests in the absence of a GS test. They pointed out that

most of these methods are based on mixture models and assume the conditional

independence that the two diagnostic tests are independent, conditional on the

11
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true disease status. Our newly proposed method does not require the conditionally

independent assumption. However, we do need to assume the bivariate normality

assumption on distributions of test results of a diseased and non-diseased subject.

One may be concerned that the EM algorithm used in this study may not

always lead to the global ML estimates. To overcome this problem, Zhou et al.

[12] suggested randomly perturbing the starting points, or recomputing the ML

estimates based on a set of plausible initial values. Thus, we used different starting

points for parameters, and found that the parameter estimates always converged to

the same values.

When test results are skewed, the performance of the empirical coverage prob-

ability of the proposed ML-based method is still robust, unlike the existing interval

estimation method of Choi et al., which is sensitive to the departure from the bi-

variate normality assumption.
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Appendix A.

Using the bootstrap method, we next derive confidence intervals for ∆ when a

GS test on the disease status is available for each patient.

Suppose that X1, . . . ,Xn1 and Y1, . . . ,Yn−n1 are two random samples from

N2(µD,ΣD) and N2(µD̄,ΣD̄), respectively. Then we obtain the following estima-

tors for (µD,ΣD) and (µD̄,ΣD̄):

(µ̂D, Σ̂D) =

(
1
n1

n1∑

i=1

Xi,
1

n1 − 1

n1∑

i=1

(Xi − X̄)(Xi − X̄)T
)

=





 X̄1

X̄2


 ,

1
n1 − 1


 SX1 SX12

SX12 SX2







and

(µ̂D̄, Σ̂D̄) =

(
1

n− n1

n−n1∑

i′=1

Yi′ ,
1

(n− n1)− 1

n−n1∑

i′=1

(Yi′ − Ȳ)(Yi′ − Ȳ)T
)

=





 Ȳ1

Ȳ2


 ,

1
(n− n1)− 1


 SY1 SY12

SY12 SY2.







From these estimates, we obtain the ML estimate, ∆̂, of ∆, the difference in the

paired AUCs of the two tests. We use the following procedure to obtain a two-sided

100(1− α)% bootstrap confidence interval for ∆.

Step 1: Compute the ML estimate of ∆, ∆̂, based on the observed data, x =

(x1,x2, . . . ,xn1) and y = (y1,y2, . . . ,yn−n1).

Step 2: Generate B bootstrap random samples, x? = (x?
1,x

?
2, . . . ,x

?
n1

) and

y? = (y?
1,y

?
2, . . . ,y

?
n−n1

), with a size of n, by sampling with replacement from the

observed data, x = (x1,x2, . . . ,xn1) and y = (y1,y2, . . . ,yn−n1), where B = 200.

Step 3: Estimate ∆ = A1 − A2 for each of the B bootstrap random samples.

Then we can compute the sample variance of these B estimates and denote it by

v̂ar(∆̂boot).
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Step 4: Use the resulting ∆̂ in Step 1 and v̂ar(∆̂boot) in Step 3 to construct the

(1− α)100% confidence interval for ∆ as follows:

(∆̂− z1−α/2

√
v̂ar(∆̂boot), ∆̂ + zα/2

√
v̂ar(∆̂boot)).
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Appendix B. The estimators in M-step.

p̂(m+1) =
1
n

n∑

i=1

z
(m)
i1 ,

µ̂
(m+1)
1D =

n∑
i=1

z
(m)
i1 ti1

n∑
i=1

z
(m)
i1

,

µ̂
(m+1)
2D =

n∑
i=1

z
(m)
i1 ti2

n∑
i=1

z
(m)
i1

,

σ̂2(m+1)

1D =

n∑
i=1

z
(m)
i1 (ti1 − µ̂1D)2

n∑
i=1

z
(m)
i1

,

σ̂2(m+1)

2D =

n∑
i=1

z
(m)
i1 (ti2 − µ̂2D)2

n∑
i=1

z
(m)
i1

,

ρ̂
(m+1)
D =

n∑
i=1

z
(m)
i1 (ti1 − µ̂1D)(ti2 − µ̂2D)

n∑
i=1

z
(m)
i1

.

Also,

µ̂
(m+1)

1D̄
=

n∑
i=1

z
(m)
i0 ti1

n∑
i=1

z
(m)
i0

,
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µ̂
(m+1)

2D̄
=

n∑
i=1

z
(m)
i0 ti2

n∑
i=1

z
(m)
i0

,

σ̂2(m+1)

1D̄ =

n∑
i=1

z
(m)
i0 (ti1 − µ̂1D̄)2

n∑
i=1

z
(m)
i0

,

σ̂2(m+1)

2D̄ =

n∑
i=1

z
(m)
i0 (ti2 − µ̂2D̄)2

n∑
i=1

z
(m)
i0

,

ρ̂
(m+1)

D̄
=

n∑
i=1

z
(m)
i0 (ti1 − µ̂1D̄)(ti2 − µ̂2D̄)

n∑
i=1

z
(m)
i0

.
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Table V. The coverage probabilities (CP) and expected lengths (EL) of the

95% confidence interval for skewed data when the true disease prevalence

(p) = 0.1, 0.3 and 0.5.

Proposed ML-based Method

GS NGS

∆ p ρD ρD̄ n CP EL CP EL

0.05 0.1 0.99 0.99 40 0.911 0.095 0.932 0.149

70 0.939 0.075 0.937 0.138

100 0.940 0.064 0.945 0.132

150 0.942 0.053 0.947 0.122

200 0.948 0.046 0.949 0.110

500 0.951 0.030 0.954 0.054

0.05 0.3 0.99 0.99 40 0.925 0.075 0.933 0.131

70 0.940 0.058 0.947 0.120

100 0.942 0.049 0.947 0.115

150 0.943 0.040 0.950 0.107

200 0.950 0.035 0.951 0.099

500 0.953 0.022 0.956 0.066

0.05 0.5 0.99 0.99 40 0.939 0.072 0.946 0.123

70 0.941 0.056 0.948 0.109

100 0.943 0.047 0.950 0.099

150 0.944 0.039 0.950 0.086

200 0.951 0.031 0.952 0.076

500 0.964 0.022 0.967 0.041

Note: ∆: the difference in paired areas under the ROC

curves. n: the sample size of subjects. ρD: the correla-

tion between the paired test results of diseased subjects.

ρD̄: the correlation between the paired test results of

non-diseased subjects.
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Table VI. The coverage probabilities (CP) and expected lengths (EL) of

the 95% bootstrap percentile t confidence interval and proposed confidence

interval for the difference in paired areas under the ROC curves when the true

disease prevalence (p) = 0.1, 0.3 and 0.5, ρD = 0.50, ρD̄ = 0.99, ∆ = 0.05, in

condition (i).

Bootstrap Percentile t CI Proposed ML-based Method CI

GS NGS GS NGS

p ρD ρD̄ n CP EL CP EL CP EL CP EL

0.1 0.50 0.99 40 0.846 0.198 0.905 0.204 0.832 0.208 0.931 0.219

70 0.907 0.164 0.909 0.188 0.906 0.170 0.940 0.195

100 0.941 0.150 0.945 0.183 0.940 0.153 0.945 0.188

150 0.946 0.127 0.947 0.156 0.945 0.129 0.947 0.161

200 0.948 0.110 0.949 0.133 0.948 0.113 0.954 0.135

500 0.949 0.074 0.949 0.079 0.950 0.076 0.952 0.081

0.3 0.50 0.99 40 0.932 0.147 0.932 0.192 0.931 0.151 0.933 0.201

70 0.944 0.115 0.952 0.146 0.943 0.117 0.943 0.148

100 0.946 0.097 0.952 0.117 0.944 0.100 0.952 0.120

150 0.948 0.080 0.953 0.093 0.946 0.082 0.953 0.095

200 0.950 0.069 0.954 0.078 0.949 0.071 0.947 0.079

500 0.952 0.045 0.958 0.048 0.951 0.045 0.955 0.049

0.5 0.50 0.99 40 0.944 0.122 0.945 0.172 0.943 0.125 0.945 0.180

70 0.946 0.093 0.958 0.126 0.945 0.095 0.946 0.130

100 0.951 0.078 0.961 0.102 0.946 0.080 0.947 0.106

150 0.952 0.066 0.962 0.079 0.948 0.067 0.947 0.083

200 0.954 0.057 0.963 0.067 0.950 0.058 0.952 0.070

500 0.955 0.036 0.964 0.042 0.952 0.037 0.959 0.043

Note: the value of ∆(= A1−A2) is fixed at 0.05(=0.95-0.90) in condition (i). A1, A2:

the paired areas under the ROC curves. n: the sample size of subjects. ρD: the

correlation between the paired test results of diseased subjects. ρD̄: the correlation

between the paired test results of non-diseased subjects.
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