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Abstract: We consider inference in randomized studies, in which repeatedly measured out-

comes may be informatively missing due to drop out. In this setting, it is well known that

full data estimands are not identified unless unverified assumptions are imposed. We as-

sume a non-future dependence model for the drop-out mechanism and posit an exponential

tilt model that links non-identifiable and identifiable distributions. This model is indexed

by non-identified parameters, which are assumed to have an informative prior distribution,

elicited from subject-matter experts. Under this model, full data estimands are shown to

be expressed as functionals of the distribution of the observed data. To avoid the curse of

dimensionality, we model the distribution of the observed data using a Bayesian shrinkage

model. In a simulation study, we compare our approach to a fully parametric and a fully

saturated model for the distribution of the observed data. Our methodology is motivated

and applied to data from the Breast Cancer Prevention Trial.
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1 Introduction

1.1 Breast Cancer Prevention Trial

The Breast Cancer Prevention Trial (BCPT) was a large multi-center, double-blinded, placebo-

controlled, chemoprevention trial of the National Surgical Adjuvant Breast and Bowel Project

(NSABP) designed to test the efficacy of 20mg/day tamoxifen in preventing breast cancer

and coronary heart disease in healthy women at risk for breast cancer (Fisher et al., 1998).

The study was open to accrual from June 1, 1992 through September 30, 1997 and 13,338

women aged 35 or older were enrolled in the study during this interval. The primary ob-

jective was to determine whether long-term tamoxifen therapy is effective in preventing the

occurrence of invasive breast cancer. Secondary objectives included quality of life (QOL)

assessments to evaluate benefit as well as risk resulting from the use of tamoxifen.

Monitoring QOL was of particular importance for this trial since the participants were

healthy women and there had been concerns voiced by researchers about the association

between clinical depression and tamoxifen use. Accordingly, data on depression symptoms

was scheduled to be collected at baseline prior to randomization, at 3 months, at 6 months

and every 6 months thereafter for up to 5 years. The primary instrument used to monitor

depressive symptoms over time was the Center for Epidemiologic Studies Depression Scale

(CES-D)(Radloff, 1977). This self-test questionnaire is composed of 20 items, each of which

is scored on a scale of 0-3. A score of 16 or higher is considered as a likely case of clinical

depression.

The trial was unblinded on March 31, 1998, after an interim analysis showed a dramatic

reduction in the incidence of breast cancer in the treatment arm. Due to the potential loss of

the control arm, we focus on QOL data collected on the 10,982 participants who were enrolled

during the first two years of accrual and had their CES-D score recorded at baseline. All

women in this cohort had the potential for three years of follow-up (before the unblinding).
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In the BCPT, the clinical centers were not required to collect QOL data on women after

they stopped their assigned therapy. This design feature aggravated the problem of missing

QOL data in the trial. As reported in Land et al. (2002), more than 30% of the CES-D scores

were missing at the 36-month follow-up, with a slightly higher percentage in the tamoxifen

group. They also showed that women with higher baseline CES-D scores had higher rates

of missing data at each follow-up visit and the mean observed CES-D scores preceding a

missing measurement were higher than those preceding an observed measurement; there was

no evidence that these relationships differed by treatment group.

While these results suggest that the missing data process is associated with observed QOL

outcomes, one cannot rule out the possibility that the process is further related to unobserved

outcomes and that this relationship is modified by treatment. In particular, investigators

were concerned (a priori) that, between assessments, tamoxifen might be causing depression

in some individuals, who then do not return for their next assessment. If this occurs, the

data are said be missing not at random (MNAR); otherwise the data are said to be missing

at random (MAR).

1.2 Informative Drop-out in Longitudinal Studies

In this paper, we will concern ourselves with inference in longitudinal studies, where indi-

viduals who miss visits do not return for subsequent visits (i.e., drop-out). In such a setting,

MNAR is often referred to as informative drop-out. While there were some intermittent

responses in the BCPT, we will, as in Land et al. (2002), consider a “monotonized” dataset,

whereby all CES-D scores observed on an individual after their first missing score have been

deleted (this increases the “dropout” rate).

There are two main inferential paradigms for analyzing longitudinal studies with infor-

mative drop-out: likelihood (parametric) and non-likelihood (semi-parametric). Articles by

Little (1995), Hogan and Laird (1997a) and Kenward and Molenberghs (1999) as well as

recent books by Molenberghs and Kenward (2007) and Daniels and Hogan (2008) provide
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a comprehensive review of likelihood-based approaches, including selection models, pattern-

mixture models, and shared-parameter models. These models differ in the way the joint

distribution of the outcome and missing data processes are factorized. In selection models,

one specifies a model for the marginal distribution of the outcome process and a model for

the conditional distribution of the drop-out process given the outcome process (see, for ex-

ample, Heckman, 1979; Diggle and Kenward, 1994; Baker, 1995; Fitzmaurice et al., 1995;

Molenberghs et al., 1997; Liu et al., 1999; Albert, 2000); in pattern-mixture models, one

specifies a model for the conditional distribution of the outcome process given the drop-out

time and the marginal distribution of the drop-out time (see, for example, Little, 1993, 1994,

1995; Hogan and Laird, 1997b; Fitzmaurice and Laird, 2000; Daniels and Hogan, 2000; Roy,

2003; Birmingham and Fitzmaurice, 2002; Thijs et al., 2002; Pauler et al., 2003; Roy and

Daniels, 2008); and in shared-parameter models, the outcome and drop-out processes are

assumed to be conditionally independent given shared random effects (see, for example, Wu

and Carroll, 1988; DeGruttola and Tu, 1994; Ten Have et al., 1998, 2000; Pulkstenis et al.,

1998; Land et al., 2002; Yuan and Little, 2009). Traditionally, these models have relied on

very strong distributional assumptions in order to obtain model identifiability.

Without these strong distributional assumptions, specific parameters from these models

would not be identified from the distribution of the observed data. To address this issue

within a likelihood-based framework, several authors (Nordheim, 1984; Baker et al., 1992;

Little, 1994; Little and Rubin, 1999; Kurland and Heagerty, 2004; Daniels and Hogan, 2008)

have promoted the use of global sensitivity analysis, whereby non- or weakly- identified, in-

terpretable parameters are fixed and then varied to evaluate the robustness of the inferences.

Scientific experts can be employed to constrain the range of these parameters.

Non-likelihood approaches to informative drop-out in longitudinal studies have been pri-

marily developed from a selection modeling perspective. Here, the marginal distribution of

the outcome process is modeled non- or semi-parametrically and the conditional distribution

of the drop-out process given the outcome process is modeled semi- or fully- parametrically.
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In the case where the drop-out process is assumed to depend only on observable outcomes

(i.e., MAR), Robins et al. (1994, 1995), van der Laan and Robins (2003) and Tsiatis (2006)

developed inverse-weighted and augmented inverse-weighted estimating equations for in-

ference. For informative drop-out, Rotnitzky et al. (1998), Scharfstein et al. (1999) and

Rotnitzky et al. (2001) introduced a class of selection models, in which the model for drop-

out is indexed by interpretable sensitivity parameters that express departures from MAR.

Inference using inverse-weighted estimating equations was proposed.

The problem with the aforementioned sensitivity analysis approaches is that the ultimate

inferences can be cumbersome to display. Vansteelandt et al. (2006) developed a method for

reporting ignorance and uncertainty intervals (regions) that contain the true parameter(s) of

interest with a prescribed level of precision, when the true data generating model is assumed

to fall within a plausible class of models (as an example, see Scharfstein et al., 2004). An

alternative and very natural strategy is specify an informative prior distribution on the non-

or weakly- identified parameters and conduct a fully Bayesian analysis, whereby the ultimate

inferences are reported in terms of posterior distributions. In the cross-sectional setting with

a continuous outcome, Scharfstein et al. (2003) adopted this approach from a semi-parametric

selection modeling perspective. Kaciroti et al. (2009) proposed a parametric pattern-mixture

model for cross-sectional, clustered binary outcomes . Lee et al. (2008) introduced a fully-

parametric pattern-mixture approach in the longitudinal setting with binary outcomes. In

this paper, we consider the same setting as Lee et al. (2008), but offer a more flexible strategy.

In the context of BCPT, the longitudinal outcome will be the indicator that the CES-D score

is 16 or higher.

1.3 Outline

The paper is organized as follows. In Section 2, we describe the data structure. In Section

3 and 4, we formalize identification assumptions and prove that the full-data distribution

is identified under these assumptions. We introduce a saturated model for the distribution
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of the observed data in Section 5. In Section 6, we illustrate how to apply shrinkage priors

to high-order interaction parameters in the saturated model to reduce the dimensionality

of the parameter space and how to elicit (conditional) informative priors for non-identified

sensitivity parameters from experts. In Section 7, we assess, by simulation, the behavior

of three classes of models for the distribution of observed data; parametric, saturated, and

shrinkage. Our analysis of the BCPT trial is presented in Section 8. Section 9 is devoted to

a summary and discussion.

2 Data Structure and Notation

Let Z denote the treatment assignment indicator, where Z = 1 denotes tamoxifen and

Z = 0 denotes placebo. Let Yj denote the binary outcome (i.e., depression) scheduled to

be measured at the jth visit (j = 0(baseline), . . . , J) and let Y j = (Y0, . . . , Yj) denote

the history of the outcome process through visit j. Let Rj denote the indicator that an

individual has her depression status recorded at visit j. We assume that R0 = 1 (i.e., Y0

is always observed) and Rj = 0 implies that Rj+1 = 0 (i.e., monotone missing data). Let

C = max{t : Rt = 1} be the last visit at which an individual’s depression status is recorded.

The full and observed data for an individual are F = (Z, C, Y J) and O = (Z, C, Y C),

respectively. We assume that we observe n i.i.d., copies of O. We will use the subscript i to

denote data for the ith individual.

Our goal is to draw inference about µ∗

z,j = P [Yj = 1|Z = z] for j = 1, . . . , J and z = 0, 1.

3 Assumptions

To identify µ∗

z,j from the distribution of the observed data, we make the following two

untestable assumptions:

Assumption 1 (Non-Future Dependence): Rj is independent of (Yj+1, . . . , YJ) given

Rj−1 = 1 and Y j, for j = 1, . . . , J − 1.
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This assumption asserts that for individuals at risk for drop-out at visit j and who share

the same history of outcomes up to and including visit j, the distribution of future outcomes

is the same for those who are last seen at visit j and those who remain on study past visit

j. This assumption has been referred to as non-future dependence (Kenward et al., 2003).

Assumption 2 (Pattern-Mixture Representation): For j = 1, . . . , J and yj = 0, 1,

P [Yj = yj|Rj = 0, Rj−1 = 1, Y j−1, Z = z] =

P [Yj = yj |Rj = 1, Y j−1, Z = z] exp{qz,j(Y j−1, yj)}

E[exp{qz,j(Y j−1, Yj)}|Rj = 1, Y j−1, Z = z]

where qz,j(Y j−1, Yj) is a specified function of its arguments.

Assumption 2 links the non-identified conditional distribution of Yj given Rj = 0, Rj−1 =

1, Y j−1, and Z = z to the identified conditional distribution of Yj given Rj = 1, Y j−1, and

Z = z using exponential tilting via the specified function qz,j(Y j−1, Yj). Assumption (2) has

a selection model representation that is obtained using Bayes’ rule.

Assumption 2 (Selection Model Representation): For j = 1, . . . , J ,

logit {P [Rj = 0|Rj−1 = 1, Y j, Z = z]} = hz,j(Y j−1) + qz,j(Y j−1, Yj)

where

hz,j(Y j−1) = logit P [Rj = 0|Rj−1 = 1, Y j−1, Z = z] −

log{E[exp{qz,j(Y j−1, Yj)}|Rj−1 = 1, Y j−1, Z = z]}

With this characterization, we see that the function qz,j(Y j−1, Yj) quantifies the influence

(on a log odds ratio scale) of the potentially unobservable outcome Yj on the conditional

odds of dropping at time j.

4 Identifiability

The above two assumptions non-parametrically, just-identify µ∗

z,j for all j = 1, . . . , J and

z = 0, 1. To see this, consider the following representation of this conditional distribution,

7
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derived using the laws of total and conditional probability:

µ∗

z,j =
∑

y
j−1

P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z]×

{

j
∏

l=1

P [Rl = 1|Rl−1 = 1, Y l−1 = yl−1, Z = z]

j−1
∏

l=0

P [Yl = yl|Rl = 1, Y l−1 = yl−1, Z = z]

}

+

j
∑

k=1

∑

y
k−1

P [Yj = 1|Rk = 0, Rk−1 = 1, Y k−1 = yk−1, Z = z]P [Rk = 0|Rk−1 = 1, Y k−1 = yk−1, Z = z]

×

{

k−1
∏

l=1

P [Rl = 1|Rl−1 = 1, Y l−1 = yl−1, Z = z]
k−1
∏

l=0

P [Yl = yl|Rl = 1, Y l−1 = yl−1, Z = z]

}

All quantities on the right hand side of this equation are identified, without appealing to any

assumptions, except P [Yj = 1|Rk = 0, Rk−1 = 1, Y k−1 = yk−1, Z = z] for k = 1, . . . , j − 1.

Under Assumptions 1 and 2, these probabilities can be shown to be identified, implying that

µ∗

z,j is identified for all j and z.

Theorem 1: P [Yj = 1|Rk−1 = 1, Y k−1 = yk−1, Z = z] and P [Yj = 1|Rk = 0, Rk−1 =

1, Y k−1 = yk−1, Z = z] are identified for k = 1, . . . , j.

Proof: The proof follows by backward induction. Consider k = j. By Assumption 2,

P [Yj = 1|Rj = 0, Rj−1 = 1, Y j−1 = yj−1, Z = z] =

P [Yj = 1|Rj = 1, Y j−1, Z = z] exp{qz,j(Y j−1, 1)}

E[exp{qz,j(Y j−1, Yj)}|Rj = 1, Y j−1 = yj−1, Z = z]

Since the right hand side is identified, we know that P [Yj = 1|Rj = 0, Rj−1 = 1, Y j−1 =

yj−1, Z = z] is identified. Further, we can write

P [Yj = 1|Rj−1 = 1, Y j−1 = yj−1, Z = z]

=
1
∑

r=0

P [Yj = 1|Rj = r, Rj−1 = 1, Y j−1 = yj−1, Z = z]P [Rj = r|Rj−1 = 1, Y j−1 = yj−1, Z = z]

Since all quantities on the right hand side are identified, P [Yj = 1|Rj−1 = 1, Y j−1 =

yj−1, Z = z] is identified.
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Suppose that P [Yj = 1|Rk = 0, Rk−1 = 1, Y k−1 = yk−1, Z = z] and P [Yj = 1|Rk−1 =

1, Y k−1 = yk−1, Z = z] are identified for some k where 1 < k < j. Then, we need to show

that these probabilities are identified for k′ = k − 1. To see this, note that

P [Yj = 1|Rk′ = 0, Rk′−1 = 1, Y k′−1 = yk′−1, Z = z]

= P [Yj = 1|Rk−1 = 0, Rk−2 = 1, Y k−2 = yk−2, Z = z]

=
1
∑

yk−1=0

P [Yj = 1|Rk−1 = 0, Rk−2 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 0, Rk−2 = 1, Y k−2 = yk−2, Z = z]

=

1
∑

yk−1=0

P [Yj = 1|Rk−1 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 1, Y k−2 = yk−2, Z = z] exp{qz,k−1(Y k−2, yk−1)}

E[exp{qz,k−1(Y k−2, Yk−1)}|Rk−1 = 1, Y k−2 = yk−2, Z = z]

The third equality follows by Assumptions 1 and 2. Since all the quantities on the right hand

side of the last equality are identified, P [Yj = 1|Rk′ = 0, Rk′−1 = 1, Y k′−1 = yk′−1, Z = z] is

identified. Further,

P [Yj = 1|Rk′−1 = 1, Y k′−1 = yk′−1, Z = z]

= P [Yj = 1|Rk−2 = 1, Y k−2 = yk−2, Z = z]

=
1
∑

yk−1=0

P [Yj = 1|Rk−1 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 1, Y k−2 = yk−2, Z = z]×

P [Rk−1 = 1|Rk−2 = 1, Y k−2 = yk−2, Z = z]+
1
∑

yk−1=0

P [Yj = 1|Rk−1 = 0, Rk−2 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 0, Y k−2 = yk−2, Z = z]×

P [Rk−1 = 0|Rk−2 = 1, Y k−2 = yk−2, Z = z]

=
1
∑

yk−1=0

P [Yj = 1|Rk−1 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 1, Y k−2 = yk−2, Z = z]×

P [Rk−1 = 1|Rk−2 = 1, Y k−2 = yk−2, Z = z]+

9
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1
∑

yk−1=0

P [Yj = 1|Rk−1 = 1, Y k−1 = yk−1, Z = z]×

P [Yk−1 = yk−1|Rk−1 = 1, Y k−2 = yk−2, Z = z] exp{qz,k−1(Y k−2, yk−1)}

E[exp{qz,k−1(Y k−2, Yk−1)}|Rk−1 = 1, Y k−2 = yk−2, Z = z]
×

P [Rk−1 = 0|Rk−2 = 1, Y k−2 = yk−2, Z = z]

The third equality follows by Assumptions 1 and 2. Since all the quantities on the right

hand side of the last equality are identified, P [Yj = 1|Rk′−1 = 1, Y k′−1 = yk′−1, Z = z] is

identified. �

The identifiability result shows that, given the functions qz,j(Y j−1, Yj), µ∗

z,j can be ex-

pressed as functional of the distribution of the observed data. In particular, the functional

depends on the conditional distributions of Yj given Rj = 1, Y j−1, and Z for j = 0, . . . , J and

the conditional distributions of Rj given Rj−1 = 1, Y j−1 and Z for j = 1, . . . , J . Further-

more, the functions qz,j(Y j−1, Yj) are not identifiable from the distribution of the observed

data and their specification places no restrictions on the distribution of the observed data.

5 Modeling

We specify saturated models for the observed data via the sequential conditional distributions

of [Yj|Rj = 1, Y j−1, Z] for j = 0, . . . , J and the conditional hazards [Rj |Rj−1 = 1, Y j−1, Z]

for j = 1, . . . , J . We parameterize these models as follows:

logit P [Y0 = 1|R0 = 1, Z = z] = αz,0,0

logit P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z] = αz,j,0 + αz,j,1yj−1 +

j−2
∑

k=0

α
(1)
z,j,kyk

+
∑

k,l∈A
(2)
j

α
(2)
z,j,·ykyl +

∑

k,l,m∈A
(3)
j

α
(3)
z,j,·ykylym + . . . + α

(j−1)
z,j y0y1 · ·yj−1

logit P [Rj = 0|Rj−1 = 1, Y j−1 = yj−1, Z = z] = γz,j,0 + γz,j,1yj−1 +

j−2
∑

k=0

γ
(1)
z,j,kyk

+
∑

k,l∈A
(2)
j

γ
(2)
z,j,·ykyl +

∑

k,l,m∈A
(3)
j

γ
(3)
z,j,·ykylym + . . . + γ

(j−1)
z,j y0y1 · ·yj−1
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for j = 1, . . . , J , where A
(t)
j is the set of all t-tuples of the integers 0, . . . , j−1. Let α denote

the parameters indexing the conditional distributions [Yj |Rj = 1, Y j−1, Z], γ denote the

parameters indexing the conditional distributions [Rj|Rj−1 = 1, Y j−1, Z] and θ = {α, γ}.

Furthermore, we propose to parameterize the functions qz,j(Y j−1, Yj) with parameters

τz,j,y
j−1

= qz,j((yj−1, 1)) − qz,j((yj−1, 0)). Here, exp(τz,j,y
j−1

) represents, in the context of

the BCPT trial, the conditional odds ratio of dropping out between visits j − 1 and j for

individuals who are depressed vs. not depressed at visit j, but share the mental history yj−1

through visit j − 1. We let τ denote the collection of τz,j,y
j−1

’s.

6 Prior Specification and Posterior Computation

For specified sensitivity analysis parameters τ , the saturated model proposed in Section 5

provides a perfect fit to the distribution of the observed data. In this model, however, the

number of parameters increases exponentially in J . In contrast, the number of data points

increases linearly in J . As a consequence, there will be many combinations of yj−1 (i.e.,

”cells”) which will be sparsely represented in the dataset. For example, in the BCPT trial,

about 50% of the possible realizations of Y 7 have less than two observations and about 15%

have no observations. For a frequentist perspective, this implies that components of θ will

be imprecisely estimated; in turn, this can adversely affect estimation of µ∗

z,j. This has been

called the curse of dimensionality (Robins and Ritov, 1997).

6.1 Shrinkage Priors on θ

To address this problem, we introduce data driven shrinkage priors for higher order inter-

actions to reduce the number of parameters in an automated manner. In particular, we

assume

α
(t)
z,j,k ∼ N(0, σ(t)

α ) and γ
(t)
z,j,k ∼ N(0, σ(t)

γ ) k ∈ A
(t)
j , 3 ≤ t < j ≤ J, z = 0, 1 (1)

11
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where t is the order of interactions and the hyper-parameters (shrinkage variances) follow

distributions

σ(t)
α ∼ Unif(0, 10) and σ(t)

γ ∼ Unif(0, 10).

When σ
(t)
α and σ

(t)
γ equal zero for all interactions, the saturated model is reduced to a first

order Markov model,

logit P [Y0 = 1|R0 = 1, Z = z] = αz,0,0

logit P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z] = αz,j,0 + αz,j,1yj−1

logit P [Rj = 0|Rj−1 = 1, Y j−1 = yj−1, Z = z] = γz,j,0 + γz,j,1yj−1.

The shrinkage priors allow the “neighboring” cells in the observed data model to borrow

information from each other and provide more precise estimates.

When the first order Markov model is not true, as n goes to infinity, the posterior means

of observed data probabilities will converge to their true values as long as the shrinkage priors

are O(1) (which is the case here) and all the true values of the observed data probabilities,

P [Yj|Rj = 1, Y j−1, Z] for j = 0, . . . , J and are in the open interval, (0, 1). This follows,

since under this latter condition, all combinations of depression histories have a positive

probability of being observed and the prior will become swamped by the observed data.

However, when the true value of any of the observed data probabilities is zero or one, there

exists at least one combination of depression history that will never be observed and thus

the influence of the prior will not dissipate as n increases.

We specify non-informative priors N(0, 1000) for the non-interaction parameters in θ,

namely αz,j,0 for j = 0, . . . , J and z = 0, 1, αz,j,1, γz,j,0 and γz,j,1 for j = 1, . . . , J and

z = 0, 1.

12
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6.2 τ given θ

The sensitivity parameters in Assumption 2, defined formally in Section 5, are (conditional)

odds ratios. In our experience, subject matter experts often have difficulty thinking in terms

of odds ratios; rather, they are more comfortable expressing beliefs about relative risks

(Scharfstein et al., 2006; Shepherd et al., 2007). With this is in mind, we asked Dr. Patricia

Ganz, a medical oncologist and expert on quality of life outcomes in breast cancer, to express

her beliefs about the risk of dropping out and its relationship to treatment assignment and

depression. We then translated her beliefs into prior distributional assumptions about the

odds ratio sensitivity parameters τ .

Specifically, we asked Dr. Ganz to answer the following question for each treatment

group:

Q: Consider a group of women assigned to placebo (tamoxifen), who are on study through

visit j − 1 and who share the same history of depression. Suppose that the probability that a

randomly selected woman in this group drops out before visit j is p (denoted by the columns

in Table 1). For each p, what is the minimum, maximum and your best guess (median)

representing how much more (e.g. twice) or less (e.g., half) likely you consider the risk of

dropping out before visit j for a woman who would be depressed at year j RELATIVE to a

woman who would not be depressed at visit j?

Implicit in this question is the assumption that, for each treatment group, the relative

risk only depends on past history and the visit number only through the risk of dropping

out between visits j − 1 and j.

For notational convenience, let rz(p) denote the relative risk of drop-out for treatment

group z and drop-out probability p. Further, let rz,min(p), rz,med(p) and rz,max(p) denote

the elicited minimum, median, and maximum relative risks (see Table 1). Let pz,j(yj−1) =

P [Rj = 0|Rj−1 = 1, Y j−1 = yj−1, Z = z] and let p
(y)
z,j (yj−1) = P [Rj = 0|Rj−1 = 1, Y j−1 =

yj−1, Yj = y, Z = z] for y = 0, 1.

13
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By definition,

rz(pz,j(yj−1)) = p
(1)
z,j(yj−1)/p

(0)
z,j(yj−1)

pz,j(yj−1) =
1
∑

y=0

p
(y)
z,j (yj−1)π

(y)
z,j (yj−1)

where π
(y)
z,j (yj−1) = P [Yj = y|Rj−1 = 1, Y j−1 = yj−1, Z = z] for y = 0, 1. This implies that

p
(0)
z,j(yj−1) =

pz,j(yj−1)

π
(1)
z,j (yj−1)(rz(pz,j(yj−1)) − 1) + 1

.

Since π
(1)
z,j (yj−1) ∈ [0, 1], given pz,j(yj−1) and rz(pz,j(yj−1)), p

(0)
z,j(yj−1) is bounded as

follows:

for rz(pz,j(yj−1)) ≥ 1,

pz,j(yj−1)/rz(pz,j(yj−1)) ≤ p
(0)
z,j(yj−1) ≤ min{pz,j(yj−1), 1}

and, for rz(pz,j(yj−1)) ≤ 1,

pz,j(yj−1) ≤ p
(0)
z,j(yj−1) ≤ min{pz,j(yj−1)/rz(pz,j(yj−1)), 1}.

We will use these bounds to construct our prior.

We construct the conditional prior of τz,j,y
j−1

given pz,j(yj−1) using Steps 1-4 given

below. The general strategy is to use the elicited information on the relative risk at different

drop-out probabilities and the bounds derived above to construct the prior of interest.

Step 1. For m ∈ {min, med, max}, interpolate the elicited rz,m(p) at different drop-out prob-

abilities (see Figure 1) to find rz,m(pz,j(yj−1)) for any pz,j(yj−1).

Step 2. Construct the prior of rz(pz,j(yj−1)) given pz,j(yj−1) as a 50-50 mixture of

Uniform(rz,min(pz,j(yj−1)), rz,med(pz,j(yj−1))

and

Uniform(rz,med(pz,j(yj−1)), rz,max(pz,j(yj−1))

random variables. This preserves the elicited percentiles of the relative risk.
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Step 3. Construct a conditional prior of p
(0)
z,j(yj−1) given pz,j(yj−1) and rz(pz,j(yj−1)) as a

uniform distribution with lower bound

pz,j(yj−1)

max
{

rz(pz,j(yj−1)), 1
}

and upper bound

min

{

pz,j(yj−1)

min
{

rz(pz,j(yj−1)), 1
} ,

1

max
{

rz(pz,j(yj−1)), 1
}

}

.

The bounds were derived above.

Step 4. Steps (2) and (3) induce a prior for τz,j,y
j−1

|θ by noting

τz,j,y
j−1

= log

(

rz(pz,j(yj−1))(1 − p
(0)
z,j(yj−1))

1 − rz(pz,j(yj−1))p
(0)
z,j(yj−1)

)

,

i.e., τz,j,y
j−1

is a deterministic function of rz(pz,j(yj−1)) and p
(0)
z,j(yj−1).

The relative risks elicited from Dr. Ganz are given in Table 2. We extrapolated the

relative risks outside the ranges given in Table 2 as shown in Figure 1.

Figure 2 shows the density of τ given pz,j(yj−1) equal 10% and 25% for the tamoxifen

and placebo arms. For two patients with the same response history up to time point j − 1,

the log odds ratio of dropping out at time point j, for the patient that is depressed at time

point j versus the patient that is not, increases as the overall drop out rate at time point j

increases. In general, for a given pz,j(yj−1), the log odds ratio is higher for patients in the

tamoxifen versus placebo arms.

6.3 Posterior Computation

With the shrinkage priors on θ, the elicited conditional priors τ given θ, and the observed

data, the following steps are used to simulate draws from the posterior of µ∗

z,j:

1. Using the proposed observed data model with the shrinkage priors on θ, we simulate

draws from the posterior distributions of P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z] and

P [Rj = 0|Rj = 1, Y j−1 = yj−1, Z = z] for all j, z and yj−1 in WinBUGS.
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2. For each draw of P [Rj = 0|Rj = 1, Y j−1 = yj−1, Z = z], we draw τz,j,y
j−1

based on

the conditional priors described in Section 6.2.

3. We compute µ∗

z,j by plugging the draws of P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z],

P [Rj = 0|Rj = 1, Y j−1 = yj−1, Z = z] and τz,j,y
j−1

into the identification algorithm

discussed in Section 4.

To sample from the posterior distributions of P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z]

and P [Rj = 0|Rj = 1, Y j−1 = yj−1, Z = z] in WinBUGS we stratify the individual binary

data (by previous response history) and analyze as Binomial data; this serves to drastically

improve the computational efficiency. Sampling τz,j,y
j−1

and computing µ∗

z,j is implemented

separately from the first step using R.

7 Assessment of Model Performance via Simulation

Via simulation, we compared the performance of the shrinkage model with a correct para-

metric model (given below), an incorrect parametric model (first order Markov model) and

the saturated model with diffuse priors (given below).

The shrinkage model uses the shrinkage priors proposed in Section 6.1 (shrink the satu-

rated model toward a first order Markov model). Note that the shrinkage priors shrink the

saturated model to an incorrect parametric model.

For the saturated model with diffuse priors, we re-parameterize the model as

P [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z] = µz,y
j−1

P [Rj = 0|Rj−1 = 1, Y j−1 = yj−1, Z = z] = ρz,,y
j−1

for j = 1, . . . , 7, and specify independent Unif(0, 1) on µ’s and ρ’s.
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We simulated observed data from a ”true” parametric model of the following form:

logitP [Y0 = 1|R0 = 1, Z = z] = αz,0,0

logitP [Y1 = 1|R1 = 1, Y0 = y0, Z = z] = αz,1,0 + αz,1,1y0

logitP [R1 = 0|R0 = 1, Y0 = y0, Z = z] = γz,1,0 + γz,1,1y0

logitP [Yj = 1|Rj = 1, Y j−1 = yj−1, Z = z] = αz,j,0 + αz,j,1yj−1 + αz,j,2yj−2

logitP [Rj = 0|Rj−1 = 1, Y j−1 = yj−1, Z = z] = γz,j,0 + γz,j,1yj−1 + γz,j,2yj−2,

for j = 2 to 7.

We fit the ”true” model to the BCPT data and used the posterior mean of parameters

α and γ as the true parameters. We identify the full data model by using the elicited prior

from the BCPT (see Table 2). The parameters and the true depression rates µ∗

z,j, computed

by Monte Carlo integration, are given in Table 3.

We considered (relatively) small (3000), moderate (5000), and large (10000) sample sizes

for each treatment arm; for each sample size, we simulated 50 datasets. We assessed model

performance using the mean squared error (MSE) criterion.

In Table 4, we report the MSEs of P [Yj = 1|Rj = 1, Y j−1, Z = z] and P [Rj = 1|Rj−1 =

1, Y j−1, Z = z] averaged over all j and all Y j−1 (see columns 3 and 4, respectively). We also

report the MSEs for µ∗

z,j (see columns 6-12). For reference, the MSEs associated with the true

data generating model are bolded. This table demonstrate that the shrinkage model generally

outperforms both the incorrectly specified parametric model and the saturated model at all

sample sizes. This improved performance is especially noticeable when comparing the MSEs

for the rates of depression at times 3-7.

In addition, the MSEs for the shrinkage model compare favorably with those of the true

parametric model for all sample sizes considered, despite the fact that the shrinkage priors

were specified to shrink toward an incorrect model.
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8 Application: Breast Cancer Prevention Trial (BCPT)

Table 5 displays the treatment-specific monotonized drop-out rates in the BCPT. By the 7th

study visit, more than 40% of patients had missed one or more assessments, with a slightly

higher percentage in the tamoxifen arm.

We fit the shrinkage model to the observed data using WinBUGS, with four chains of

8000 iterations and 1000 burn-in. Convergence was checked by examining trace plots of the

multiple chains.

8.1 Model Fit and Shrinkage Results

To assess the model fit, we compared the empirical rates and posterior means (with 95%

credible intervals) of P [Yj = 1, Rj = 1|Z = z] and P [Rj = 0|Z = z]. As shown in Figure 3,

the shrinkage model fits the observed data well. Figure 4 illustrates the effect of shrinkage on

the model fits by comparing the difference between the empirical rate and posterior mean of

P [Yj = 1|Rj = 1, Y j−1, Z = z] for all j, z and Y j−1. We can see that for early time points, the

difference is close to zero since there is little shrinkage applied to the model parameters. For

later time points, more higher order interaction coefficients are shrunk toward zero and the

magnitude of difference increases and drifts away from zero line. In general, the empirical

estimates are less reliable for the later time points (re: the simulation results in Section

7). In some cases, there are no observations within ”cells.” By shrinking the high order

interactions (i.e., borrowing information across neighboring cells), we are able to estimate

P [Yj = 1|Rj = 1, Y j−1, Z = z] for all j, z and Y j−1 with reasonable precision.

8.2 Inference

Figure 5 shows the posterior of P [Y7 = 1|Z = z], the treatment-specific probability of

depression at the end of the 36-month follow up (solid lines). For comparison, the posterior

under MAR (corresponding to point mass priors for τ at zero) is also presented (dashed
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lines). The observed depression rates (i.e., complete case analysis) were 0.115 on both

the placebo and tamoxifen arms. Under the MNAR analysis (using the elicited priors),

the posterior mean of the depression rates at month 36 were 0.126 (95%CI : 0.115, 0.138)

and 0.130 (95%CI : 0.119, 0.143) for the placebo and tamoxifen arms; the difference was

0.004 (95%CI : −0.012, 0.021). Under MAR, the rates were 0.125 (95%CI : 0.114, 0.136)

and 0.126 (95%CI : 0.115, 0.138) for the placebo and tamoxifen arms; the difference was

0.001 (95%CI : −0.015, 0.018). The posterior probability of depression was higher under the

MNAR analysis than the MAR analysis since researchers believed depressed patients were

more likely to drop out (see Table 2), a belief that was captured by the elicited priors. Figure

6 shows that under the two treatments there were no significant differences in the depression

rates at every time point (95% credible intervals all cover zero) under both MNAR and

MAR. Similar (non-significant) treatment differences were seen when examining treatment

comparisons conditional on depression status at baseline.

9 Summary and Discussion

In this paper, we have presented a Bayesian shrinkage approach for longitudinal binary

data with informative drop-out. Our model provides a framework that incorporates expert

opinion about non-identifiable parameters and avoids the curse of dimensionality by using

shrinkage priors. In our analysis of the BCPT data, we concluded that there was little (if

any) evidence that women on tamoxifen were more depressed than those on placebo.

An important feature of our approach is that the specification of models for the identi-

fiable distribution of the observed data and the non-identifiable parameters can be imple-

mented by separate independent data analysts. This feature can be used to increase the

objectivity of necessarily subjective inferences in the FDA review of randomized trials with

informative drop-out.

The ideas in this paper can be extended to continuous outcomes. For example, one could
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use the mixtures of Dirichlet processes model (Escobar and West, 1995) for the distribu-

tion of observed responses. They can also be extended to multiple cause dropout; in this

trial, missed assessments were due to a variety of reasons including patient-specific causes

such as experiencing a protocol defined event, stopping therapy, or withdrawing consent and

institution-specific causes such as understaffing an staff turnover. Therefore, some missing-

ness is less likely to be informative; extensions will need to account for that. In addition,

institutional differences might be addressed by allowing institution-specific parameters with

priors that shrink them toward a common set of parameters.

For smaller sample sizes, WinBUGS has difficulty sampling from the posterior distribu-

tion of the parameters in the shrinkage model. Tailored sampling algorithms can be written

to overcome this difficulty. In addition, we are working on alternative parameterizations of

the saturated model for the observed data as well as alternative shrinkage prior specifications

to improve computational efficiency.
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Tables and Figures

Table 1: Relative Risks to be Elicited
Drop out Rate p

Question Relative Risk p1 p2 . . .
100% confident the number is above rz,min(p)
Best Guess rz,med(p)
100% confident the number is below rz,max(p)

Table 2: Percentiles of Relative Risks Elicited
Drop out Rate

Treatment Percentile 10% 25%
Tamoxifen Minimum 1.10 1.30

Median 1.20 1.50
Maximum 1.30 1.60

Placebo Minimum 1.01 1.20
Median 1.05 1.30

Maximum 1.10 1.40
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Table 3: Simulation Scenario
Time Point

Parameter 0 1 2 3 4 5 6 7
Tamoxifen

α0 -2.578 -2.500 -2.613 -2.752 -2.626 -2.789 -2.811 -2.895
α1 2.460 1.978 1.940 2.023 2.072 1.885 2.007
α2 1.500 1.599 1.389 1.612 1.639 1.830
γ0 -2.352 -2.871 -2.625 -2.513 -2.281 -2.217 -2.536
γ1 0.611 0.397 0.460 0.247 0.320 0.127 0.228
γ2 0.121 0.422 0.261 0.035 0.293 0.204

Depression Rate 0.066 0.097 0.119 0.124 0.139 0.126 0.126 0.123
Placebo

α0 -2.653 -2.632 -2.59 -2.663 -2.598 -2.884 -2.853 -3.035
α1 2.708 2.304 1.874 2.104 2.068 2.123 2.243
α2 1.241 1.608 1.471 1.693 1.540 1.989
γ0 -2.308 -2.970 -2.729 -2.474 -2.410 -2.460 -2.673
γ1 0.466 0.468 0.469 0.272 0.376 0.088 0.001
γ2 -0.293 0.323 0.278 0.288 0.241 0.428

Depression Rate 0.071 0.107 0.118 0.120 0.132 0.130 0.126 0.125
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Table 4: Simulation Results: MSE (×103). P and T represent placebo and tamoxifen arms,
respectively.

Observed µ∗

j,z

Model Treat Y R 1 2 3 4 5 6 7

Sample Size 3000

True P 0.946 0.378 0.034 0.048 0.049 0.052 0.050 0.05 0.065

T 1.075 0.431 0.026 0.035 0.046 0.056 0.052 0.078 0.061

Parametric P 30.176 0.451 0.034 0.048 0.048 0.062 0.061 0.067 0.086

T 28.882 0.385 0.026 0.037 0.056 0.078 0.073 0.096 0.077

Shrinkage P 6.970 1.999 0.033 0.045 0.051 0.059 0.047 0.052 0.066

T 6.988 2.401 0.024 0.026 0.056 0.053 0.063 0.119 0.073

Saturated P 35.678 67.171 0.036 0.050 0.054 0.058 0.101 0.231 0.561

T 34.654 62.606 0.026 0.033 0.045 0.059 0.097 0.329 0.722

Sample Size 5000

True P 0.659 0.238 0.023 0.027 0.027 0.028 0.036 0.043 0.058

T 0.604 0.261 0.020 0.020 0.032 0.027 0.034 0.035 0.044

Parametric P 30.029 0.381 0.023 0.027 0.028 0.033 0.044 0.052 0.073

T 28.571 0.277 0.020 0.023 0.042 0.042 0.049 0.056 0.057

Shrinkage P 4.628 1.188 0.025 0.028 0.032 0.031 0.035 0.048 0.057

T 4.448 1.414 0.017 0.023 0.028 0.026 0.038 0.033 0.044

Saturated P 30.274 54.647 0.023 0.028 0.028 0.033 0.061 0.138 0.290

T 29.599 51.219 0.020 0.020 0.032 0.028 0.051 0.140 0.392

Sample Size 10000

True P 0.314 0.121 0.009 0.009 0.015 0.017 0.013 0.014 0.018

T 0.278 0.126 0.011 0.013 0.013 0.013 0.015 0.019 0.020

Parametric P 29.849 0.315 0.009 0.010 0.016 0.023 0.028 0.033 0.043

T 28.418 0.223 0.011 0.014 0.02 0.026 0.028 0.039 0.043

Shrinkage P 2.392 0.707 0.008 0.010 0.015 0.017 0.014 0.013 0.014

T 2.474 0.712 0.011 0.015 0.011 0.015 0.016 0.019 0.023

Saturated P 22.989 37.716 0.009 0.009 0.016 0.018 0.018 0.038 0.094

T 22.245 34.791 0.011 0.013 0.014 0.014 0.021 0.048 0.128

Table 5: Patients Cumulative Drop Out Rate

Month 3 6 12 18 24 30 36
Tamoxifen Available 5364 4874 4597 4249 3910 3529 3163

Drop out 490 767 1115 1454 1835 2201 2447
Drop Rate(%) 9.13 14.30 20.79 27.11 34.21 41.03 45.62

Placebo Available 5375 4871 4624 4310 3951 3593 3297
Drop out 504 751 1065 1424 1782 2078 2304

Drop Rate(%) 9.38 13.97 19.81 26.49 33.15 38.66 42.87
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Figure 1: Extrapolation of the elicited relative risks.
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Figure 2: Prior conditional density τz,j,y
j−1

given pz,j(yj−1). Black and gray lines represent

tamoxifen and placebo arms, respectively. Solid and dashed lines are for pz,j(yj−1) = 0.25
and pz,j(yj−1) = 0.10, respectively.
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Figure 3: Solid and dashed lines represent the empirical rate of P [Yj = 1, Rj = 1|Z = z] and
P [Rj = 0|Z = z], respectively. The posterior means of P [Yj = 1, Rj = 1|Z = z] (diamond)
and P [Rj = 0|Z = z] (triangle) and their 95% credible intervals are displayed at each time
point.
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Figure 4: Differences between posterior mean and empirical rate of P [Yj = 1|Rj =
1, Y j−1, Z = z] (A1 and A2) and P [Rj = 0|Rj−1 = 1, Y j−1, Z = z] (B1 and B2). The
x-axis is ordered by follow up time C (max{t : Rt = 1}). The bullets are the posterior mean
of P [Yj = 1|Rj = 1, Y j−1, Z = z] and P [Rj = 0|Rj−1 = 1, Y j−1, Z = z] when there are no
patients with historical response Y j−1.
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Figure 5: Posterior distribution of P [Y7 = 1|Z = z]. Black and gray lines represent tamoxifen
and placebo arms, respectively. Solid and dashed lines are for MNAR and MAR, respectively.
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Figure 6: Posterior mean and 95% credible interval of difference of P [Yj = 1|Z = z] be-
tween placebo and tamoxifen arms. The gray and white boxes are for MAR and MNAR,
respectively.
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