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SUMMARY

Association studies in environmental statistics often involve exposure and outcome data that are mis-

aligned in space. A common strategy is to employ a spatial model such as universal kriging to predict

exposures at locations with outcome data and then estimate a regression parameter of interest using the

predicted exposures. This results in measurement error because the predicted exposures do not correspond

exactly to the true values. We characterize the measurement error by decomposing it into Berkson-like

and classical-like components. One correction approach is the parametric bootstrap, which is effective

but computationally intensive since it requires solving a nonlinear optimization problem for the expo-

sure model parameters in each bootstrap sample. We propose a less computationally intensive alternative

termed the “parameter bootstrap” that only requires solving one nonlinear optimization problem, and we

also compare bootstrap methods to other recently proposed methods. We illustrate our methodology in

simulations and with publicly available data from the Environmental Protection Agency.
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1. INTRODUCTION

A challenge for association studies in environmental statistics is that we cannot directly measure the expo-

sure at every location where there is outcome data. Modern Geographic Information System (GIS) tech-

nology makes it feasible to sample environmental exposures and then to predict exposures at unmonitored

locations using a statistical model such as universal kriging that exploits dependence on GIS covariates

and incorporates spatial smoothing (Cressie 1993). The overall strategy is to use predicted exposures in

place of the true exposures at locations with outcome data in order to estimate the parameter of interest in

a regression model. The problem that we address in this paper is how to ensure valid inference in light of

the resulting measurement error.

An example application in environmental epidemiology is evaluating the relationship between expo-

sure to ambient air pollution and adverse health outcomes. Many studies have documented adverse effects

of air pollution (e.g., Dockery et al. 1993; Samet et al. 2000; Pope et al. 2002), and recent studies empha-

size the importance of using predicted individual air pollution exposures to account for spatial variability

within urban areas (Jerrett et al. 2005b; Kunzli et al. 2005; Gryparis et al. 2007; Szpiro et al. 2010). Other

environmental applications that do not involve human health effects are analogous from a statistical per-

spective. An example that we will return to later in this paper involves assessing the relationship between

stream water quality and nearby watershed land cover (Madsen et al. 2008; Herlihy et al. 1998).

Various methods have been employed for predicting exposures, including nearest neighbor interpo-

lation (Miller et al. 2007), regression based on GIS covariates (Brauer et al. 2003; Jerrett et al. 2005a),

interpolation by a geostatistical method such as kriging (Jerrett et al. 2005b; Kunzli et al. 2005), and

semi-parametric smoothing (Gryparis et al. 2007; Kunzli et al. 2005). All of these methods result in mea-

surement error that does not fit into the standard categories of classical or Berkson error (Carroll et al.
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2006). In this paper, we focus on universal kriging.

Kim et al. (2009) have shown that using predicted exposures from kriging performs better than nearest

neighbor interpolation, but significant errors may remain resulting in confidence intervals that do not

provide correct coverage. Gryparis et al. (2009) review the relevant measurement error literature and

compare several correction strategies in a simulation study, and Madsen et al. (2008) apply a version of

the parametric bootstrap to obtain corrected standard errors.

The parametric bootstrap is effective, but it is computationally intensive since it requires solving a

nonlinear optimization problem to estimate the exposure model parameters in each bootstrap sample. For

a universal kriging exposure model with 450 monitors (as in the examples considered here), each nonlin-

ear optimization takes 30-60 seconds on an Intel Xeon processor running at 2.33 GHz, so a parametric

bootstrap with only 100 samples would take approximately one hour. This is uncomfortably long for

routine usage, but it is feasible if the bootstrap is employed judiciously. If we consider, instead, a more

complex spatio-temporal model of the kind being used in modern air pollution studies (Szpiro et al. 2010),

the time required for a single optimization is an hour or more, so a full parametric bootstrap is essentially

impractical unless its use is restricted to a very limited number of definitive analyses.

We describe a new method termed the “parameter bootstrap” that is a less computationally demanding

approximation to the parametric bootstrap. The parameter bootstrap is consistent with a decomposition of

the measurement error into two approximately independent components, one of which is similar to Berk-

son error (“Berkson-like”) and the other of which is similar to classical measurement error (“classical-

like”). We develop our methodology in a setting where we use universal kriging to predict the exposure

and where we model the association of interest with linear regression, including the possibility of spatially

correlated residuals. The methodology extends easily to more complex spatio-temporal exposure models
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that generalize universal kriging (Banerjee et al. 2004; Szpiro et al. 2010).

In Section 2 we introduce notation and formally set out the problem. In Section 3 we characterize the

measurement error by decomposing it into Berkson-like and classical-like components, and in Section 4

we define the parametric and parameter bootstraps and briefly review two alternative strategies that have

been proposed in recently published papers. In Section 5 we illustrate our methodology in a simulation

study and compare it to other methods, and in Section 6 we consider an example with publicly available

stream data from the Environmental Protection Agency. We conclude in Section 7 with a discussion.

2. NOTATION AND PROBLEM SETUP

Consider an association study with the N × 1 vector of observed outcomes Y , N × 1 vector of exposures

X , and N ×m matrix of covariates Z. Assume a linear regression model

Y = β0 +XβX + ZβZ + ε, (2.1)

with regression coefficient of interest βX . Assume that ε is an N × 1 random vector distributed as

N(0,Σε(θε)), for a positive definite matrix function Σε(·) and unknown parameter θε.

Inference for βX would be straightforward if X , Y , and Z were all observed. We would estimate β̂X

by ordinary least squares (OLS) and then estimate θ̂ε from the residuals and use a sandwich-based standard

error (Liang and Zeger 1986). If the ε are independent and we estimate θ̂ε by the method-of-moments, the

sandwich form reduces to the classical standard error estimate.

We are interested in the situation where Y and Z are observed, but instead ofX we observe theN∗×1

vector X∗ of exposures at different locations. N∗ is the number of exposure monitors. Assume that X
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and X∗ are jointly distributed as

(
X
X∗

)
=

(
S
S∗

)
α+

(
η
η∗

)
. (2.2)

In this expression, S and S∗ are known N × k and N∗ × k dimensional matrices of GIS covariates, α is

an unknown k × 1 vector of coefficients, and

(
η
η∗

)
∼ N

(
0,Σ(ηη∗)(θη)

)
, (2.3)

independent of ε, for a positive definite matrix function Σ(ηη∗)(·) and unknown parameter θη . It is useful

to introduce the decomposition

Σ(ηη∗)(·) =

(
Ση(·) Σηη∗(·)

Ση∗η(·) Ση∗(·)

)
.

Universal kriging is a special case if θη comprises the range, partial sill, and nugget parameters from a

geostatistical model (Cressie 1993).

Although the exposure X is not observed directly, we can exploit the observed values X∗ and the spa-

tial model in equation (2.2) to estimate β̂X as follows. First, we estimate the exposure model parameters

α̂ and θ̂η based on X∗ by maximum likelihood or another nonlinear optimization approach, and then we

define the estimated exposure by

W = E(X|X∗; α̂, θ̂η)

= Φ(X∗, α̂, θ̂η) (2.4)

where

Φ(X∗, α̂, θ̂η) = Sα̂+ Σηη∗(θ̂η)Σ−1η∗ (θ̂η)(X∗ − S∗α̂).

Since we are interested in frequentist sampling properties of an estimator for βX , we take care to
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specify the assumed data-generating mechanism. All of the geographic locations are fixed and known, as

are the corresponding GIS covariates S and S∗ and any covariates Z in the outcome model. The regression

coefficients β0, βX , βZ , and α and variance parameters θε and θη are all fixed but unknown. A realization

from the data-generating mechanism is obtained by drawing from the joint distribution of ε, η, and η∗.

3. MEASUREMENT ERROR

If we ignore the measurement error from using W in place of X , we can derive naı̈ve standard errors by

the procedure described at the beginning of Section 2. However, these standard errors are based on the

assumption that all sampling variability in β̂X is induced by ε, and they ignore the additional sampling

variability fromU = X−W that is induced by η and η∗. Therefore, naı̈ve standard errors will typically not

estimate the true sampling variability of β̂X . In addition to altering the standard errors, the measurement

error may introduce bias.

We decompose the measurement error into two components

U =
(
X − E(X|X∗;α, θη)

)
+
(
E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η)

)
= UBL + UCL,

where the Berkson-like component is

UBL = X − E(X|X∗;α, θη), (3.1)

and the classical-like component is

UCL = E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η).

The Berkson-like component UBL accounts for variability from η and η∗, conditional on known exposure
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model parameters, and the classical-like component UCL incorporates additional variability from η∗ in

estimating the exposure model parameters. Both of these components change the sampling variance of

β̂X , and the classical-like component can also introduce bias.

3.1 Berkson-Like Component of the Error

Assume that the exposure model parameters α and θη are known so that UBL is the only source of

measurement error. A primary feature of Berkson error is that it has mean zero conditional on the estimated

exposure W (Carroll et al. 2006, page 9). With known exposure model parameters, it is easy to see that

this holds for UBL

E(UBL|W ) = E
(
E
(
UBL|W

)
|X∗

)
= E

(
UBL|X∗

)
= E

(
X − E(X|X∗;α, θη)|X∗

)
= 0.

The second line holds since W is deterministic conditional on X∗, the third line is the definition of UBL,

and the final line holds since α and θη are the parameters in the data-generating mechanism for X .

Since we can rewrite equation (2.1) in the form

Y = β0 +WβX + ZβZ + UBLβX + ε,

it is easy to see that β̂X derived by OLS with W in place of X is unbiased for estimating βX . We verify

this by conditioning on W , exploiting the fact that E(UBL|W ) = 0, and then taking the expectation of

β̂X over the sampling distribution of W . As in the case of Berkson error, the effect of UBL is to make
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W less variable than the true exposure X , effectively adding to the variance of the noise in the outcome

model and resulting in increased variability of β̂X .

It is tempting to carry the Berkson analogy further and argue that we can derive valid standard er-

rors by accounting for the correlation in the new noise term ε′ = UBLβX + ε, using either generalized

least squares or the sandwich estimator, as would be appropriate for Berkson error with a non-diagonal

covariance (Gryparis et al. 2009; Szpiro et al. 2008; Carroll et al. 2006, page 90). This reasoning is not

completely correct, however, because it is based on treating W as fixed.

3.2 Classical-Like Component of the Error

A primary feature of classical measurement error is that it increases the variability of W relative to X ,

introducing variation that is not correlated with the outcome Y (Carroll et al. 2006, page 28). UCL is

analogous since it comprises the error from estimating the exposure model parameters, which introduces

variability that is not informative for Y . Strictly speaking, UCL is not independent of Y since α̂ and θ̂η

are derived from X∗ which is correlated with X . It is also not independent across locations. Therefore,

we emphasize that UCL is similar to classical measurement error but also distinct in important ways, so

we cannot rely on standard measurement error correction techniques like regression calibration.

Our simulation results in Section 5 suggest that the dominant effect of UCL is to increase the sampling

variability of β̂X . The bias in our examples is relatively small, but it has some interesting features and for

completeness we illustrate bias correction using bootstrap methods and discuss the theoretical properties

of bias from this form of classical-like error in the Online Supplement. One interesting finding is that the

bias can be away from the null, rather than toward the null as in the case of standard classical measurement

error.
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4. CORRECTION METHODS

4.1 Parametric Bootstrap

A natural, but computationally intensive, approach to estimating standard errors and correcting bias is the

parametric bootstrap (Davison and Hinkley 1997; Madsen et al. 2008). The parameter estimate of interest

β̂X is calculated as in Section 2, and we wish to approximate its sampling distribution under the true

data-generating mechanism. We do this by simulating bootstrap samples under our best estimate of the

data-generating mechanism and calculating their empirical distribution. Given a set of observations Y and

X∗, the parametric bootstrap standard error based on M bootstrap samples is derived as follows.

1. Estimate the exposure model parameters α̂ and θ̂η by nonlinear optimization in equation (2.2).

2. Derive W from equation (2.4) and use it in place of X in equation (2.1) to estimate the outcome

model parameters β̂0, β̂X , β̂Z , and θ̂ε.

3. Repeat the steps below for each j = 1, . . . ,M

(a) Simulate a new set of observations Yj andX∗j based on the models in equations (2.1) and (2.2),

using α̂, θ̂η , β̂0, β̂X , β̂Z , and θ̂ε in place of the unknown true parameters.

(b) Estimate new exposure model parameters α̂j and θ̂η,j by nonlinear optimization based on the

model in equation (2.2), using X∗j in place of X∗.

(c) Plug α̂j ,θ̂η,j , and X∗j into equation (2.4) to derive Wj .

(d) Calculate β̂X,j by OLS in equation (2.1), using Wj and Yj in place of X and Y .

4. Calculate the parametric bootstrap standard error as the empirical standard deviation of the β̂X,j .
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Note that in step (3a) we simulate Xj in order to obtain Yj , but we do not use Xj in the remainder of the

procedure. See the Online Supplement for additional implementation details.

It is straightforward to use the β̂X,j to estimate and correct for bias rather than to derive standard

errors (Davison and Hinkley 1997). In principle, we need a nested double bootstrap to rigorously derive

a bias-corrected point estimates and corresponding standard errors, but such a procedure can require M2

bootstrap samples which is very computationally intensive. Since the bias tends to be small in our ex-

amples, we approximate a nested double bootstrap by applying a bias correction and estimating standard

errors based on the same set of M bootstrap samples, so our standard errors do not include the additional

variability from bias correction.

4.2 Parameter Bootstrap

The idea of the parameter bootstrap is to decrease the computational burden by eliminating the nonlinear

optimization that is repeated M times in step (3b) above. This is feasible because we can typically obtain

an estimate of the sampling distribution for α̂ and θ̂η in step (1) without much additional computation. The

procedure differs from the parametric bootstrap in the addition of step (1a) and modification of step (3b).

1. Estimate the exposure model parameters α̂ and θ̂η by nonlinear optimization in equation (2.2).

(a) Estimate a density function p̂(·, ·) corresponding to the sampling distribution of α̂ and θ̂η .

2. Derive W from equation (2.4) and use it in place of X in equation (2.1) to estimate the outcome

model parameters β̂0, β̂X , β̂Z , and θ̂ε.

3. Repeat the steps below for each j = 1, . . . ,M

(a) Simulate a new set of observations Yj andX∗j based on the models in equations (2.1) and (2.2),
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using α̂, θ̂η , β̂0, β̂X , β̂Z , and θ̂ε in place of the unknown true parameters.

(b) Sample α̂j and θ̂η,j from the probability distribution defined by p̂(·, ·).

(c) Plug α̂j ,θ̂η,j , and X∗j into equation (2.4) to derive Wj .

(d) Calculate β̂X,j by OLS in equation (2.1), using Wj and Yj in place of X and Y .

4. Calculate the parameter bootstrap standard error as the empirical standard deviation of the β̂X,j .

As described in the Online Supplement, our implementation of step (1a) uses a Gaussian approximation

centered at the maximum likelihood value with covariance based on the estimated Hessian. In the Online

Supplement we also describe assumptions that underlie validity of the parameter bootstrap.

4.3 Partial Parametric Bootstrap

If we neglect the classical-like error, another alternative is to modify the parameter bootstrap by using α̂

and θ̂η in each bootstrap sample instead of drawing new values from the estimated sampling distribution

as in step (3b). We call this the partial parametric bootstrap. Since the partial parametric bootstrap only

accounts for Berkson-like error, we use it to estimate standard errors but not for bias correction.

4.4 Other Correction Methods

Two alternative methods have been proposed in recently published papers. We describe these approaches

briefly and compare them to our proposed bootstrap methodology in the simulation and data examples

that follow. For more details we refer an interested reader to the cited papers.

Gryparis et al. (2009) and Madsen et al. (2008) propose jointly modeling the exposure and outcome

data in order to estimate β̂X . Since the joint model is multivariate Normal given the parameters, it is

possible to write down a joint likelihood and estimate all of the model parameters by either maximum
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likelihood or Bayesian methods. We show results in a subset of our examples from a joint model fit by

maximum likelihood.

Another approach proposed by Gryparis et al. (2009) is to leave out a subset of the monitoring data for

out-of-sample validation and then to use regression calibration to derive bias-corrected effect estimates.

This approach is based on a classical measurement error model, which we and they have shown does

not hold. It also requires fitting the exposure model with only a subset of the available data. The out-

of-sample regression calibration algorithm given by Gryparis et al. (2009) is for uncorrelated outcomes,

and we implement their algorithm for a subset of our examples with uncorrelated outcomes under the

optimistic assumption that 50 additional validation monitors are available.

5. SIMULATIONS

We conduct a simulation study based on the data we analyze below in Section 6. We use the universal krig-

ing exposure model described above and allow for correlation in the outcome residuals. In a 300 × 500

box we randomly select locations for N∗ = 450 exposure monitors and N = 100 or 2000 outcome mea-

surements. The x and y coordinates are covariates in the universal kriging exposure model with regression

coefficients α = (−25.95,−0.0035, 0.00084)t, and the spatial correlation has an exponential variogram

structure with range φη = 24.13, partial sill ψη = 3.76, and nugget τη = 1.34 (Cressie 1993).

The linear regression model for the outcome conditional on X is equation (2.1), with β0 = 5.06,

β1 = −0.322, and no additional covariates Z. We consider the case of uncorrelated residuals ε with

variance σ2
ε = 0.76, and we also consider the case of correlated residuals ε following an exponential

variogram structure with range φε = 80.39, partial sill ψε = 0.26, and nugget τε = 0.50.

In Table 1, we summarize the results for 2000 Monte Carlo simulations. Due to the computational
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intensity of the parametric bootstrap, we restrict to 100 Monte Carlo runs for these results. Scatterplots

illustrating agreement between parameter bootstrap and parametric bootstrap standard errors are shown

in Figure 1. With uncorrelated outcomes, naı̈ve standard errors that do not correct for measurement error

are too small compared to the observed sampling distribution of β̂X , resulting in less than nominal cov-

erage for 95% confidence intervals. The parameter bootstrap consistently gives near nominal confidence

interval coverage. There is some evidence of over-coverage with the parametric bootstrap, but this may be

attributable to the smaller number of simulations. In the correlated outcome model the coverage for naı̈ve

standard errors is closer to nominal. This is presumably because much of the Berkson-like error appears

as additional correlated variability in the outcome and is accounted for by the sandwich form.

We also show standard errors calculated with the partial parametric bootstrap. In scenarios with N =

100, the partial parametric bootstrap gives similar results to the parameter bootstrap. This suggests that

the Berkson-like component of measurement error dominates in this situation. For N = 2000, however,

the partial parametric bootstrap standard errors are significantly smaller, indicating that the classical-like

component is important in that setting.

The bias in β̂X is a very small component of the total error in all scenarios, and it is partially corrected

by the parameter bootstrap. Due to the small number of parametric bootstrap simulations, it is difficult to

confirm that this approach provides an effective bias correction, but given the general agreement with the

parameter bootstrap we expect it to perform similarly.

We show results for out-of-sample regression calibration and joint maximum likelihood estimation

in Table 1 for the cases with uncorrelated outcomes. We do not include cases with correlated outcomes

because the regression calibration method in Gryparis et al. (2009) is not applicable, and the maximum

likelihood algorithm failed to consistently converge due to difficulty identifying the covariance structures
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between the exposure and outcome variables. Regression calibration results in reasonable coverage proba-

bilities but much larger standard errors than the other methods. Joint maximum likelihood estimation also

gives nominal coverage probabilities, with somewhat smaller standard errors than the two-step methods

with bootstrap corrections. We restricted this part of the simulation study to 50 Monte Carlo simula-

tions due to the computational burden (it took on average 8 hours to optimize the joint likelihood with

N = 2000, compared to less than 5 minutes for the parameter bootstrap).

Finally, in Table 2 we illustrate the impact of misspecifying the spatial correlation in the exposure

model. Other types of model misspecification are also possible, but we focus on the spatial correlation

in the exposure since it is particularly difficult to know in advance. We consider Gaussian, spherical, and

cubic variogram models, but we assume an exponential model for the purposes of estimation. Ignoring

measurement error or using the partial parametric bootstrap results in less than nominal confidence interval

coverage. The parameter bootstrap and parametric bootstrap give nearly nominal coverage, as do out-of-

sample regression calibration and joint maximum likelihood fitting. As in the case of a correctly specified

model, regression calibration results in much larger standard errors, while joint maximum likelihood gives

somewhat smaller standard errors than the bootstrap approaches (at significant computational cost). There

is bias that the bootstrap methods fail to correct, while maximum likelihood estimates are nearly unbiased.

6. EXAMPLE

The Environmental Monitoring and Assessment Program (EMAP) was conducted by the Environmen-

tal Protection Agency (EPA) from 1990-2006 to advance the science of ecological risk assessment and

improve the EPA’s ability to estimate current and future risks to the health of aquatic ecological re-

sources (U.S EPA Environmental Monitoring and Assessment Program 1999). Previous work has found
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that there is a strong relationship between local land-use and water quality in nearby streams (Her-

lihy et al. 1998). For example, a higher percentage of local forestation has been found to be associ-

ated with improved stream water quality. Following Madsen et al. (2008), we consider forestation level

(logit((0.98×%forestation)+1)) as the exposure and analyze its association with chloride concentrations

(log(µEq/L)), where elevated chloride concentrations are a marker for poor stream water quality.

We use EMAP data from the Mid-Atlantic Highlands region of the eastern United States collected

during the years 1993-1996 (U.S EPA Environmental Monitoring and Assessment Program 1999). Where

multiple measurements are available from different times at the same location, we use the earliest time.

The outcome and the exposure are both available at a total 422 of these locations, so based on these

locations we can estimate the coefficient in a linear model without measurement error. Allowing for spa-

tially correlated outcomes, we find a highly statistically significant negative association between local

forestation and chloride concentrations (β̂X = −0.346, SE = 0.025).

At an additional 157 locations, only the chloride concentrations are available. To assess the impact of

measurement error and our correction methods, we use a universal kriging model (with an exponential

variogram and latitude and longitude as covariates) to predict the exposure at these locations and re-

estimate the association using the predicted exposures and measured outcomes at 157 locations. The

exposure model parameter estimates are α̂ = (−28.91,−0.0037, 0.0012), range φ̂η = 13.92 km, partial

sill ψ̂η = 4.32, and nugget τ̂η = 0.48. A map of the respective locations is shown in Figure 2.

The results are shown in Table 3. The uncorrected effect estimate is −0.390 with a standard error of

0.105, which is consistent with primarily Berkson-like measurement error since there is little change in

the effect estimate compared to the case with no measurement error (only a small part of the increased

standard error can be attributed to the smaller sample size of 157 instead of 422). The partial parametric
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bootstrap does not change the estimated standard error at all, which suggests that the Berkson-like error

is nearly pure Berkson error. The parameter bootstrap and parametric bootstrap increase the estimated

standard errors slightly (0.115 and 0.111, respectively) and estimate little or no bias. Joint maximum

likelihood optimization failed to converge (even after trying 20 random initial conditions) due to difficulty

in distinguishing between spatial correlation in the measurement error and the outcome, indicating that

joint modeling is not feasible for the present example.

In conclusion, when we use predicted exposures at stream locations where the true exposures are not

available, we see statistically significant evidence of a negative association between local forestation and

stream water quality as measured by chloride concentrations. The standard error is inflated by the presence

of measurement error, and the correct standard error can be estimated at little additional computational

cost by the parameter bootstrap. It turns out that a naı̈ve analysis also gives nearly correct standard errors,

although we needed to do the bootstrap analysis to verify this finding.

7. DISCUSSION

We have characterized the measurement error from using smoothing to predict exposures in environmental

statistics association studies when the exposure and outcome data are misaligned in space. The resulting

measurement error has a Berkson-like component from information lost in smoothing and a classical-like

component that is related to uncertainty associated with estimating the smoothing parameters.

The measurement error structure we have identified is complex because it is a mixture of two types of

error, neither one of which fits exactly into the traditional categories of Berkson or classical. Therefore,

standard measurement error correction methods are not appropriate. If we are willing to assume that

the exposure and outcome models are correctly specified, we can use a parametric bootstrap to estimate
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bias and standard errors. This requires that we be precise about the assumed data-generating mechanism

since the idea is to draw multiple samples from an approximation to the data-generating mechanism, with

parameters estimated from observed data. We have defined a data-generating mechanism that is consistent

with the geostatistical kriging model we use for smoothing. Although it is well known that geostatistical

methods are useful for interpolating physical processes that arise in environmental statistics, it is not

clear what real-world phenomenon the spatial random effect represents. A promising direction for future

research is to investigate the scientific validity of this and other possible data-generating mechanisms, and

to characterize the implications for measurement error correction.

We propose the parameter bootstrap as a less computationally intensive approximation to the paramet-

ric bootstrap. The main assumption required for the parameter bootstrap is that the estimated sampling

distribution for the exposure model parameter estimates be a valid approximation to the true sampling dis-

tribution. In general, this is true for sufficiently rich exposure data, but in some applications the available

monitoring data are limited. As a computational tool, the parameter bootstrap is necessary when estimat-

ing the exposure model parameters is computationally intensive, which occurs when there is a relatively

large amount of exposure data. Therefore, the choice between the parametric bootstrap and the parameter

bootstrap should be informed by the amount of exposure data available, considering implications for the

computational burden of the parametric bootstrap and the validity of the parameter bootstrap.

In the universal kriging model considered here with 450 exposure monitors, the parametric bootstrap

is marginally feasible, requiring approximately one hour of computing time for 100 bootstrap samples

(compared to less than 5 minutes for the parameter bootstrap). One practical compromise is to use the

parameter bootstrap with a larger number of bootstrap samples as the primary correction and to validate

it with the parametric bootstrap using a limited number of samples. In applications where the exposure
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model is more complex (e.g., the spatio-temporal air pollution model described by Szpiro et al. (2010)), a

single optimization can take on the order of an hour so the parameter bootstrap’s computational advantage

becomes even more important.

We compared our bootstrap methods to two recently proposed alternatives (Gryparis et al. 2009; Mad-

sen et al. 2008). Regression calibration is incompatible with the theoretical properties of the measurement

error, and it results in much larger standard errors than any of the other alternatives. Joint estimation by

maximum likelihood performed consistently well, even with a misspecified exposure model, and resulted

in somewhat smaller standard errors than bootstrap methods. However, as Gryparis et al. (2009) point

out, the joint estimation methodology can be extremely computationally intensive and can lead to spu-

rious feedback into the exposure when there are outliers or misspecification in the outcome model. It is

also difficult to fit a joint model with spatial correlation in the outcomes, due to the challenge in distin-

guishing this correlation from correlation in the exposure. The parameter bootstrap is a computationally

efficient alternative that works well in a wide range of settings, and further research comparing it to the

joint modeling approach is needed to determine which is preferable for problems where both are feasible.
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Bias SD SE (mean) SE (mode) 95% CI Cov
N = 100

Independent Outcomes
No correction −0.003 0.075 0.072 0.070 95%

Partial parametric bootstrap −0.003 0.075 0.072 0.071 95%

Parameter bootstrap 0.000 0.075 0.079 0.074 96%

Parametric bootstrap −0.009 0.077 0.079 0.073 98%

Regression calibration −0.012 0.104 0.102 0.084 95%

Maximum likelihood −0.011 0.081 0.073 0.079 96%

Correlated Outcomes
No correction −0.004 0.093 0.097 0.085 95%

Partial parametric bootstrap −0.004 0.093 0.101 0.097 95%

Parameter bootstrap −0.001 0.093 0.105 0.099 96%

Parametric bootstrap −0.008 0.099 0.106 0.107 94%

N = 2000

Independent Outcomes
No correction −0.002 0.027 0.016 0.016 78%

Partial parametric bootstrap −0.002 0.027 0.023 0.023 91%

Parameter bootstrap 0.001 0.027 0.028 0.027 96%

Parametric bootstrap −0.002 0.027 0.029 0.027 97%

Regression calibration −0.010 0.075 0.066 0.045 93%

Maximum likelihood 0.000 0.021 0.022 0.022 96%

Correlated Outcomes
No correction −0.001 0.064 0.068 0.053 94%

Partial parametric bootstrap −0.001 0.064 0.073 0.064 95%

Parameter bootstrap 0.001 0.064 0.077 0.066 96%

Parametric bootstrap −0.008 0.067 0.081 0.065 97%

Table 1. Simulation results for universal kriging exposure surface with range φη = 24.13. The columns give the

bias and standard deviation of the estimates, the mean and mode of the estimated standard errors, and the coverage

for 95% Wald confidence intervals. Results are based on 2000 Monte Carlo simulations, except for the parametric

bootstrap which is based on 100 Monte Carlo simulations and maximum likelihood which is based on 50 Monte Carlo

simulations.
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Bias SD SE (mean) SE (mode) 95% CI Cov
N = 2000, Independent Outcomes
Gaussian Variogram

No correction −0.013 0.021 0.014 0.014 74%

Partial parametric bootstrap −0.013 0.021 0.020 0.019 90%

Parameter bootstrap −0.011 0.022 0.024 0.022 95%

Parametric bootstrap −0.012 0.021 0.023 0.022 95%

Regression calibration −0.009 0.048 0.048 0.040 95%

Maximum likelihood −0.002 0.017 0.017 0.017 94%

Spherical Variogram
No correction −0.008 0.026 0.016 0.016 77%

Partial parametric bootstrap −0.008 0.026 0.022 0.022 91%

Parameter bootstrap −0.005 0.026 0.028 0.025 96%

Parametric bootstrap −0.007 0.025 0.028 0.026 98%

Regression calibration −0.011 0.062 0.061 0.046 95%

Maximum likelihood 0.000 0.019 0.020 0.020 96%

Cubic Variogram
No correction −0.016 0.024 0.015 0.015 71%

Partial parametric bootstrap −0.016 0.024 0.021 0.021 88%

Parameter bootstrap −0.013 0.025 0.030 0.025 96%

Parametric bootstrap −0.014 0.023 0.026 0.025 94%

Regression calibration −0.009 0.057 0.054 0.044 95%

Maximum likelihood −0.003 0.017 0.018 0.018 96%

Table 2. Simulation results for misspecified variance models. All simulations are fit with an exponential variogram

model, but the data are generated according to either a Gaussian, spherical, or cubic model. The columns give the

bias and standard deviation of the estimates, the mean and mode of the estimated standard errors, and the coverage

for 95% Wald confidence intervals. Results are based on 2000 Monte Carlo simulations, except for the parametric

bootstrap which is based on 100 Monte Carlo simulations and maximum likelihood which is based on 50 Monte Carlo

simulations.
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N β̂X SE

True exposure 422 −0.346 0.025
Predicted exposure, no correction 157 −0.390 0.105
Predicted exposure, partial parametric bootstrap 157 −0.390 0.103
Predicted exposure, parameter bootstrap 157 −0.388 0.115
Predicted exposure, parametric bootstrap 157 −0.397 0.111

Table 3. Results of estimating the relationship between the log-transformed chloride level (“outcome”) and the logit-

transformed percent local forestation (“exposure”) in streams, using EPA data from the Mid-Atlantic Highlands region

of the eastern United States during the years 1993-1996. The true exposure result is based on 422 locations at which

both the exposure and outcome data are available. The predicted exposure results are based on outcomes and predicted

exposures at 157 locations for which exposure data are not available, with the other 422 locations used to fit the

exposure model. The model allows for spatially correlated outcomes.
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Fig. 1. Scatterplot showing agreement between parametric bootstrap standard errors and parameter bootstrap approx-

imation, based on 100 Monte Carlo simulations. Partial parametric bootstrap and uncorrected standard errors are also

included for comparison.
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Fig. 2. EPA stream locations for example data analysis (N∗ = 422 sites with exposure and outcome data, N = 157

locations with outcome data only).
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ONLINE SUPPLEMENT 1: BIAS FROM CLASSICAL-LIKE MEASUREMENT ERROR

Consider a simplified version of the model from Section 2. In particular, assume

Y = XβX + ε

and

X = Sα+ η,

where Y , X , and S are N -vectors and ε and ν are independent Normally distributed N -vectors with zero

means and variances σ2
ε and σ2

ν . We regard βX and α as fixed but unknown, S as fixed and known, and Y

and X as drawn at random. Only Y is observed so we need to estimate X in order to estimate βX .

Notice that we have assumed a scalar exposure without an intercept in the outcome model and uncor-

related residuals for both the exposure and the outcome. These assumptions simplify the calculations that

follow and allow us to clearly illustrate the origin of any bias that may result from estimating parameters

in the exposure model.

Since we do not directly observe X , we want to make inference about βX based on the observations

Y and an approximation to X denoted by W . Specifically, we will use

W = Sα̂

where α̂ is an estimate of α. Assume that in the sampling distribution

α̂ = α+ δ,

where δ is Normally distributed with mean zero and variance σ2
δ . In practice, α̂ could be an estimate of

α based on monitoring data X∗ at different locations which satisfy the same linear model as X and for

which the corresponding geographic covariates S∗ are also known.
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If we knew X without error, the OLS fit for βX would be

β̂X,true = (XtX)−1XtY .

Since we do not know X directly, we approximate X by plugging in W as defined above and find the

corresponding OLS fit for βX

β̂X = (W tW )−1W tY

= (α+ δ)−1(StS)−1StY .

We are interested in the direction of the bias

π = E
[
β̂X − βX

]
.

To analyze this quantity, it is useful first to recall that if we knew α without error, then we could define

Wberkson = Sα

and the corresponding estimator

β̂X,berkson = (W t
berksonWberkson)−1W t

berksonY

= α−1(StS)−1StY .

Since the measurement error in Wberkson is purely Berkson, this estimator is unbiased for βX . Therefore,

we can re-write the bias for β̂X

π = E
[
β̂X − β̂X,berkson

]
= E

[(
(α+ δ)−1 − α−1

)
(StS)−1StY

]
.
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Now, since the mean of δ is zero, Taylor series expansion of (α+ δ)−1 around α−1 gives

π ≈ E
[(
−δα−2 + δ2α−3

)
(StS)−1StY

]
= σ2

δα
−3E

[
(StS)−1StY

]
= σ2

δα
−2E

[
β̂X,berkson

]
= σ2

δα
−2βX .

Thus, we have shown that the direction of bias is away from the null, at least in the limit for small δ. The

magnitude of the bias is proportional to the squared coefficient of variation for α. In our simulations the

bias is a relatively small component of the overall error, but it tends to be away from zero as predicted by

this analysis. This calculation also clearly exposes the source of bias in β̂X , since even ifW is an unbiased

estimate of X , nonlinearity in the OLS solution operator results in bias for the parameter estimate.
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ONLINE SUPPLEMENT 2: THEORETICAL BASIS FOR PARAMETER BOOTSTRAP

The parameter bootstrap is valid insofar as it approximates the true sampling distribution of β̂X , which

requires three main assumptions. The first assumption, as in the more standard parametric bootstrap, is

that the model in equations (2.1) and (2.2) is a valid representation of the true data-generating mechanism.

The second assumption is also relatively straightforward to state, namely that the density function p̂(·, ·)

provides a good approximation to the sampling distribution of α̂ and θ̂η . This can generally be expected

to hold for a large number of exposure monitors N∗. In our simulation scenarios in Section 5 where we

use a Gaussian approximation for p̂(·, ·), we find that the assumption holds very well. In Figure S1, we

compare the estimated sampling distributions in the first 200 Monte Carlo simulations to the true sampling

distributions for each parameter, and the agreement is very good. The estimated sampling distribution is

a poor fit in one of the 200 cases shown, which is also by far the worst fit among our total of 2000

simulations. This case is included in our reported simulation study summary statistics.

The third and final assumption is more subtle to state. In the parameter bootstrap, we have replaced the

derivation of α̂j and θ̂η,j by nonlinear optimization with a draw from the estimated marginal distribution

of α̂ and θ̂η . Therefore, it seems that the validity of the parameter bootstrap requires assuming in the true

data-generating mechanism that α̂ and θ̂η are independent of the data Y and X∗, which is obviously false

since α̂ and θ̂η are defined as nonlinear functions of X∗. However, we only need to be able to treat α̂ and

θ̂η as if they were independent of the data Y and X∗ for the purpose of evaluating the marginal sampling

distribution of β̂X .

In order to make this statement precise, we introduce some additional notation. We write

β̂X = Ψ(Y,W )

= Ψ
(
Y,Φ(X∗, α̂, θ̂η)

)
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where Ψ(·, ·) is defined to be the ordinary least squares solution for βX from equation (2.1) (suppressing

additional covariates Z in this notation), and Φ(·, ·, ·) is given by equation (2.4). Let q1(·, ·) be the density

function corresponding to the distribution of Y and X∗. Then we can define a density function q(·, ·, ·, ·)

for the joint sampling distribution of Y , X∗, α̂, and θ̂η by

q(Y,X∗, α̂, θ̂η) =

 q1(Y,X∗) ϕ(X∗) = α̂, θ̂η

0 otherwise

where ϕ(·) is the nonlinear solution operator for estimating α̂ and θ̂η based on equation (2.2). Finally,

let q2(·, ·) correspond to the marginal sampling distribution of α̂ and θ̂η . Now we can formally state the

assumption that underlies the parameter bootstrap.

ASSUMPTION S2 Sampling from distributions with the following two densities induces a common dis-

tribution for β̂X = Ψ
(
Y,Φ(X∗, α̂, θ̂η)

)
q(Y,X∗, α̂, θ̂η)

and

q′(Y,X∗, α̂, θ̂η) = q1(Y,X∗)q2(α̂, θ̂η).

This assumption is plausible because X∗ contributes variability to W in two fundamentally different

ways. Its contribution through the parameter estimates α̂ and θ̂η can be viewed as an overall character-

ization of the structure of the exposure surface, while its direct contribution as the object of smoothing

incorporates local information based on the assumption that exposures at nearby locations are similar.

We test the validity of Assumption S2 in our simulation examples by sampling β̂X under each of the

densities q(Y,X∗, α̂, θ̂η) and q′(Y,X∗, α̂, θ̂η). We use the empirical distribution of α̂ and θ̂η in order to

draw samples from q′(Y,X∗, α̂, θ̂η). The density functions for β̂X are compared in Figure S2 and are
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seen to be very similar, which is consistent with the fact that the parameter bootstrap and the parametric

bootstrap results agree very well.

http://biostats.bepress.com/uwbiostat/paper350



7

ONLINE SUPPLEMENT 3: IMPLEMENTATION DETAILS

We describe here our approach to implementing the individual estimations required for the parametric

and parameter bootstraps. Steps (1) and (3b) in the parametric bootstrap require estimating the exposure

model parameters α̂ and θ̂η based on the model in equation (2.2). We estimate the maximum likelihood

parameter values by using the constrained L-BFGS-B algorithm implemented in the optim() function in

R (Byrd et al. 1995; R Development Core Team 2010), first log-transforming the variance parameters to

make the optimization easier. Sometimes the L-BFGS-B algorithm fails to find a true maximum, and to

guard against this we verify that the eigenvalues of the Hessian are all positive and repeat the optimization

with different initial conditions if necessary. In the parameter bootstrap we also need an estimate of the

sampling distribution for α̂ and θ̂η . We use a Gaussian approximation centered at the maximum likelihood

value with covariance based on the estimated Hessian produced by the optim() function.

The other nonlinear optimization is contained in step (2), where we estimate the parameters θε in the

outcome model (2.1). If we knew X without error, this could be accomplished in a relatively straight-

forward manner by fitting model (2.1) using OLS and then estimating the variance parameters θε from

the residuals. The complicating factor is that the Berkson-like component of the measurement error in-

troduces an additional covariance contribution into the residual distribution, as in the definition of ε′ in

Section (3.1). If we condition on X∗, the covariance for the residuals is

Σε′ = ΣUBL
βX + Σε(θε) (8.1)

where ΣUBL
can be computed based on equation (3.1) if we treat the estimated exposure model parameters

as known.

In order to estimate θε we fit the model in equation (8.1) to the residuals from the OLS fit to equa-
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tion (2.1), optimizing over the nuisance parameter βX . Maximum likelihood optimization turns out to

be unstable (as in the problems with joint estimation of the full exposure and outcome models noted in

Section 5), so instead we find the least-squares fit to the empirical binned variogram. We again use the

L-BFGS-B algorithm implemented in the optim() function in R (Byrd et al. 1995; R Development Core

Team 2010), repeating the numerical optimization 20 times with random initial conditions and picking

the parameters estimates based on the best fit from these 20 iterations.
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Fig. S1. Estimated and true sampling distributions for exposure model parameters with universal kriging. The esti-

mated sampling distributions from the first 200 Monte Carlo simulations are shown, with each distribution centered

at the median of the true sampling distribution.
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Fig. S2. Comparison of the sampling distributions of β̂X under the true density q(Y,X∗, α̂, θ̂η) and the approximate

density q′(Y,X∗, α̂, θ̂η) defined in Assumption S2.
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