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Summary: Receiver operating characteristic (ROC) curves can be used to
assess the accuracy of tests measured on ordinal or continuous scales. The
most commonly used measure for the overall diagnostic accuracy of diagnostic
tests is the area under the ROC curve (AUC). A gold standard test on the true
disease status is required to estimate the AUC. However, a gold standard test
may sometimes be too expensive or infeasible. Therefore, in many medical
research studies, the true disease status of the subjects may remain unknown.
Under the normality assumption on test results from each disease group of
subjects, using the expectation-maximization (EM) algorithm in conjunction
with a bootstrap method, we propose a maximum likelihood based procedure
for construction of confidence intervals for the difference in paired areas under
ROC curves in the absence of a gold standard test. Simulation results show
that the proposed interval estimation procedure yields satisfactory coverage
probabilities and interval lengths. The proposed method is illustrated with

two examples.

Key words and phrases: Area under the ROC curve, EM algorithm, boot-

strap method, gold standard test, maximum likelihood estimation.
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1. Introduction

One of the primary objectives in any diagnostic test evaluation study is to
compare the diagnostic accuracy of the new diagnostic procedure with that of a
current procedure, and one of the common measures for the overall diagnostic
accuracy is the area under the receiver operating characteristic (ROC) curve (AUC)
[1, 2]. The difference in the AUCs can be used as a measure for comparison of
diagnostic accuracy between two diagnostic tests.

When the gold standard (GS) test on the disease status is available, several
methods have been proposed to compare the difference in the AUCs. The non-
parametric method presented in DeLong et al. [3] and the maximum likelihood
estimation under the normal assumption provided by McClish [4] are the two most
commonly used methods for this problem. Most recently, Li et al. [5] proposed
an exact interval estimation based on the concept of a generalized pivotal quantity
and showed that their method outperforms both the nonparametric method and
the maximum likelihood method in their intensive simulation study.

However, a GS test may not always exist or may be too expensive or infeasi-
ble. Therefore, in many diagnostic accuracy studies, an imperfect GS test is used
to evaluate the accuracy of tests instead, which can result in biased estimates of
diagnostic accuracy. The statistical inferences for ROC analysis without the GS
test remain relatively unexplored. Henkelman et al. [7] considered the estimation
problem of ROC curves of continuous-scale tests in the absence of a GS test and
showed that ROC curves of two or more continuous-scale tests could be estimated
in the absence of a GS test under the multivariate normality assumption on test
results of a diseased and non-diseased subjects. Beiden et al. [8] also proposed
maximum likelihood (ML) estimates of the ROC curves of continuous-scale tests
using the EM algorithm.

For binary and ordinal scale test data, some methods were proposed for estimat-
ing sensitivity and specificity of the two diagnostic correlated tests in the absence of
a GS test. For example, Enge et al. [9], Dendukuri et al. [10], and Georgiadis et al.

[11] applied Bayesian modeling to solving binary scale diagnostic testing problems,
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and Zhou et al. [12] developed a nonparametric maximum likelihood method for
estimating ROC curves and AUCs of ordinal-scale tests in the absence of a GS test.

Choi et al. [13] proposed a Bayesian method for construction of the difference
between AUCs of the two correlated tests under the no-gold-standard (NGS) situ-
ation, and their method is based on the assumption that observed data come from
a mixture of two bivariate normal distributions. Branscum et al. [14] proposed
another Bayesian approach for ROC curve estimation, based on mixtures of Polya
trees, which allows more flexibility, especially if the underlying distributions of test
results are multimodal. Although the Bayesian methods appear to perform well in
a limited simulation study, the methods still require a carefully chosen prior for the
model parameters. Branscum et al. [14] cautioned the use of noninformative priors
in Bayesian analysis of NGS diagnostic testing problems and advocated the use of
real and informative prior in such the Bayesian analysis. In addition, the Bayesian
methods may be sensitive to the bivariate parametric distributional assumption on
test results, as noted in Choi et al. [13].

All the proposed methods above, except Choi’s method, for dealing with the
absence of a GS test focus on point estimation of ROC curves, not on interval
estimation. In this paper, we focus on interval estimation for the difference in
paired AUCs under the NGS situation. Using the EM algorithm in conjunction
with the bootstrap method, we propose a new likelihood-based procedure for the
construction of confidence intervals for the difference in paired AUCs under the
NGS case. We present the proposed methods in Section 2, and carry out the
simulation in Section 3 to compare the performance of the proposed method with
existing methods. In Section 4, we illustrate the use of the proposed method with
two published data sets. Finally, we conclude the article with some discussion and
final remarks in Section 5.

2. The Proposed Methods

Let T1 and T3 be test results of two diagnostic tests on the same patient whose
disease status is denoted by D. If the patient is diseased, then D = 1; and if
the patient is non-diseased, then D = 0. We denote the results of the two tests
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on a diseased patient by X; and X, respectively, and those on a non-diseased
patient by Y; and Ya, respectively. Furthermore, let P(X; > ¢) = Sx j(c) and
P(Y; > ¢) = Sy,;(c) be the true positive and false positive fractions at a threshold
c for diagnostic test j, respectively. For diagnostic test j, an ROC curve plots
{Sy;(¢),Sx,j(c)} for all possible values of threshold c. We can also write the ROC
curve as a function of t = Sy;;(c), given by ROC;(t) = SXJ(SQ; (t)), where S;i(t) is
the inverse function of Sy;;(t). The AUC for diagnostic test j is A; = fol ROC;(t)dt,
which can be shown to be A; = P(X; > Yj).

Assume that two test results of a diseased subject, X7 and X5, follow a bivariate

normal distribution,

X

I
2
&
LS

>
M
S5

and that test results of a non-diseased subject, Y7 and Y3, also follow a bivariate

normal distribution,

Y;
Y = ~ No(pp,Xp).
Yy
Here
{1 olp  PD b 9ip P
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The vector of parameters in this setting is given by
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where p = P(D = 1). It is worth noting that under our model, the conditionally
independent assumption is a special case with pp = pp = 0.

The AUC for diagnostic test j under the above setting can be further expressed
as Aj = ®(n;),

where
D — i
nj = %’ for j = 1,2,
ajD—l—a].D
3
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and ®(-) is the standard normal distribution function.

If a GS test on the true disease status exists, then X and Y are available. Thus,
the ML estimate of 8 can be easily derived, and the interval estimation for A can
be obtained using a bootstrap method. We summarize this estimation method in
Appendix A. However, if a GS test is not available, then X and Y are missing, and
the derivation is not so straightforward. We propose ML-based interval estimation
for A using the EM algorithm and bootstrap method under the NGS situation.
2.1 EM algorithm

The EM algorithm is a general purpose algorithm to iteratively compute the
ML estimates when observed data can be viewed as incomplete data. Let ¢j; be
the observed result of the j** test on the i** subject, D; be the unobserved disease
status of the i'" subject, and p = P(D; = 1). Let t; = (t1;,t0), t = (t1,...,tn),
and D = (Dy,...,Dy,). Recall that X and Y follow No(pp,Xp) and No(pp, Xp),
respectively. If D had been observed, then the complete data log-likelihood function

would be given as follows:

n

1°(0]t, D) = > _[Dilog(pfx (t:)) + (1 — D;)log((1 = p) fx (:))],
i=1

where fx (t) is the density function of No(pp, X p), and fy (t) is the density function
of No(pp, X p). Let 0™ denote the estimate of @ after the m!" iteration of the EM
algorithm. The following E-step and M-step are used to find O(mﬂ), an updated

estimate of 6.

e E-step: The E-step computes the conditional expectation of [¢(@) under the

observed data t and the current parameter estimate, 8 = 6™, That is,

n

E(I°(0)[t,0 = 0™) = >~ P(D; = 1t;,0"™)) log(p) fx (t;) + P(D; = 0t;,0"™)) log(1 — p) fy (t:).
=1
If we define zgln) as

(m) (m) (m) (m)
Zz(;n) S5 P(Dz = d|tmp(m),/i§n5)7Még)aﬂgrg)7ﬂé%)70%D )O-gD 7pgn)7U%D 70-31_) 7p(DTn))7

4
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we can show that

p(™) )((m) (t:) + (1 — p)(m)fs((m) (t:)
(m) _ (1—p)™ " ()
0= ) ) gy’ @)

P fx (k) + (1= p)™ fy ™ (t)

and

n
B(0)[t,6 = 0™) = > = log(pfx (t) + 23 log(1 = p)fy (£)).  (3)
i=1

e M-step: The M-step finds the updated estimate 0™+ for @ by maximizing
E(1€(8)|t,0 = 8™) with respect to 8. The elements of 81 are summarized in
Appendix B.

The convergent value of 81 in the EM algorithm is the ML estimate of
0. Finally, plugging the ML estimate of @ into A = A; — As, we obtain the ML
estimate of A, A.
2.2 Bootstrap method

Due to the complicated variance form of A, we use a bootstrap method to obtain
its variance estimate. Then, A and its variance estimate are used to construct the
confidence interval of the difference in paired AUCs in the absence of a GS test.
An equal-tailed 100(1 — a)% bootstrap confidence interval for A = A; — Ay can be

obtained from the following procedure.
Step 1: Set initial values for p, up, Xp and pp, X5.

Step 2: Use the EM algorithm to obtain A, based on the observed data, t =
(t1,t0,...,ty), .

Step 3: Generate B bootstrap samples, t* = (t7,t5,...,t)), from the observed
data, t, without replacement, such that each bootstrap sample has a size n, where

B = 200.
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Step 4: Use the EM algorithm to estimate A = A; — As for each bootstrap
sample. Then, from these B bootstrap estimates of A, we can form the sample

variance estimate for the variance of A, denoted by W(Aboot).

Step 5: Use the resulting A in Step 2 and W(Aboot) in Step 4 to construct
(1 — a)100% confidence interval for A as follows:

(A — R1-a/2\/ QW(Aboot% A + Ra/2'\/ W(Aboot))'

3. Simulation Studies

Three simulation studies were conducted. The first simulation would evaluate
how much efficiency the proposed ML method might lose if the GS information was
used in estimation. We compared the coverage probabilities of our proposed ML-
based method under the NGS with those of the ML-based method under existence
of a GS test. The second simulation would assess the relative performance of our
method in comparison of the existing method under the NGS case. We compared
the performance of the proposed ML-based method under the NGS with Choi’s
method, which also does not require the existence of a GS test. The third simulation
study would assess the performance of our method for non-normal data. We assessed
performance of the proposed ML-based method when test data were skewed.
3.1 Simulation study 1

We chose the same simulation parameters as those in Li et al. [5]. First, we
generated a random sample of two test results of n; diseased subjects, Xy, ..., X,,,,
from Na(pp,Xp) and a random sample of two test results of n — n; non-diseased
subjects, Y1, ..., Yn—n,, from No(pp,X5). Without loss of generality, the mean
and variance vectors of Y - (115, pop) and (0% 5,03 5) - were fixed at (0,0) and
(1,1), respectively, and the variance vector of X; - (07,03 )- was fixed at (1,1).
The true disease prevalence p was chosen to be 0.1, 0.3, or 0.5. We varied the
sample size (n) to be 40, 70, 100, 150, 200, or 500. Data were generated under the
following three conditions for the ROC curves of the two tests: (i) both diagnostic
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tests had large AUCs; (ii) one had large AUC, while the other had a small AUC;
and (iii) both had small AUC. Specifically, for achieving conditions (i), (ii), and
(iii), we chose the mean vector of X;, (¢1p, t2p), to be (2.326,1.812), (2.326,0.545)
and (0.742,0.545), respectively, leading to the value of A = A; — Ag being 0.05 in
(1), 0.30 in (ii), and 0.05 in (iii). Finally, the correlation coefficients between X; and
X5 and between Y] and Yz were chosen. Since o3, 03 1, 07 5 and 03 5 were all fixed
at 1, pp and pp were the conditional correlations, respectively, which were set to be
0.5 (medium correlations between two diagnostic tests) or 0.99 (high correlations
between two diagnostic tests).

For each specified parameter combination, the data were generated 5,000 times
independently. We applied the proposed method to each simulated data set to
obtain the 95% confidence interval of A. The actual coverage probability was
computed by the proportion of the 5,000 simulated confidence intervals that covered
A, and the expected interval length was computed by the average of the 5,000
confidence intervals.

We display the simulation results in Tables I, II, and III.
Insert Tables I, IT and III here

From the results in Tables I, II, and III, we drew the following conclusions.

(1) Under both the GS and NGS situations, the proposed ML-based intervals had
the empirical coverage probabilities that were close to the nominal confidence
level 95% for most cases and were slightly liberal for some of the smaller
sample sizes. In addition, the proposed method performed better when the
disease prevalence was 0.5 than when the disease prevalence was 0.1 or 0.3.
Also, the empirical coverage probabilities of the proposed method performed
better for high correlations between paired tests (pp = 0.99 and pp = 0.99)

than for low correlation cases.

(2) The coverage probabilities of the proposed ML-based interval under the NGS
case were slightly higher than those of the ML-based method under the GS

7
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case. However, the expected interval lengths under the NGS case were larger
than those under the GS case and could be much larger when the correlations
between two paired tests were 0.5. These results are consistent with current
knowledge in the statistical literature about estimation of diagnostic tests in

the NGS case.

3.2 Simulation study II

To compare the relative performance of the proposed ML-based method against
the existing method of Choi’s et al. [13], we chose the same simulation parameters
as in Choi et al. [13]. We report the simulation results in Table IV. Note that
in Table IV, we directly cited the simulation results for Choi’s method from the

original paper.

Insert Table IV here

Table IV shows that the proposed ML-based method under the NGS case had
smaller bias and slightly better coverage probability than Choi’s method under the
NGS case.

3.3 Simulation study III

To investigate robustness of the proposed ML-based method under the NGS
case when data do not follow a normal distribution, we generated data from a
bivariate skewed exponential distribution with the difference of the AUCs of 0.05
(A = 0.05) using the method described in Liu et al.[17]. We display the simulation
results in Table V.

Insert Table V here
From Table V, we conclude that when p = 0.5 and the correlations between the

two diagnostic tests were high, the coverage probabilities of the proposed ML-based

method under both the GS and NGS cases were close to the nominal confidence
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level of 95%. When p was less than 0.5, coverage probabilities of the proposed ML-
based method under the both GS and NGS cases were also close to the nominal
level when the sample size was greater than 100, but could be much less than the
nominal level when the sample size was small. The expected interval length of the
proposed ML-based method under the NGS case was much larger than that of the
ML-based method under the GS case.

4. Numerical Examples

4.1. The study of pancreatic cancer serum biomarkers

We first consider the pancreatic cancer data from a case-control study, reported
in Wieand et al. [18]. This case-control study included 90 cases with pancreatic
cancer and 51 controls who did not have cancer but had pancreatitis. Serum samples
from each patient were assayed for CA-125 (a cancer antigen) and CA-19-9 (a
carbohydrate antigen), both of which were measured on a continuous positive scale.
Although each patient had a disease status based on a GS test, we first treated
the disease status of each patient as unknown and used the proposed method to
calculate the difference of areas under the ROC curves of CA-125 and CA-19-9 and
construct a 95% confidence interval without the use of the GS information. Then,
using the GS information on the disease status for each patient, we also derived the
confidence interval for the difference of areas under the ROC curves of CA-125 and
CA-19-9.

Because the pancreatic cancer data were skewed, we took the log transformation
of the data to make the data approximately meet the bivariate normality assump-
tion. The estimated prevalence, p, of pancreatic cancer under the NGS was 0.69.
Note that the sample proportion of pancreatic cancer was 0.64. Under the NGS
case, the resulting 95% confidence interval for the difference between the AUCs of
two biomarkers was (—0.181,0.324). On the other hand, using the GS information,
we obtained the resulting 95% confidence interval of (0.080,0.295). It was notewor-
thy that the AUC estimates of CA-19-9 and CA-125 under the NGS situation were
0.83 and 0.66, respectively, while the corresponding AUC estimates under the GS
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case were 0.88 and 0.68, respectively. Since the confidence interval excluded zero
in the GS and contained zero in the NGS, the use of the GS information in this
example would lead to a different conclusion from the one obtained without the use
of the GS on the disease status. We also noted that the 95% confidence interval of

the difference in AUCs in the GS case was much narrower than in the NGS case.

4.2. The study of accuracy of magnetic resonance angiography (MRA)
readings by two readers

This example, presented in Masaryk et al. [19], was a study on atherosclerosis of
the carotid arteries. Although each patient in this data set had the GS information
available, due to potential error in the gold standard procedure, we used this data set
to contrast the results observed without using the GS information with the results
observed with using the GS information. In the study, each of two radiologists
assessed 65 carotid arteries (left and right) in 36 patients using MRA. Thirty three
patients had MRA test results from the left artery, and 32 patients from the right
artery. We compared the accuracy of readings between these two radiologists, based
on the AUC. In this study, we only used the data of the left artery to estimate
the difference between the two corresponding AUCs. Because the values of the
data range from —122 to 100, we added 150 to each observation to make all values
positive. Since the data were skewed, based on visual assessment of the data values,
we chose the log transformation to make the data have approximately bivariate
normal distributions. Without using the GS information on the disease status, we
obtained the estimated prevalence of left artery disease, p, to be 0.40. Note that
the sample proportion of disease was 0.36. In the NGS case, the resulting 95%
confidence interval was (—0.112,0.134). Using the GS information on the disease
status, the 95% confidence interval was (—0.027,0.005). The AUC estimates of two
readers without using the GS information were 0.93 and 0.95, respectively, while
the corresponding AUC estimates, when using the GS information, were 0.90 and
0.94, respectively. Although the confidence interval derived for the NGS case is
wider than that for the GS case, both the intervals included zero. Hence, there was

no strong evidence to indicate that the accuracy of MRA readings obtained from

10
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the two readers was significantly different.
5. Discussion and Final Remarks

Under the normality assumption on the diagnostic test results from each dis-
eased group of subjects, and using the EM algorithm in conjunction with the boot-
strap method, we proposed a procedure for the construction of confidence intervals
for the difference in paired AUCs without the existence of a GS test on the true
disease status of a patient. The proposed methods performed well for finite sample
sizes in our simulation studies. An R program for computation of the proposed
ML-based method is available from the authors upon request.

Our method is based on the percentile bootstrap method. Obuchowski and
Lieber [20] assessed the adequacy of various bootstrap confidence intervals for the
AUC when test results were continuous and when sample sizes were small, and
they found that bootstrap percentile ¢ confidence interval is preferable. To see
whether the use of the bootstrap ¢ method could improve the performance of our
method, we conducted one additional simulation study. In this simulation study,
we generated test results of a diseased and non-diseased subject from a bivariate
normal distribution with op = 0.5 and op = 0.99, respectively, and the other

parameter estimates shown in Table VI.

Insert Table VI here

From Table VI, we observe that the empirical coverage probabilities of the
bootstrap percentile ¢ confidence interval and the proposed bootstrap confidence
interval are both close to the nominal confidence level 95% in both the GS and NGS
cases. In general, these two bootstrap methods appear to have similar performance
in both the GS and NGS cases.

Hui and Zhou [21] reviewed the statistical methods for estimating the diagnostic
accuracy of one or more new tests in the absence of a GS test. They pointed out that
most of these methods are based on mixture models and assume the conditional

independence that the two diagnostic tests are independent, conditional on the

11
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true disease status. Our newly proposed method does not require the conditionally
independent assumption. However, we do need to assume the bivariate normality
assumption on distributions of test results of a diseased and non-diseased subject.

One may be concerned that the EM algorithm used in this study may not
always lead to the global ML estimates. To overcome this problem, Zhou et al.
[12] suggested randomly perturbing the starting points, or recomputing the ML
estimates based on a set of plausible initial values. Thus, we used different starting
points for parameters, and found that the parameter estimates always converged to
the same values.

When test results are skewed, the performance of the empirical coverage prob-
ability of the proposed ML-based method is still robust, unlike the existing interval
estimation method of Choi et al., which is sensitive to the departure from the bi-

variate normality assumption.
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Appendix A.

Using the bootstrap method, we next derive confidence intervals for A when a
GS test on the disease status is available for each patient.

Suppose that Xy,...,X,, and Yi,...,Y,_p, are two random samples from
No(pp,Ep) and Nao(pp, X p), respectively. Then we obtain the following estima-
tors for (up,Xp) and (up, Xp):

e 1 & 1 & _ _
(b, Tp) = — D X, — ) (X - X)(X; - X)T
ny i ny — 1 =1
X, 1 SX;  SXio

and
1 n—nmi 1 n—mnmi
e By = Yy — N Y, - ) (Y - YT
(H’Da D) (n_nl ; iy (n—nl)—l 7;[( 7 )( 1 ) )
Y, 1 SY1  SYis

Y, | (n=mni)=11 gy, 8Y;.

From these estimates, we obtain the ML estimate, 3, of A, the difference in the
paired AUCs of the two tests. We use the following procedure to obtain a two-sided
100(1 — )% bootstrap confidence interval for A.

Step 1: Compute the ML estimate of A, ﬁ, based on the observed data, x =

(x1,%X2,...,Xp,) and ¥y = (¥1,¥2, - - - s Yn—ny )-

Step 2: Generate B bootstrap random samples, x* = (x],X3,...,X},) and
Y = (¥1,¥5 - ¥Yn_n, ), With a size of n, by sampling with replacement from the

observed data, x = (x1,X2,...,Xp,) and y = (y1,¥2, .- -, Yn-n, ), Where B = 200.

Step 3: Estimate A = A; — Ay for each of the B bootstrap random samples.
Then we can compute the sample variance of these B estimates and denote it by

var (Aboot) g
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Step 4: Use the resulting A in Step 1 and W(Aboot) in Step 3 to construct the

(1 — @)100% confidence interval for A as follows:

(A - Zlfa/Q \/ W(Aboot)) A + Za/2 \/ W(Aboot))-

17
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Appendix B. The estimators in M-step.

Also,

A 1 ¢
P = A,
=1

S _(m)
Z Zi ti1
plm41) =l
1D - n (m) ’
Z zzl
i=1
n
> 2t
pmtl) =l
lu2D - n (m) )
> %1
i=1
N (m) N 2
i) leu (ta — fip)
~o(m =
=T E !
> Zi1
i=1
N (m) SN2
) ;Zu (tia — fi2p)
a‘%D = 7’7 n (m) )
> %1
i=1
S (m) N X
_— leu (tin — fuup)(tie — fi2p)
~m 1=
. o (m)
> Zi1
i=1
n
Z Zi((;n)tzl
~(m+1) _ =1
1D - n )
(
Zz‘:)n)
=1
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S 2Vt
S (m+1) _ i=1

2D n ’
P
i=1
N (m) A2
Jon ) leio (tir — f11p)
~o(m i=
JID = n (m) )
> Zio
=1
N (m) NERY:
Joni) lez‘o (tie — fiap)
A 1=
2= Lom
> Zig
i=1

n

> 2 (i — finp) (tiz — fiap)

A(m4+1) =1
Pb L (m)
Z Zi0
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Table V. The coverage probabilities (CP) and expected lengths (EL) of the

95% confidence interval for skewed data when the true disease prevalence

(p) = 0.1,0.3 and 0.5.

Proposed ML-based Method

GS NGS
A p pp pp N CP EL CP EL
0.05 0.1 0.99 099 40 0911 0.095 0.932 0.149
70 0.939 0.075 0.937 0.138
100 0.940 0.064 0.945 0.132
150 0.942 0.053 0.947 0.122
200 0.948 0.046 0.949 0.110
500 0.951 0.030 0.954 0.054
0.05 0.3 0.99 099 40 0.925 0.075 0.933 0.131
70 0.940 0.058 0.947 0.120
100 0.942 0.049 0.947 0.115
150 0.943 0.040 0.950 0.107
200 0.950 0.035 0.951 0.099
500 0.953 0.022 0.956 0.066
0.05 0.5 099 099 40 0.939 0.072 0.946 0.123
70 0941 0.056 0.948 0.109
100 0.943 0.047 0.950 0.099
150 0.944 0.039 0.950 0.086
200 0.951 0.031 0.952 0.076
500 0.964 0.022 0.967 0.041

Note: A: the difference in paired areas under the ROC

curves. n: the sample size of subjects. pp: the correla-

tion between the paired test results of diseased subjects.

pp: the correlation between the paired test results of

non-diseased subjects.
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Table VI. The coverage probabilities (CP) and expected lengths (EL) of
the 95% bootstrap percentile ¢ confidence interval and proposed confidence
interval for the difference in paired areas under the ROC curves when the true
disease prevalence (p) = 0.1,0.3 and 0.5, pp = 0.50, pp = 0.99, A = 0.05, in

condition (i).

Bootstrap Percentile ¢t CI ~ Proposed ML-based Method CI
GS NGS GS NGS

» o pp n CP EL CP EL CP EL CP EL
0.1 050 0.99 40 0.846 0.198 0.905 0.204 0.832 0.208 0.931 0.219
70 0907 0.164 0.909 0.188 0.906 0.170 0.940 0.195
100 0.941 0.150 0.945 0.183 0.940 0.153 0.945 0.188
150 0.946 0.127 0.947 0.156 0.945 0.129 0.947 0.161
200 0.948 0.110 0.949 0.133 0.948 0.113 0.954 0.135
500 0.949 0.074 0.949 0.079 0.950 0.076 0.952 0.081
0.3 050 099 40 0.932 0.147 0932 0.192 0.931 0.151 0.933 0.201
70 0944 0.115 0.952 0.146 0.943 0.117 0.943 0.148
100 0.946 0.097 0.952 0.117 0.944 0.100 0.952 0.120
150 0.948 0.080 0.953 0.093 0.946 0.082 0.953 0.095
200 0.950 0.069 0.954 0.078 0.949 0.071 0.947 0.079
500 0.952 0.045 0.958 0.048 0.951 0.045 0.955 0.049
0.5 050 0.99 40 0944 0.122 0945 0.172 0.943 0.125 0.945 0.180
70 0946 0.093 0.958 0.126 0.945 0.095 0.946 0.130
100 0.951 0.078 0.961 0.102 0.946 0.080 0.947 0.106
150 0.952 0.066 0.962 0.079 0.948 0.067 0.947 0.083
200 0.954 0.057 0.963 0.067 0.950 0.058 0.952 0.070
500 0.955 0.036 0.964 0.042 0.952 0.037 0.959 0.043
Note: the value of A(= A; — Ay) is fixed at 0.05(=0.95-0.90) in condition (i). Ay, As:

the paired areas under the ROC curves. n: the sample size of subjects. pp: the

correlation between the paired test results of diseased subjects. pp: the correlation

between the paired test results of non-diseased subjects.
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