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Abstract

In many situations the diagnostic decision is not limited to a binary choice. Binary statisti-

cal tools such as receiver operating characteristic (ROC) curve and area under the ROC curve

(AUC) need to be expanded to address three-category classification problem. Previous authors

have suggest various ways to model the extension of AUC but not the ROC surface. Only

simple parametric approaches are proposed for modeling the ROC measure under the assump-

tion that test results all follow normal distributions. We study the estimation methods of three

dimensional ROC surfaces with nonparametric and semiparametric estimators. Asymptotical

results are provided as a basis for statistical inference. Simulation studies are performed to

assess the validity of our proposed methods in finite samples. We consider an Alzheimer’s

disease example from a clinical study in the U.S. as an illustration. The nonparametric and

semiparametric modelling approaches for the three way ROC analysis can be readily general-

ized to diagnostic problems with more than three classes.

∗Corresponding author: 6 Science Drive 2, Singapore 117546. Email: stalj@nus.edu.sg.
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1 Introduction

Traditional ROC curve analysis relies on the existence of a binary gold-standard for the true dis-

ease status (Zhou et al. (2002), Pepe (2003)). While there are many medical tests where binary

gold-standards are appropriate, there are many medical diagnostic situations in which the true

disease status has more than two dimensions. For such a diagnostic task one potential solution

is to dichotomize the gold-standard so that the existing methods for binary classification can be

applied subsequently. Possible methods for creating this artificial binary gold-standard include di-

chotomization at one or two cut-off points. However, work by Obuchowski (2005) has shown that

the unnatural dichotomization of non-binary gold-standards can induce a rather substantial bias in

the estimation of the tests diagnostic accuracy. Dichotomizing non-binary gold-standards will bias

estimated AUC values towards one, meaning that the diagnostic accuracy appears to be greater

than it actually is.

There are numerous examples of medical diagnostic tests that do not easily fit into the bi-

nary disease classification structure, and many medical diagnoses appear to have a natural ordinal

gold-standard of disease status. These diagnoses have an ordered gradation of illness from not

diseased to seriously ill. For example, cognitive function declines from normal function, to mild

impairment, to severe impairment and/or dementia. Another example would be the stage of can-

cer progression at the time of detection, from localized cancer through distant metastases already

present. Hence, new statistical methods are needed for the assessment of diagnostic accuracy when

the true disease status has an ordinal scale.

In this paper, we consider diagnostic tests which distinguish subjects each from one of three

ordered classes. The accuracy of such diagnostic tests can be statistically evaluated by construct-

ing three dimensional ROC surfaces. Scurfield (1996) brought out the mathematical definition

of ROC measures for more than two categories. However, rigorous statistical inferences arrived

later, motivated by sophisticated multi-category biostatistical research problems. Mossman (1999)

introduced the concept of three-way ROC analysis into medical decision making. Nakas and Yian-

noutsos (2004) considered the estimation of volume under the ROC surface (VUS) for ordered
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three-class problem. Xiong et al. (2006) derived similar inference methods by using the delta

method. Li and Fine (2008) further proposed the estimation of VUS for unordered classification

by following the probabilistic interpretation and applied VUS as a model selection criterion in

microarray study. However, none of the previous authors have discussed the estimation of three-

dimensional ROC surfaces. The only relevant work we found is Heckerling (2001) with a pure

parametric approach.

In this paper we aim at estimating the ROC surfaces with nonparametric and semiparametric

methods. We extend the estimation procedures for comparing multivariate ROC curves (Tang and

Zhou, 2009) for a two-class diagnostic testing problem to a three-class diagnostic testing problem.

Theoretical results are given for the consistency and asymptotical normality of the estimators. Our

paper follows a similar structure of the paper by Hsieh and Turnbull (1996) which previously

addressed similar estimators for two-class ROC curves. Extending their work which has not been

crystal clear for researchers to apply in multivariate tasks, our derivation will potentially benefit

future scientific studies involving multi-category classifications.

We introduce the definition of three-way ROC surface in Section 2. In Section 3, we study the

nonparametric estimation of ROC surface by using empirical distribution estimators. In Section 4,

we consider a semiparametric model for ROC surface and propose two methods to fit the model.

In Section 5, a monte carlo study is carried out to assess the performance of the nonparametric and

semiparametric estimators. In Section 6, we consider a three-category classification example and

apply the procedure in this paper to analyze the real data set. The extension to high dimensional

ROC analysis is given in Section 7. We conclude in Section 8 with some final remarks.

2 Definition of ROC Surface

Suppose each subject is from one of three different categories. We employ a continuous diagnostic

test for all subjects and record their test results. Let X = (X1, X2, · · · , Xnx)
T denote test results

on nx subjects from Class I; Y = (Y1, Y2, · · · , Yny)
T denote test results on ny subjects from Class
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II; and Z = (Z1, Z2, · · · , Znz)
T denote test results on nz subjects from Class III.

The test results Xi (i = 1, · · · , nx) are i.i.d. with distribution F ; the test results Yj (j =

1, · · · , ny) are i.i.d. with distributions G; and the test results Zk (k = 1, · · · , nz) are i.i.d. with

distributions H . F, G and H are continuous probability distributions on R. The three kinds of test

results X,Y and Z are independent to each other.

Denote the whole set of observations for the test as T = (T1, · · · , Tnx+ny+nz)
T = (XT ,YT ,ZT )T .

A diagnostic decision for each subject is based on the following rule by specifying two ordered

decision thresholds c1 < c2:

1. IF Ti ≤ c1 THEN decision is “Class I”;

2. ELSE IF c1 < Ti ≤ c2 THEN decision is “Class II”;

3. ELSE decision is “Class III”.

Repeat the procedure for i = 1, · · · , nx + ny + nz to make diagnostic decisions for all subjects

(Nakas and Yiannoutsos, 2004).

For a pair of thresholds (c1, c2), we can compute the correct classification probability for the

three classes,

e1 = P (Xi ≤ c1) = F (c1) correct classification of Class I,

e2 = P (c1 < Yi ≤ c2) = G(c2) − G(c1) correct classification of Class II,

e3 = P (Zi > c2) = 1 − H(c2) correct classification of Class III.

We can then plot (e1, e2, e3) in the three-dimensional space for all possible (c1, c2) ∈ R2 and

produce an ROC surface.

By writing the correct classification probability for the intermediate class e2 as a function of e1
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and e3, the equation for defining an ROC surface for the test may be written as

Q(u, v) =

⎧⎪⎨
⎪⎩

G(H−1(1 − u)) − G(F−1(v)) if F−1(v) ≤ H−1(1 − u),

0 otherwise.
(1)

Thus defined, the map (u, v) �→ Q(u, v) is monotone non-increasing for both arguments. Just

as ROC curve for binary diagnostic represents the trade-off between sensitivity and specificity

which are the correct classification probabilities for the two classes (diseased and healthy), ROC

surface represents the three-way trade-off among the correct classification probabilities for the

three classes.

Clearly, there are another two equivalent forms to define the ROC surface by using e1 or e3

as functions of the other two elements (Scurfield, 1996). We choose the current form for the

algebraical simplicity to presenting the results. The statistical inferences remain invariant for the

three choices.

In order to characterize the overall diagnostic accuracy of the test in a single summary value,

we may consider the volume under the ROC surface (VUS). It is defined to be

VUS =

∫ 1

0

∫ 1

0

Q(u, v)dudv. (2)

This is a generalization of the two dimensional area under the ROC curve. Mossman (1999) has

noticed that VUS is mathematically equivalent to the probability

P (X < Y < Z)

for X, Y and Z randomly selected from the three classes, respectively. For a useless test (when

F, G and H are identical distributions), VUS is 1/6.
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3 Nonparametric Estimation

The nonparametric estimator of ROC surface may be obtained by replacing all the distribution

functions in (1) with their empirical counterparts. We construct the estimator as

Q̃(u, v) =

⎧⎪⎨
⎪⎩

Ĝ(Ĥ−1(1 − u)) − Ĝ(F̂−1(v)) if F̂−1(v) ≤ Ĥ−1(1 − u),

0 otherwise.
(3)

where F̂ , Ĝ, and Ĥ are the empirical distribution functions for test results from the three classes,

respectively. We realized that both Ĝ(Ĥ−1(.)) and Ĝ(F̂−1(.)) are simply comparisons of the or-

dered observations from the two different classes.

We can easily show that the estimator (3) is uniformly consistent to the true ROC surface

because we observe

sup
u,v

|Q̃(u, v) − Q(u, v)|

≤ sup
u

|Ĝ(Ĥ−1(1 − u)) − G(Ĥ−1(1 − u))| + sup
u

|G(Ĥ−1(1 − u)) − G(H−1(1 − u))|

+ sup
v

|Ĝ(F̂−1(v)) − G(F̂−1(v))| + sup
v

|G(F̂−1(v)) − G(F−1(v))|.

The first and third terms converge to zero almost surely by applying the Glivenko-Cantelli theorem

(see eg. Shao (1999)). The second and fourth term converge to zero almost surely by applying the

Bahadur’s representation of the sample quantiles (Bahadur (1966)).

Furthermore, we have the following asymptotic distribution theorem for the nonparametric

ROC estimator. Denote

an =
nxnynz

nxny + nxnz + nynz
.

Theorem 3.1. Let Bi (i = 1, 2, 3) be independent Brownian bridge processes. Assume F , G

and H have continuous derivatives f , g and h, respectively. The partial derivative of Q(u, v)

is bounded on any subregion T of (0, 1) × (0, 1). As nx → ∞, nxny

nxny+nxnz+nynz
→ λ2 > 0,

nxnz

nxny+nxnz+nynz
→ λ1 > 0 and nynz

nxny+nxnz+nynz
→ λ3 > 0. The following approximation holds
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asymptotically

√
an(Q̃(u, v) − Q(u, v)) =

√
λ1

[
B1(G(H−1(1 − u)) − B1(G(F−1(v))

]
+

√
λ2

g(H−1(1 − u))

h(H−1(1 − u))
B2(1 − u) +

√
λ3

g(F−1(v))

f(F−1(v))
B3(v).

The proof of this theorem is contained in the Appendix. A similar theorem for two-dimensional

ROC curve has been given in Hsieh and Turnbull (1996) while the authors omitted the proof due

to its lengthy presentation.

We can apply this theorem to obtain the asymptotic distribution of the estimated volume under

the ROC surface which is given by

V̂US =

∫ 1

0

∫ 1

0

Q̃(u, v)dudv. (4)

The following corollary summarizes the asymptotic distribution of V̂US.

Corollary 3.2. Assume the same conditions as in Theorem 3.1, we have

√
an(V̂US − VUS) →d N(0, σ2),

where

σ2 = λ1var
[ ∫ 1

0

B1(G(H−1(1 − u)))du−
∫ 1

0

B1(G(F−1(v)))dv
]

+λ2var
[ ∫ 1

0

g(H−1(u))

h(H−1(u))
B2(u)du

]
+ λ3var

[ ∫ 1

0

g(F−1(v))

f(F−1(v))
B3(v)dv

]
= λ1var

[ ∫ 1

0

B1(G(H−1(1 − u)))du−
∫ 1

0

B1(G(F−1(v)))dv
]

+λ2var
[ ∫ 1

0

B2

(
H [G−1(u)]

)
du

]
+ λ3var

[ ∫ 1

0

B3

(
F [G−1(v)]

)
dv

]
= λ1

[
‖G(H−1)‖∗ + ‖G(F−1)‖∗ − 2〈G(H−1), G(F−1)〉∗

]
+λ2‖H(G−1)‖∗ + λ3‖F (G−1)‖∗, (5)
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〈a, b〉∗ =
∫ 1

0

∫ 1

0
a(t) ∧ b(s)dtds −

∫ 1

0
a(t)dt ·

∫ 1

0
b(t)dt and ‖a‖∗ = 〈a, a〉∗.

The corollary provides a useful formula to calculate the variance of the estimated VUS. In prac-

tice σ2 can be estimated by replacing all the unknown distribution functions with their empirical

estimates.

By expressing (4) as a three-sample U-statistic with a kernel 1{x < y < z}, where 1{.} is an

indicator function, one can use the projection method (Hoeffding, 1948) to derive the asymptotic

variance formula (Nakas and Yiannoutsos, 2004). The two methods are asymptotically identical.

We compare the finite sample difference of these two methods in the simulation section.

4 Semiparametric Estimation

It is appealing for practitioners to assume parametric functional forms for the surface ROC curve

and display a smooth ROC surface. Hsieh and Turnbull (1996), Hsieh (1995) and Li et al. (1996)

considered similar estimation methodology for binary ROC curves. We consider the following

parametric functional form for ROC surface.

QΦ(u, v) =

⎧⎨
⎩ Φ{β1 + β2Φ−1(1 − u)} − Φ{β3 + β4Φ−1(v)} if β1 + β2Φ−1(1 − u) > β3 + β4Φ−1(v),

0 otherwise,
(6)

where Φ is the standard normal distribution and β = (β1, β1, β3, β4)
T are parameters which specify

the characteristics of the ROC surface. This model form is motivated when F, G and H are all

normal distributions. In fact, if normality assumption is correct β may be expressed as functions

of the means and variances of the three normal distributions.

β1 =
μz − μy

σy
, β2 =

σz

σy
, β3 =

μx − μy

σy
, β4 =

σx

σy
. (7)

We propose two estimation procedures which find the parameter estimates β̂ by solving the
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following estimating equations, respectively.

Method 1:
Pu∑
i=1

Pv∑
j=1

∇QΦ(ui, vj)
[
Q̃(ui, vj) − QΦ(ui, vj)

]
= 0, (8)

Method 2:
Pu∑
i=1

Pv∑
j=1

ny∑
k=1

∇QΦ(ui, vj)
[
1{F̂−1(1 − ui) ≤ Yk ≤ Ĥ−1(vj)} − QΦ(ui, vj)

]
QΦ(ui, vj)(1 − QΦ(ui, vj))

= 0,

(9)

where {ui : i = 1, · · · , Pu} and {vi : i = 1, · · · , Pv} are chosen partitioning points on (0, 1),

∇QΦ(u, v) is the partial derivative of QΦ(u, v) with respect to β given by

∇QΦ(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ(β1 + β2Φ
−1(1 − u))

φ(β1 + β2Φ
−1(1 − u))Φ−1(1 − u)

−φ(β3 + β4Φ
−1(v))

−φ(β3 + β4Φ
−1(v))Φ−1(v)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and φ is the density of the standard normal distribution. Each of the two proposed methods defines

a system of four non-linear equations.

In Method 1, the empirical ROC estimator Q̃ is treated as the observed ROC surface. We obtain

the estimating equations by differentiating the sum of squared distances between the observed and

fitted ROC surfaces across a range of (u, v) values. In Method 2, we make use of the fact that

the expected value of the indicator 1{F̂−1(1 − u) ≤ Yi ≤ Ĥ−1(v)} converges to the true ROC

surface in large sample. We thus propose the quazi-likelihood-type estimation equation. In fact,

Method 1 can be regarded as a simplified version of Method 2 after we remove the weights in the

denominator in (9).

The solutions for the two methods can be acquired via a numerical optimization technique such

as the Newton-Raphson method.

The consistency of proposed estimators can be shown by arguing that both estimating equations

are asymptotically unbiased. The proof is straightforward and is omitted in this paper. For the

9
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asymptotic distribution of the parameter estimates, we have the following results.

Theorem 4.1. In addition to conditions in Theorem 3.1, we suppose that true value β0 lives in a

compact parameter space, the first and second order partial derivatives of QΦ(u, v) with respect

to β are continuous and bounded away from zero and infinity. We have

Method 1:
√

an(β̂ − β0) →d N(0, (ΛT Λ)
−1

ΛTΣΛ(ΛTΛ)
−1

);

Method 2:
√

an(β̂ − β0) →d N(0, (ΛTWΛ)
−1

ΛTWΣWΛ(ΛTWΛ)
−1

).

The detailed expressions for the quantities involved in the sandwich covariance matrices will

be provided in the Appendix where we present the proof of this theorem.

There are several possible methods to estimate the asymptotic covariance matrix. A “model-

based” approach uses known (normal) distributions to replace F, G and H in the formula given

in Appendix and simply substitutes β with the estimates. Alternative, we can choose to use the

empirical distribution estimators. Such an empirical estimator may protect the variance estimator

from model mis-specification, i.e., F, G and H being different from normal distribution. Finally

we should not forget bootstrap is always one effective means to estimate the covariance of pa-

rameter estimates. We focus only on the first two approaches in the following simulations and

computations.

It is noted that Method 1 is equivalent to Xiong et al. (2006) where the authors applied sampling

properties of parametric estimators given by Obuchowski and McClish (1997).

5 Simulation

In order to assess the performance of our estimation procedures, we performed numerical studies

using 1000 simulations. At each simulation, test scores for three categories were generated from

three different normal populations: X ∼ N(1, 2.52), Y ∼ N(2, 22) and Z ∼ N(3, 42). For such
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tri-normal data, the true parameters involved in model (6) are

β1 = 0.5, β2 = 2, β3 = −0.5, β4 = 1.25.

Furthermore, the true volume under this ROC surface is computed to be

∫ ∫
z>x

{
Φ(

z − μy

σy
) − Φ(

x − μy

σy
)
}
dΦ(

z − μz

σz
)dΦ(

x − μx

σx
) = 0.325.

The sample sizes were designed such that nx = ny = nz = n. We chose n = 50 and 100. We have

also considered varying sample sizes for three classes and got similar results as presented here.

From the generated sample, we first calculated the nonparametric estimators for ROC surface.

The VUS estimates, using (4), were computed at each simulation. The standard errors were esti-

mated by using the formula in Corollary 3.2. We summarized the estimates, standard deviation of

estimates and estimated standard errors in Table 1. Coverage rates of the 95% asymptotical nor-

mal confidence intervals for VUS were also reported. We compared our method with the method

based on U-statistic formulation of VUS. The implementation for such a method followed Nakas

and Yiannoutsos (2004). The two methods perform equally well in our simulation studies. The

computation for U-statistic method was more intensive, comparing to Brownian bridge methods.

We then considered the semiparametric model and applied the two proposed model-fitting

procedures to estimate the parameters. We also estimated the standard errors of the parameter

estimates by using model-based (MB) and empirical (EP) methods. For the empirical method,

nonparametric density estimates for f, g and h were computed by a smoothing method (Zou et al.

(1997)) with the Gaussian kernel. We recorded the coverage rates of 95% asymptotical normal

confidence intervals using the two kinds of standard errors. The results for fitting semiparametric

models were summarized in Table 2.

The parameter estimates were all reasonably close to the true parameter values. Standard er-

rors estimated from Method 2 in general are closer to the standard deviations of the parameter

estimates than those from Method 1. Consequently the coverage rates of 95% confidence intervals
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constructed from Method 2 are closer to the nominal level than those from Method 1. We also

notice that the magnitude of variation of parameter estimates from Method 2 are smaller, demon-

strating Method 2 produces more efficient estimates. The performance of Method 1 improves as

sample size increases.

In this case, distribution assumption (normality) is satisfied for the data. Model-based and

empirical standard errors are close to each other in all simulation studies. In real data analysis we

suggest to report both. If discrepancy is observed we might want to trust empirical standard error.

We conducted simulation studies for data generated from Weibull and gamma distributions.

The numerical results for semiparametric models exhibit substantial bias and inefficiency, com-

pared to the results when the normality assumption is satisfied. We thus alert the users that the

distribution assumption is crucial for the validity of the semiparametric model.

6 Example

In this section, we consider applying our proposed statistical methods to a practical example in

human health research. All the subjects in this example were 65 years or older enrolled at the 30

NIH funded Alzheimer’s Research Centers before July 2002 throughout the U.S. who died and un-

derwent autopsy. All had taken the Mini-Mental State Examination (MMSE) within 2 years before

death. The definitive examination of Alzheimer’s disease (AD) was based on the extent of neuritic

plaques and neurofibrillary tangles, the hallmarks of AD, at brain autopsy. The NIA/Reagan Insti-

tute criteria, based on the frequency of both plaques and tangles in the neocortex, classify patients

into one of the three different diseases classes: Class I include subjects with a high likelihood of

dementia being due to AD; Class II include subjects with intermediate likelihood of dementia be-

ing due to AD; and Class III include subjects with low likelihood of dementia being due to AD.

Each patient underwent the test and a continuous test result was recorded thereafter. A total of

3728 results were included in this analysis where the sample size for the three individual classes

are 2283, 850 and 595, respectively. See Zhou and Castellucio (2004) and Koepsell et al. (2008)
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for more details about this data.

We were interested in analyzing how accurately the continuous test results are able to classify

patients into the three categories. Depending on the threshold values, the test accuracy for each

class may vary. In order to have an overall examination of the diagnostic performance of the test,

we consider using the methods proposed in this paper to conduct the three way ROC analysis.

The nonparametric ROC surface for the test was produced in Figure 1. We can inspect the

three dimensional polyhedron from different perspectives. Two panels were shown for this figure.

The surface is useful to investigate the diagnostic accuracy of the test for the three classes at

different threshold values. The three coordinates correspond to the correct classification rates of

the three stages of AD. Researchers can then choose appropriate thresholds to ensure satisfactory

classification accuracy in each dimension by using such a graphical device. The estimated volume

under the ROC surface is 0.39 (95% confidence interval [0.37, 0.41]), indicating that the probability

that the test correctly classifies three random subjects from the population, each from one of the

three stages of AD is about 40%. Such an overall accuracy measure can then be compared to other

tests with similar diagnostic goals.

It may sometimes be appealing to show a smooth surface. We thus consider using the semi-

parametric methods to estimate the ROC surface under normality assumption. The estimated coef-

ficients and their standard error are reported in Table 3. Subsequently, we plot the semiparametric

estimations of ROC surface in Figure 2 for the two proposed estimation equations.

The parameter estimates are similar from the model-based and empirical methods since nor-

mality is appropriate for this data and the sample size of this study is large. The ROC surfaces fitted

according to the two sets of estimating equations present only slight differences. Both semipara-

metric estimations capture the primary characteristics of the nonparametric ROC surface. Being

continuous and smooth, these graphical tools will provide helpful information and interpretation

about the diagnostic performance for three classes at any thresholds. The clinical utility of the three

category diagnostic test can be visually governed and supported by the displayed ROC surface.

13
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7 High dimensional ROC manifold

The methodology and theory for high dimensional ROC analysis can be similarly derived, follow-

ing a similar construction. Consider the M-category classification problem where the M classes

are ordered. Examples include the Glasgow Outcome Scale (GOS) in head injury, where the five

categories are Good Recovery, Moderate Disability, Severe Disability, Vegetative State and Death;

the Barthel Index and modified Rankin score in stroke; the Expanded Disability Status scale in

multiple sclerosis as well as various measures of quality of life. Diagnosticians must assign each

individual into one of the multiple classes.

Let Fm denote the distribution function of the test results for the mth class. The M-class ROC

“surface” is thus an (M − 1)-dimensional manifold with the following inductive expression:

ROC(u) = 1 − FM (cM−1), (10)

where u = (u1, · · · , uM−1) and

c1 = F−1
1 (u1),

cm = F−1
m {Fm(cm−1) + um}, m = 2, · · · , M − 1.

We remark that the manifold (10) is defined for u ∈ [0, 1]M−1 such that the implicit thresholds

satisfy

c1 < c2 < · · · , cM−1,

and is equal to zero everywhere else.

We may use the empirical estimator F̂m for all the distribution functions involved in definition

(10) and construct the nonparametric estimator for ROC manifold.

Such an estimator R̂OC(u) is consistent to the true ROC manifold, following the consistency

of the empirical distribution estimators. One can also construct an asymptotic Brownian bridge

approximation for the process
√

a∗
n(R̂OC(u) − ROC(u)) with suitably defined a∗

n. These results
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lead to the statistical inferences for high dimensional ROC analysis.

We have to mention one more important diagnostic measure defined for multi-category classi-

fication. As a direct generalization of the area under the 2D ROC curve and the volume under the

3D ROC surface, we may consider the hypervolume under the multi-dimensional ROC manifold

(HUM). Its definition is based on the following M − 1 integral of ROC manifold,

HUM =

∫ 1

0

· · ·
∫ 1

0

ROC(u) d u1 · · · d uM−1. (11)

In general, larger value of HUM indicates more accurate classification probability for all classes.

It is very easy to see that for a test taking continuous values HUM is equivalent to the probability

P (T (1) < T (2) < · · ·T (M)),

where T (m) is the test result for a subject randomly selected from the mth class.

The estimation of HUM can be carried out by either integrating the observed ROC manifold

or defining an M-sample U-statistic with the kernel function 1{t(1) < t(2) < · · · < t(M)}. The

variance and asymptotic distributions can be derived under these two routes too. In fact, Nakas

and Yiannoutsos (2004) provided inference procedures for the variance of HUM by using the U-

statistic approach. Their work, however, avoided the painstaking construction of multi-dimensional

ROC manifold whose estimation is often more challenging than estimating the volume under ROC

manifold and its variance.

We notice that ROC surface would be hard to visualize for classification dimension higher than

three. More insightful constructions for high dimensional diagnostic accuracy study are needed.

8 Discussion

Nonparametric and semiparametric estimators for ROC surface are both useful tools to evaluate

the accuracy of a test. Nonparametric estimator shows the observed diagnostic performance of
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the test among three classes. It reflects the sampling characteristics. Semiparametric estimator

provides a good mathematical model under assumed population distributions for the test results in

three classes. We notice that the choice of normal distribution in semiparametric model may be

replaced by other well-known parametric families such as Weibull or gamma, where appropriate.

We remark that in general the analysis based on three-dimensional ROC surfaces and VUSs can

not be replaced with a reduced-dimension analysis, i.e., pairwise two-dimensional ROC curves and

AUCs. As shown in Scurfield (1996) the pairwise AUCs can be derived from VUSs but not the

other way around. Such a conclusion implies that knowing pairwise AUCs may not guide us to

understand the VUS. ROC surfaces yield more important diagnostic information for three-category

classification than the ROC curves which are only projections of ROC surfaces on the coordinates.

The procedure of a statistical hypothesis test to compare the accuracy of two diagnostic tests for

three classes can be constructed naturally, following our proposed estimation methods. Recently

Xiong et al. (2007) studied parametric methods for this goal. Nonparametric tests should be

available based on the theoretical results obtained in this paper.

All graphical and numerical computations were conducted in MATLAB 7.3.0 (for additional

product information see http://www.mathworks.com). The program to fit the semiparametric mod-

els is available from the authors.
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Appendix

Proof of Theorem 3.1. To show that
√

an(Q̃(u, v) − Q(u, v)) converges weakly to the claimed

Brownian bridge process, it suffices to show the following results.

(A) The finite-dimensional distribution
√

an(Q̃(u1, v1) − Q(u1, v1), Q̃(u2, v2) − Q(u2, v2), · · · ,

Q̃(uk, vk) − Q(uk, vk)) converges in distribution to multivariate normal distribution.

(B) The process
√

an(Q̃(u, v) − Q(u, v)) is tight.

For (A), without loss of generality, let us consider k = 2. We notice

⎡
⎢⎣ Q̃(u1, v1) − Q(u1, v1)

Q̃(u2, v2) − Q(u2, v2)

⎤
⎥⎦ =

⎡
⎢⎣ M1(u1, v1) + M2(u1, v1) + M3(u1, v1)

M1(u2, v2) + M2(u2, v2) + M3(u2, v2)

⎤
⎥⎦ ,

where

M1(u, v) = {Ĝ(F̂−1(1 − u)) − Ĝ(Ĥ−1(v))} − {G(F̂−1(1 − u)) − G(Ĥ−1(v))}

M2(u, v) = G(F̂−1(1 − u)) − G(F−1(1 − u))

M3(u, v) = G(Ĥ−1(v)) − G(H−1(v))

It is straightforward to apply theorems for L-estimators (eg. Shao, 1999) to show that

√
an

⎡
⎢⎣ Mi(u1, v1)

Mi(u2, v2)

⎤
⎥⎦

converges in distribution to a bivariate normal distribution for i = 1, 2, 3.

Furthermore, because E{M1(u, v)|M2(u, v), M3(u, v)} = 0, we have that the three bivari-

ate normal distributions are uncorrelated (hence independent). The covariance matrix of the

finite dimensional normal distribution is easily computed to be the same as the finite dimen-

17

Hosted by The Berkeley Electronic Press



sional version of the claimed Brownian bridge process. The tightness (B) can be verified in

the same manner as in Billingsley (1999). A detailed but lengthy proof is available from the

author upon request.

Proof of Theorem 4.1. Denote

Q = (Q(u1, v1), Q(u1, v2), · · · , Q(uPu , vPv))
T

and

Q̂ = (Q̂(u1, v1), Q̂(u1, v2), · · · , Q̂(uPu, vPv))
T .

Both are column vectors of length PuPv.

Using the covariance structure of Brownian bridges given in Theorem 3.1, the asymptotical

distribution of
√

an(Q̂−Q) can be derived to be PuPv-dimensional multivariate normal with

mean zero and the following covariance:

Σ = λ1Σ1 + λ2Σ2 + λ3Σ3, (12)

where the (iPv + j, i′Pv + j′)th element (corresponding to the pair of indices (ui, vj) and

(ui′, vj′)) of Σk (k=1,2,3) are given below:

Σ1 : Q(ui, vj) ∧ Q(ui′, vj′) − Q(ui, vj)Q(ui′, vj′)

Σ2 :
g(H−1(1 − ui))g(H−1(1 − ui′))

h(H−1(1 − ui))h(H−1(1 − ui′))
(1 − ui ∨ ui′ − (1 − ui)(1 − ui′)),

Σ3 :
g(F−1(vj))g(F−1(vj′))

f(F−1(vj))f(F−1(vj′))
(vj ∧ vj′ − vjvj′)).

When the semiparametric model (6) is assumed, Q(u, v) = QΦ(u, v). We then denote the
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partial derivative of QΦ to be

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇QΦ(u1, v1)
T

∇QΦ(u1, v2)
T

· · ·

∇QΦ(uPu, vPv)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

PuPv×4

.

The left hand side of the estimating equation (8) can be written as

L(β) = ΛT (Q̂ − Q).

The argument in Section 3 shows that each element of the vector L(β0) converges to zero

uniformly across ui and vj at the true parameter β0.

A Taylor series expansion around the true parameter β0 gives the following approximation:

L(β̂) ≈ L(β0) + J(β̂ − β0),

where

J = −ΛT Λ = −
Pu∑
i=1

Pv∑
j=1

∇QΦ(ui, vj)∇QΦ(ui, vj)
T .

Under the usual regularity conditions for parameter estimation J is positive definite with

probability converging to 1, evaluated at the true parameter value. This fact thus suffices to

conclude that a unique consistent solution to the estimating equation L(β) = 0 exists by

applying the results in Foutz (1977).

Combining all previous results, we arrive at the claimed results

√
an(β̂ − β0) =

√
anJ

−1Λ(Q̂ −Q)

→d N(0, (ΛT Λ)
−1

ΛTΣΛ(ΛTΛ)
−1

).

19

Hosted by The Berkeley Electronic Press



The proof of asymptotical normality for the estimators obtained from equation (9) follows a

similar argument. The asymptotical covariance matrix for
√

an(β̂ − β0) is given by

(ΛTWΛ)
−1

ΛTWΣWΛ(ΛTWΛ)
−1

,

where W = diag
[
{QΦ(u1, v1)(1 − QΦ(u1, v1))}−1, {QΦ(u1, v2)(1 − QΦ(u1, v2))}−1, · · · ,

{QΦ(uPu, vPv)(1 − QΦ(uPu, vPv))}−1
]
.
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Table 1: Simulation Results for Estimating Volume Under the ROC Surface (VUS): Brownian
bridge method follows the results in Corollary 3.2; U-statistic method follows Nakas and Yian-
noutsos (2004); V̂US is the average of estimated VUS in 1000 simulations; SD is the standard
deviation of the estimated VUS in 1000 simulations; SE is the average of the estimated standard
errors of VUS in 1000 simulations; Coverage is the average of observed coverage rates of 95%
asymptotical normal confidence intervals in 1000 simulations.

Brownian bridge method U-statistic method
n V̂US SD SE Coverage V̂US SD SE Coverage
50 0.337 0.052 0.047 89.7% 0.320 0.051 0.043 85.4%
100 0.330 0.035 0.034 94.8% 0.324 0.031 0.032 93.0%

Table 2: Simulation Results for Estimating Semiparametric ROC Surface: ESTs are the average of
1000 parameter estimates; SDs are the standard deviations of the 1000 parameter estimates; MB
SEs are the average of 1000 standard error estimates using model-based approach (percentages
in the parenthesis are the observed coverage rates for 95% confidence interval); EP SEs are the
average of 1000 standard error estimates using empirical approach (percentages in the parenthesis
are the observed coverage rates for 95% confidence interval).

n Parameter Method 1 Method 2
EST SD MB SE EP SE EST SD MB SE EP SE

50 β1 0.47 0.39 0.28 (83%) 0.26 (80%) 0.44 0.34 0.34 (95%) 0.31 (91%)
β2 2.16 0.63 0.40 (89%) 0.38 (85%) 2.06 0.39 0.41 (94%) 0.40 (92%)
β3 -0.52 0.26 0.16 (78%) 0.16 (79%) -0.52 0.25 0.23 (92%) 0.22 (92%)
β4 1.31 0.27 0.18 (85%) 0.18 (86%) 1.31 0.22 0.23 (95%) 0.23 (95%)

100 β1 0.50 0.23 0.19 (91%) 0.18 (85%) 0.49 0.22 0.23 (97%) 0.22 (91%)
β2 2.03 0.36 0.26 (90%) 0.25 (89%) 1.98 0.27 0.27 (95%) 0.27 (95%)
β3 -0.55 0.17 0.11 (83%) 0.11(82%) -0.52 0.17 0.16 (96%) 0.16 (94%)
β4 1.24 0.18 0.12 (88%) 0.13 (89%) 1.26 0.16 0.16 (95%) 0.16 (92%)

Table 3: Estimated Coefficients for Semiparametric ROC Surface: ESTs are the estimated param-
eters; two kinds of standard errors (SE) are calculated and listed as Model-based SE and Empirical
SE.
Parameter Method 1 Method 2

EST Model-based SE Empirical SE EST Model-based SE Empirical SE
β1 0.47 0.06 0.05 0.37 0.06 0.05
β2 1.25 0.05 0.05 1.17 0.05 0.04
β3 -0.89 0.03 0.03 -0.90 0.03 0.03
β4 0.91 0.03 0.03 0.88 0.03 0.03
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Figure 1: Nonparametric estimation of ROC surface viewed from two different perspectives.
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Figure 2: Semiparametric estimation of ROC surface: Estimating equation 1 (left) and Estimating
equation 2(right).
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