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Quantifying an Adherence Path-Specific Effect of
Antiretroviral Therapy in the Nigeria PEPFAR

Program

Caleb Miles, Ilya Shpitser, Phyllis Kanki, Seema Meloni, and Eric Tchetgen
Tchetgen∗

Abstract

Since the early 2000s, evidence has accumulated for a significant differential effect of first-
line antiretroviral therapy (ART) regimens on human immunodeficiency virus (HIV) treat-
ment outcomes, such as CD4 response and viral load suppression. This finding was replicated
in our data from the Harvard President’s Emergency Plan for AIDS Relief (PEPFAR) pro-
gram in Nigeria. Investigators were interested in finding the source of these differences, i.e.,
understanding the mechanisms through which one regimen outperforms another, particularly
via adherence. This amounts to a mediation question with adherence playing the role of
mediator. Existing mediation analysis results, however, have relied on an assumption of no
exposure-induced confounding of the intermediate variable, and generally require an assump-
tion of no unmeasured confounding for nonparametric identification. Both assumptions are
violated by the presence of drug toxicity. In this paper, we relax these assumptions and show
that certain path-specific effects remain identified under weaker conditions. We focus on the
path-specific effect solely mediated by adherence and not by toxicity and propose a suite of
estimators for this effect, including a semiparametric-efficient, multiply-robust estimator. We
illustrate with simulations and present results from a study applying the methodology to the
Harvard PEPFAR data. Supplementary materials are available online.
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1. INTRODUCTION

The President’s Emergency Plan for AIDS Relief (PEPFAR) has been a highly successful pro-

gram that has saved millions of lives worldwide since its inception in 2003. The Harvard School

of Public Health was awarded one of the PEPFAR grants, receiving a total of $362 million for

work in Nigeria, Botswana, and Tanzania. The program has furnished these countries with in-

valuable medical infrastructure and provided AIDS care services in Nigeria for over 160,000

people and treatment to approximately 105,000 of those patients.

Our data set consists of previously antiretroviral therapy (ART)-naïve, human immunodefi-

ciency virus (HIV)-1 infected, adult patients enrolled in the Harvard PEPFAR/AIDS Prevention

Initiative in Nigeria (APIN) program between June 2004 and November 2010 who started ART

in the program and were followed for at least 1 year after initiating ART. Upon entry into the

Harvard/APIN PEPFAR HIV care program, all patients completed informed consent; all consent

forms were approved by the institutional review boards at Harvard, APIN and all the correspond-

ing Harvard/APIN PEPFAR HIV care and treatment sites. Patients not on one of 6 standard

first-line regimens at baseline or seen at two of the hospitals without reliable viral load data were

excluded from the data set. The analysis in this paper consists of only the complete cases, and

results are given for all regimens but d4T+3TC+EFV (see Table 1 note for full drug names), due

to the small sample of patients on this regimen as a consequence of it having been dropped mid-

way through the program. (d4T+3TC+NVP was also dropped, but had a large enough sample to

provide for stable inference.)

The significant funding support for AIDS treatment in resource-limited settings provided

by PEPFAR and other international donor organizations relied on clinical trial data generated in

resource rich settings. In order to maximize the benefit of providing ART to the largest number

of patients, well-established drug regimens that were less costly were recommended and sup-

ported by the program. Studies dating back to the early 2000s have demonstrated evidence that

these first-line regimens were not equally effective (Tang et al., 2012), and indeed, in the Harvard

PEPFAR data, we have observed a significant differential effect of first-line ART regimens on

virologic failure and, to a lesser extent, CD4 count. Since these were first-line regimens in use in

most resource-limited settings, this difference could have widespread implications to the success
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Table 1: Treatment regimen coding and their estimated average causal effects on risk of virologic
failure (VF) and CD4 count

Patients on RR of log-RR of Mean diff. in
Code ART regimen regimen VF (s.e.) VF (s.e.) CD4 count

1 TDF + 3TC/FTC + EFV 1448 (14.6%) 0.65 (0.014) -0.44 (0.12) 6.9 (7.4)
2 d4T + 3TC + NVP 854 (8.6%) 0.75 (0.017) -0.29 (0.13) -9.7 (6.8)
3 AZT + 3TC + EFV 1003 (10.1%) 0.78 (0.018) -0.25 (0.14) 10.7 (8.7)
4 AZT + 3TC + NVP 4707 (47.4%) 0.82 (0.011) -0.21 (0.078) 17.8 (4.9)
5 TDF + 3TC/FTC + NVP 1919 (19.3%) - - -

NOTE: 3TC=lamivudine, AZT=zidovudine, d4T=stavudine, EFV=efavirenz,
FTC=emtricitabine, NVP=nevirapine, TDF=tenofovir. Effects on risk of virologic failure
are expressed on the risk ratio (RR) and log-risk ratio scale relative to treatment 5 and were
estimated using inverse-probability weighted estimators. Effects on CD4 count are expressed
on the mean difference scale relative to treatment 5 and were estimated using doubly-robust
estimators. All effects adjusted for the confounders listed in Section 2.

of ART programs. These regimens and each of their corresponding total effects on virologic

failure and CD4 count relative to a common reference treatment are reported in Table 1. The

effects on virologic failure are reported as marginal and log-marginal risk ratios, and the effects

on CD4 count and log CD4 count are reported on the mean-difference scale. Treatments were

coded from strongest estimated effect on virologic failure to weakest, and the weakest treatment

(TDF+3TC/FTC+NVP) was chosen as the reference for the purposes of the effects in Table 1.

These effects are contrasts in the population between the risk of virologic failure had one in-

tervened to assign everyone to a comparison-level treatment (1, 2, 3, or 4) and that if one had

intervened to assign everyone to baseline treatment 5. The total effects of these regimens, how-

ever, do not quite tell the whole story. Investigators were interested in finding the source of these

differences, i.e., understanding the mechanisms through which one regimen outperforms another.

Mediation analysis serves to better explain these mechanisms that drive the differences in effects.

This type of analysis has the potential to help target interventions to improve the performance of

the less-robust regimens.

The total effect can be considered as a combination of effects, possibly in conflicting di-

rections, through different pathways from the exposure to the outcome. Therefore, a weak total

effect could be due to a combination of even weaker path-specific effects or several stronger
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path-specific effects canceling one another out. One such path-specific effect could work strictly

through biological pathways, in which case this population would benefit most from switch-

ing to a more favorable drug regimen. Alternatively, biological factors might play a compara-

tively smaller role relative to the effect of the treatment through nonbiological pathways, such as

through adherence (Shpitser, 2013). We suspect a lack of adherence to treatment to be a driving

mechanism of the observed differential effects, in which case it would be worth considering how

to improve this mediating factor.

Adherence is widely accepted as a key factor for sustained viral suppression and is consid-

ered a prerequisite for maintenance on a prescribed drug regimen and optimal patient outcomes.

However, the extent to which adherence to a given choice of first-line ART contributes to vi-

rologic failure (defined by the World Health Organization [WHO] as repeat viral load > 1000

copies/mL after 6 months of ART duration) is complex and still poorly understood and is a

pressing mediation question in HIV research (Bangsberg et al., 2000). Understanding this issue

is particularly important in resource-limited settings, where ART regimen options are few, and

adherence to lifelong multi-drug daily dosing is challenging, but necessary. In such settings,

quantifying to what degree differential rates of virologic failure are due to differences in adher-

ence rates between therapies would inform the extent to which failure rates could be reduced by

programs that improve adherence rates for certain ARTs, rather than changing the ART regimens

themselves. Such adherence interventions have been very successful in the treatment of tubercu-

losis (China Tuberculosis Control Collaboration, 1996; Fujiwara et al., 1997; Suárez et al., 2001)

and are considered similarly important in the treatment of HIV (Mills et al., 2006; Vranceanu

et al., 2008; Pop-Eleches et al., 2011).

Remark. Technically, the WHO also requires demonstration of adherence in their definition of

virologic failure, which we avoid using in this paper since we cannot study the role of adherence

as a mediator when it is part of the definition of the outcome.

Among other potential mechanisms, the effect of treatment on virologic failure and CD4

count may be mediated by adherence, drug toxicity, or both. This study investigates the extent to

which adherence, and not drug toxicity, mediates the effect, using the Harvard PEPFAR data set.

That is, we focus on the role of adherence when it is differentially affected by the ways the drugs

are obtained and taken, rather than by different levels of toxic side effects. The effect mediated by

4
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nonadherence due to toxicity is unlikely to be appreciable, since toxicity in Nigeria is typically

clinically recognizable and actionable. The magnitude of the roles of other drug-specific predic-

tors of nonadherence, on the other hand, are less understood. These predictors also potentially

point to lower-hanging fruit for development of adherence-promoting interventions. In mediation

analysis terminology, we aim to estimate the effects of treatment assignment on virologic fail-

ure and CD4 count that are indirect with respect to adherence but direct with respect to toxicity.

The definition, identification, and estimation of direct and indirect effects have received much

attention in recent causal inference literature (Robins and Greenland, 1992; Robins, 1999, 2003;

Pearl, 2001; Avin et al., 2005; Taylor et al., 2005; Petersen et al., 2006; Ten Have et al., 2007;

Goetgeluk et al., 2008; van der Laan and Petersen, 2008; VanderWeele, 2009, 2011; VanderWeele

and Vansteelandt, 2009, 2010; Imai et al., 2010a,b; Tchetgen Tchetgen, 2011; Tchetgen Tchetgen

and Shpitser, 2014, 2012; Tchetgen Tchetgen, 2013).

The particular effect we are interested in can be classified as a path-specific effect (Pearl,

2001) – a class of estimands which can represent effects along any given causal pathway or

collection of causal pathways. We consider the effect along the path from the provision of ART to

virologic failure (or CD4 count) that goes through adherence, but not through toxicity. This effect

is a measure of the change in risk of virologic failure (or mean CD4 count) were one to intervene

on the mechanism by which the choice of treatment regimen directly, i.e., not through toxicity,

affects adherence. For instance, if the difference in the effectiveness of ART through adherence

were due to some regimens of ART having certain meal restrictions, posing a greater risk of

patients missing dosages due to issues with food insecurity (Eldred et al., 1998; Gifford et al.,

1998; Roberts, 2000), this effect would reflect the change in mean outcome if we were to modify

the pills such that they can be taken without any meal restrictions. We emphasize our focus on

the pathway through adherence, which does not involve toxicity, to learn about other possible

mediating mechanisms that may be as important as toxicity, but are currently underappreciated.

The presence of an effect through this pathway calls for closer investigation of these possible

mechanisms, such as number of pills taken per dosage or the requirement that they be taken

with meals. The absence indicates that differential effects through other pathways are driving the

observed differences in effects among the treatment assignments. In particular, the efficacies of

the drugs themselves may, in fact, differ, i.e., they may have a differential direct effect on the
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outcome with respect to adherence, or they may have a differential effect on adherence due to

their differing levels of toxicity.

Pearl (2001) defines path-specific effects, and Avin et al. (2005) provide general necessary

and sufficient conditions for their identification for a single exposure and outcome, while Shpitser

(2013) generalizes these definitions and conditions to settings with multiple exposures, multiple

outcomes, and possible hidden variables. Our path-specific effect described above satisfies these

identifying conditions, however an estimation strategy for its identifying functional does not yet

exist. In this paper, we develop a suite of estimators (including a multiply-robust, semiparametric-

efficient estimator) for the effect. The HIV case study detailed in this paper also functions as a

guide for the application of this new method to analogous mediation settings where there is

confounding that is affected by the exposure.

2. NOTATION & DEFINITIONS

To formalize our discussion, we begin by defining variables and counterfactuals. We will be con-

sidering pairwise comparisons of first-line ARTs prescribed to most HIV patients in Nigeria. Let

E be an indicator of exposure to one of two such regimens of ART (coding given in Table 1).

For notational simplicity, let e′ denote the “reference level" treatment and e denote the “compar-

ison level" treatment. Let C1 be a bivariate vector of an indicator of any lab toxicities (alanine

transaminase ≥120 UI/L, Creatinine ≥260 mmol/L, Hemoglobin ≤8 g/dL) observed six months

after treatment initiation and an indicator that the patient’s average percent adherence during the

same six months, i.e., the total number of days that the patient had their drug supply divided

by the number of days in the six month period, was no less than 95%. Let M be an indicator

that the patient’s average percent adherence during the subsequent six months was no less than

95%. Let Y be an indicator of whether the patient experienced virologic failure at the end of

the year (based on viral load measurements at twelve and eighteen months for confirmation), or

alternatively CD4 count at twelve months. Let C0 be a vector of baseline confounders of the

causal relationships between E, M , and Y not affected by exposure, viz. sex, age, marital status,

WHO stage, hepatitis C virus, hepatitis B virus, CD4 count, and viral load. Throughout, we will

assume that we observe i.i.d. sampling of O = (C0, E,C1,M, Y ).

We now consider counterfactuals under possible interventions on the variables (Rubin, 1974,
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C0 E C1 M Y

Figure 1: A causal graph with unobserved confounders that allows for identification of thePEMY -
specific effect

1978). Let Y (e∗) denote a patient’s virologic suppression status or CD4 count if assigned, pos-

sibly contrary to fact, to the regimen of ART e∗. In the context of mediation, there will also

be counterfactuals for intermediate variables. We define C1(e∗), M(c1, e
∗) and Y (m, e∗) simi-

larly, and adopt the standard set of consistency assumptions (Robins, 1986) that if E = e∗, then

C1(e∗) = C1 w.p.1, if E = e∗ and C1 = c1, then M(c1, e
∗) = M w.p.1, if E = e∗ and M = m,

then Y (m, e∗) = Y w.p.1, and ifE = e∗, then Y (e∗) = Y w.p.1. Additionally, we adopt the stan-

dard set of positivity assumptions (Robins, 1986) that fM |C1,E,C0(m|C1, E,C0) > 0 w.p.1 for

each m ∈ supp(M), fC1|E,C0(c1|E,C0) > 0 w.p.1 for each c1 ∈ supp(C1), fE|C0(e∗|C0) > 0

w.p.1 for each e∗ ∈ {e′, e}.

To define the path-specific effect along the path E →M → Y , which we denote PEMY , we

begin by discussing the graph in Figure 1. This is a complete graph of all observed variables in the

sense that it includes all possible directed arrows that follow the natural temporal ordering. That

is, any variable may directly affect any other variable succeeding it under this graph. The graph

departs from the standard mediation graph (Baron and Kenny, 1986) in two important ways.

The first is with the presence of C1, which allows confounders of the effect of the mediator

on the outcome to be affected by the exposure. In our HIV context, C1 contains toxicity, which

is clearly affected by the treatment assignment and may confound the effect of adherence on

virologic failure. One way in which it might do this is on a biological level, toxicity might have

an interactive effect with the drugs on the outcome, allowed for by the presence of the directed
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arrow from C1 to Y in conjunction with the directed arrow from E to Y . Thus, toxicity is a

common cause of the outcome and adherence and, therefore, a confounder. Such a confounder

is known as a recanting witness, due to its role in telling two conflicting “stories" about how E

affects Y by being involved in two different pathway from E to Y – one involving M and the

other not. Avin et al. (2005) showed the natural (or pure) direct and indirect effects (NDE and

NIE, both highly popular in the mediation literature) (Robins and Greenland, 1992; Pearl, 2001)

to be unidentified in the presence of a recanting witness.

The second way the graph in Figure 1 departs from the standard mediation graph is by the

presence of the gray bidirected edges between C0, C1, and Y , each of which represents unob-

served common causes between the two nodes to which it points. In the HIV application, these

bidirected edges allow for the possibility of underlying biological factors which may be unob-

served common causes of toxicity, the outcome, and biological baseline measurements such as

viral load. The presence of these bidirected edges induces confounding of the effect of adherence

on the outcome via toxicity, even if the arrow directed from C1 to Y is absent. Since early adher-

ence (during the first six months) may confound the effect of adherence at a later stage (during the

subsequent six months) on the outcome, early adherence must be included in C1. Thus, PEMY

involves only later adherence, and neither toxicity nor early-stage adherence.

As described above, we wish to quantify the mediating role of adherence along PEMY in

Figure 1 which does not involve toxicity. Effects along such arbitrary (bundles of) causal path-

ways are known as path-specific effects (Pearl, 2000; Avin et al., 2005; Shpitser, 2013) and it

is possible to define them inductively, which results in a quantity that is a function of a nested

counterfactual (Shpitser, 2013). A general definition for the static-treatment and single-outcome

case is given by Pearl (2000) and Avin et al. (2005). Defining

β0 ≡ E[Y (M(e,C1(e′)),C1(e′), e′)]

δ0 ≡ E[Y (M(e′,C1(e′)),C1(e′), e′)],

the PEMY -specific effect, with respect to the comparison treatment value e and the baseline

treatment value e′ on the mean difference scale, is given by β0 − δ0. δ0 gives the mean outcome

had everyone been assigned to the reference treatment regimen. β0 gives the mean outcome had

everyone been assigned to the reference treatment regimen, and adhered as they would have based
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on the toxicity they experienced from this regimen, but otherwise as if they had been assigned

to the comparison treatment. This is the PEMY -specific effect since it captures the impact of

changing M(e′) to M(e,C1(e′)), which in turn would lead to an effect on Y only if M affects Y

directly when all patients are assigned to e′.

3. IDENTIFICATION

Before introducing our identification result, we must first introduce a model that relaxes the as-

sumption of independent errors of the Markovian model (Pearl, 2000) in a natural way. We

will associate this model with the graph in Figure 1. This model consists of a set of equa-

tions, one for each variable in the graph. With each random variable on the graph is associ-

ated a distinct, arbitrary function, denoted g, and a distinct random disturbance, denoted ε, each

with a subscript corresponding to its respective random variable. A component in a graph con-

nected by bidirected edges (i.e., connected when ignoring directed edges) is known as a district

(Richardson, 2009) or c-component (Tian and Pearl, 2002). The sets of random disturbances

corresponding to each district are assumed to be mutually independent of one another. That

is, {εC0 , εC1 , εY }, εE , and εM are mutually independent; εC0 , εC1 , and εY , however, are not.

Each variable is generated by its corresponding function, which depends only on all variables

that directly affect it (i.e., its parents on the graph), and its corresponding random disturbance, as

follows: C0 = gC0(εC0), E = gE(C0, εE), C1 = gC1(C0, E, εC1), M = gM(C0, E,C1, εM),

Y = gY (C0, E,C1,M, εY ).

Just as the Markovian model, the model we introduce is especially useful for making coun-

terfactual independence assumptions explicit. Take for instance the statement {Y (m, e′),C1(

e′)}⊥⊥M(c1, e)|C0. To see whether this statement holds in the context of the graph in Figure

1, observe what occurs when we intervene on the mechanism in one case to force the expo-

sure to be the comparison level, e, and set C1 to an arbitrary value c1: C0 = gC0(εC0), E = e,

C1 = c1,M(c1, e) = gM(C0, e, c1, εM), Y (c1, e) = gY (C0, e, c1,M(c1, e), εY ); and in another

case to force the exposure to be the reference level, e′, and set M to an arbitrary value m: C0 =

gC0(εC0), E = e′, C1(e′) = gC1(C0, e
′, εC1), M = m, Y (m, e′) = gY (C0, e

′,C1(e′),m, εY ).

Note that the only sources of stochasticity in M(c1, e) are C0 and εM , and the only sources of

stochasticity in {Y (m, e′),C1(e′)} are C0, εC1 , and εY . Hence the only source of dependence
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between the two is C0 since εM⊥⊥{εC1 , εY }, and they are independent conditional on C0. We are

now prepared to present our identification result, whose proof is provided in the supplementary

materials.

Theorem 1. Suppose the data-generating mechanism from which the observed data O are sam-

pled follows the relaxation of the Markovian model that we introduce above, represented by the

graph in Figure 1. Then β0 is identified under this model by the following functional of FO:

β0 =

∫∫∫
m,c1,c0

E(Y |m, c1, e′, c0)dF (m|c1, e, c0)dF (c1|e′, c0)dF (c0). (1)

Remark. The following conditions are sufficient for the same identification result, and are strictly

weaker than those implied by our model: for all m, c1, e, and e′, {Y (m, e′),C1(e′)}⊥⊥E|C0,

Y (m)⊥⊥M |C1, E,C0, M(c1, e)⊥⊥{C1, E}|C0, {Y (m, e′),C1(e′)}⊥⊥M(c1, e)|C0.

Theorem 1, in conjunction with the standard g-formula result δ0 =
∫
c0
E(Y |e′, c0)dF (c0)

(Robins, 1986), which holds under the assumption encoded on the diagram that Y (e′)⊥⊥E|C0,

identifies the PEMY -specific effect, β0 − δ0.

4. PATH-SPECIFIC INFERENCE

Thus far, we have only considered a nonparametric modelMnonpar for the observed data, mak-

ing our identifying functional of the PEMY -specific effect valid under any possible correct model

for the data. Unfortunately, we will seldom have the luxury to continue usingMnonpar through

the estimation stage; because inference inMnonpar is rarely practical in situations with numer-

ous or continuous confounders (C0,C1) (Robins et al., 1997), we will often be forced to posit

parametric models. Which models we are to fit depend on how we choose to estimate (1). We

now consider four estimators and the corresponding models needed to compute them. Note that,

while these estimators are in fact asymptotically equivalent under a nonparametric model, they

will have different asymptotic properties under parametric and semiparametric models (Tchet-

gen Tchetgen and Shpitser, 2012).
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4.1 Maximum Likelihood Estimation

We first discuss the maximum likelihood estimator (MLE) for β0. By considering the identifying

functional (1) as four nested expectations, it is clear that we can fit three appropriate regression

models with parameters γ1, γ2, and γ3 using maximum likelihood, and plug the predicted means

under these models into the functional; the outermost mean can then be estimated empirically. If

the conditional mean of Y is taken to be linear in M and C1, and the conditional mean of M is

taken as linear in C1, then mean models can be fit for Y , M , and C1. Thus, the MLE is

β̂mle ≡ Pn
{
Ê(Ê(Ê(Y |M,C1, e

′,C0; γ̂1)|C1, e,C0; γ̂2)|e′,C0; γ̂3)
}
,

where Pn denotes the empirical mean.

Define γ ≡ (γ1,γ2,γ3), g(γ) ≡ Ê(Ê(Ê(Y |M,C1, e
′,C0;γ1)|C1, e,C0;γ2)|e′,C0;γ3),

Dγ ≡ E[∇γg(γ)], and U(γ) and I(γ) to be the vector of score equations and block-diagonal

matrix of expected informations, respectively, for γ. Let γ0 be the true value of γ. Then β̂mle is

asymptotically normal with asymptotic variance equal to E[(g(γ0) + DT
γ0
I(γ0)U(γ0) − β0)2],

which can be estimated empirically, substituting γ̂ and β̂mle for γ0 and β0. The MLE is asymp-

totically efficient when the three regression models are correctly specified, hence this is the min-

imum variance achievable by regular, asymptotically linear estimators under the choice of model

Mpar of O. β̂mle will be consistent only under correct specification of the three models.

4.2 Multiply-Robust Estimation

The multiply-robust (MR) estimator, β̂mr, comes from an estimating equation involving the effi-

cient influence function of β0 in the modelMnonpar placing no restriction on the observed data

likelihood apart from the positivity assumptions given above. A derivation of this influence func-

tion is given in the supplementary materials. In order to express the estimator more succinctly,

we introduce additional notation: B(m, c1, e
′, c0) ≡ E(Y |m, c1, e′, c0), B′(c1, e′, e, c0) ≡ E{

E(Y |M, c1, e
′, c0)|c1, e, c0}, B′′(e′, e, c0) ≡ E[E{E(Y |M,C1, e

′, c0)|C1, e, c0}|e′, c0], M ratio

≡ f(M |C1, e,C0)/f(M |C1, e
′,C0), and Cratio

1 ≡ f(C1|e,C0)/f(C1|e′,C0). The estimator is

11
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then

β̂mr =Pn
{

1e′(E)

f̂(e′|C0)
M̂ ratio

{
Y − B̂(M,C1, e

′,C0)
}

+
1e(E)

f̂(e|C0)
(Ĉratio

1 )−1
{
B̂(M,C1, e

′,C0)− B̂′(C1, e
′, e,C0)

}
+

1e′(E)

f̂(e′|C0)

{
B̂′(C1, e

′, e,C0)− B̂′′(e′, e,C0)
}

+ B̂′′(e′, e,C0)

}
,

where 1e∗(·) is the indicator function, B̂′(C1, e
′, e,C0) = Ê{B̂(M,C1, e

′,C0)|C1, e,C0}, and

B̂′′(e′, e,C0) = Ê[Ê{B̂(M,C1, e
′,C0)|C1, e,C0}|e′,C0].

Note that the estimator is only a function of estimates of fM |C1,E,C0 and fC1|E,C0 through

the ratios M ratio and Cratio
1 and mean functions B′(C1, e

′, e,C0) and B′′(e′, e,C0). When the

mean of Y is linear inM , thenB′(C1, e
′, e,C0) only depends on the distribution ofM through its

conditional mean, E(M |C1, e,C0). Similarly, if in addition the means of Y andM are both linear

in C1, then B′′(e′, e,C0) only depends on the distribution of C1 through its conditional mean,

E(C1|e′,C0). We denote θM ≡ {B′(C1, e
′, e,C0),M ratio} and θC1 ≡ {B′′(e′, e,C0), Cratio

1 }.

B, θM , θC1 , and fE|C0 are estimated using low dimensional parametric working mod-

els, BW , θWM = {EW [BW (M,C1, e
′,C0)|C1, e,C0],M ratio;W}, θWC1

= {EW [B′W (C1, e, c0)|

e′,C0], Cratio:W
1 }, and fWE|C0

, via standard maximum likelihood. Note that we are able to avoid

estimating the densities for C1 and M by instead estimating their mean functions and density

ratios directly. Mean functions can be estimated with standard regression techniques, and density

ratios can be estimated using propensity score models since by Bayes’ theorem,

f(C1|e,C0)

f(C1|e′,C0)
=
f(e|C1,C0)

f(e′|C1,C0)
× f(e′|C0)

f(e|C0)

and
f(M |e,C1,C0)

f(M |e′,C1,C0)
=
f(e|M,C1,C0)

f(e′|M,C1,C0)
× f(e′|C1,C0)

f(e|C1,C0)
.

An attractive property of the multiply-robust estimator is its robustness to multiple types of

potential model misspecification. Let B̂, θ̂M, θ̂C1 , and f̂E|C0 denote estimators ofBW , θWM , θWC1
,

and fWE|C0
consistent under correct specification. The mean functions in θM and θC1 require

correct specification of the functions of M and C1 based on the working models for Y and
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{M,Y }, respectively, so that θWM and θWC1
can be correctly specified regardless of whetherBW is,

and θWC1
can be correctly specified regardless of whether θWM is. The multiply-robust estimator is

consistent and asymptotically normal (under standard regularity conditions) provided that one of

the following holds: (a) {θM , fE|C0} ∈ {θWM , fWE|C0
}, (b) {B,θC1 , fE|C0} ∈ {BW ,θWC1

, fWE|C0
},

(c) {B,θC1 ,θM} ∈ {BW ,θWC1
,θWM }. That is, β̂mr offers three distinct opportunities to obtain

valid inference about the path-specific effect. By contrast, β̂mle will be consistent only if a slightly

weaker form of (c) holds, where M ratio;W and Cratio;W
1 need not be correctly specified.

For inference on β̂mr, we recommend the nonparametric bootstrap (Efron, 1979) or similar

alternative resampling methods such as the wild bootstrap (Mammen, 1993) for nonparametric

variance estimation. Due to its reliance on inverse-propensity-score weights, this estimator may

suffer from instability in settings where the set of positivity assumptions is nearly violated (Kang

and Schafer, 2007). A useful stabilization technique is to simply replace any propensity score

f̂E|X with f̂ †E|X, where X is some vector of covariates and logitf̂E|X(e|X) = logitf̂E|X(e|X)

− log(1 − Pn(1e(E))) + log(Pn[1e(E)f̂E|X(e′|X)/f̂E|X(e|X)]), which ensures the weights are

bounded as discussed in Tchetgen Tchetgen and Shpitser (2012). An additional stabilization

technique is given in the supplementary materials.

4.3 Other Estimators

We consider two additional estimators, both based on alternative representations of (1) as shown

in the supplementary materials:

β̂a ≡ Pn

{
1e′(E)

f̂(e′|C0)
M̂ ratioY

}

β̂b ≡ Pn

{
1e(E)

f̂(e|C0)
(Ĉratio

1 )−1Ê(Y |M,C1, e
′,C0)

}
,

which again involve plugging in estimated regression models and density curves f̂(e|M,C1,C0),

f̂(e|C1,C0), and f̂(e|C0). Note that β̂a and β̂b depend only on a subset of the models in the

multiple-robustness conditions (a) and (b), respectively. It follows that β̂a will generally be con-

sistent only if a slightly weaker form of (a) holds, where B′W need not be correctly specified.

Similarly, β̂b will be consistent only if a slightly weaker form of (b) holds, where B′′W need not
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be correctly specified. In settings with practical violations of positivity, stability of both estima-

tors can be improved using the stabilization technique given in Section 4.2.

5. SIMULATION STUDY

We report results for a simulation study in which we generated 1000 data sets of size 1000 from

the following models:

C0 ∼ U(0, 2)

E|C0 ∼ Bernoulli
(
1− (1 + exp(0.9 + 0.3C0))

−1)
C1 =


0.8

0.6

−0.3

+


1

0.1

0.2

C0 +


0.5

−0.4

0.5

E +


−0.1

0.8

−0.2

C0E +N (0, I)

M = −0.5− 0.2C0 + 0.3E + [−0.2, 0.1, 0.5]C1 + [0.4, 0, 0]EC1 +N(0, 1)

Y = 0.2 + 0.2C0 + 0.6E + [1, 0.7, 0.3]C1 − 0.9M − 0.8EM +N(0, 1).

In order to investigate the impact of model misspecification, we computed each of the four esti-

mators given above, β̂mr, β̂mle β̂a, and β̂b, under the four parametric models,Ma,Mb,Mc, and

Mint. ModelsMa,Mb, andMc were specified such that statements (a)-(c) in Section 4.2 cor-

responding to their respective subscripts held, but the models for the remaining estimands were

incorrectly specified. For instance, under Ma, models θWM and fWE|C0
are correctly specified,

while BW and θWC1
are not. The intersection model uses correctly-specified working models. All

models were fit by maximum likelihood. The stabilization technique described in Section 4.2

was used to adjust propensity scores. We used the following working models, subscripted C for

correctly specified and I for incorrectly specified:

fWE|C0
:

Correct: logit PrC{E = 1|C0} = [1, C0]αC

Incorrect: Φ−1(PrI{E = 1|C0}) = [1, C0]αI

BW :

Correct: EC [Y |M,C1, E, C0] = [1, C0, E,C1,M,EM ]ηC
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Incorrect: EI [Y |M,C1, E, C0] = [1, C0, E,C1,M ]ηI

θWC1
:

Correct: Cratio;W
1 = PrC(E = e|C1, C0)/PrC(E = e′|C1, C0) × PrC(E = e′|C0)PrC(E =

e|C0), which depends on the correctly-specified fWE|C0
model and the correctly-specified model

logit PrC{E = 1|C1, C0} = [1, C0, C
2
0 ,C1, C0C1]λC ;

B′′C(e′, e, C0) = EC [EC{EC(Y |M,C1, e
′, C0)|C1, e, C0}|e′, C0], which depends on the correctly-

specified BW model and the correctly-specified models EC [C1j|E,C0] = [1, C0, E, C0E]δj;C ∀

j ∈ {1, 2, 3} and EC [M |C1, E, C0] = [1, C0, E,C1, EC11]ζC .

Incorrect: Cratio;W,I
1 = PrI(E = e|C1, C0)/PrI(E = e′|C1, C0)×PrC(E = e′|C0)/PrC(E =

e|C0), which depends on the correctly-specified fWE|C0
model and the incorrectly-specified model

logit PrI{E = 1|C1, C0} = [1, C0,C1]λI ;

B′′I (e′, e, C0) = EI [EC{EI(Y |M,C1, e
′, C0)|C1, e, C0}|e′, C0], which depends on the incorrectly-

specified BW model, the correctly-specified working mean model for M used for B′′C(e′, e, C0)

above, and the incorrectly-specified model EI [C1j|E,C0] = [1, C0, E]δj,I , since θWC1
is only

misspecified in setting (a), under which BW is also misspecified and θWM is correctly specified.

θWM :

Correct: M ratio;W,C = PrC(E = e|M,C1, C0)/PrC(E = e′|M,C1, C0) × PrC(E = e′|

C1, C0)/PrC(E = e|C1, C0), which depends on the correctly-specified model logit PrC{E =

1|M,C1, C0} = [1, C0, C
2
0 ,C1, C0C1, C11C1,M,C11M ]γC and the correctly-specified logistic

model used for Cratio;W
1 above;

B′C(C1, e
′, e, C0) = EC{EC(Y |M,C1, e

′, C0)|C1, e, C0} depends on the correctly-specifiedBW

model and the correctly-specified mean model for M used for B′′C(e′, e, C0) above.

Incorrect: M ratio;W,I = PrI(E = e|M,C1, C0)/PrI(E = e′|M,C1, C0) × PrC(E = e′|C1,

C0)/PrC(E = e|C1, C0), which depends on the correctly-specified logistic model for PrC{E =

1|C1, C0} and the incorrectly-specified model logit PrI{E = 1|M,C1, C0} = [1, C0,C1,M ]γI ;

B′I(C1, e
′, e, C0) = EI{EC(Y |M,C1, e

′, C0)|C1, e, C0}, which depends on the incorrectly-spec-

ified model EI [M |C1, E, C0] = [1, C0, E,C1]ζI and the correctly-specified model BW,C , since

θWM is only misspecified in setting (c), under which BW is correctly specified.

The results are summarized in the plot displayed in Figure 2 that shows the four point esti-

mates under each model and their corresponding 95% confidence intervals. The point estimates
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Figure 2: Simulation results for n=1000. Monte Carlo point estimates and confidence intervals
of each of the four PEMY -specific estimators are given under Mint, Ma, Mb, and Mc. The
horizontal dashed line is through the true parameter value, β0.

are the Monte Carlo means of the 1000 samples and the confidence intervals are the values within

t999,0.975 times the corresponding Monte Carlo standard errors of the point estimates. The confi-

dence intervals correspond to t tests of H0 : β̂ = β0 ≡ 2.678, hence the confidence intervals not

containing β0, represented by the horizontal dashed line, correspond to rejection of H0.

All estimators are consistent underMint. Besides β̂mr, β̂a is the only consistent estimator

underMa, β̂b is the only consistent estimator underMb, and β̂mle is the only consistent estimator

underMc. β̂mr is consistent under all models. Therefore, in moderate to large samples, we expect

to reject H0 at the nominal α = 0.05 level for none of the estimators underMint, only for β̂b and

β̂mle underMa, only for β̂a and β̂mle underMb, and only for β̂a and β̂b underMc.

The results illustrate quite well the multiple-robustness property of β̂mr. As predicted, while

the other estimators failed to estimate β0 without statistically-significant bias, the tests for β̂mr

failed to reject under every model. For the other estimators, the tests never rejected underMint

and their corresponding models where the misspecified components did not factor into estimation,

as expected. That is, the test for β̂a did not reject underMa, the test for β̂b did not reject under
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Mb, and the test for β̂mle did not reject underMc. The tests did reject, however, under the other

models, with the exception of β̂c underMb. Thus, all estimators other than β̂mr were significantly

biased under at least one model.

We do see a tradeoff between efficiency and robustness; in all settings, β̂mle and β̂b perform

best in terms of efficiency, with a slight advantage going to β̂mle. As such, a reasonable strategy

may be to use these estimators in concert initially to diagnose model specification, and then select

the most efficient estimator that appears to agree with the multiply-robust estimator, possibly β̂mr

itself.

Other sample sizes were also explored. At n = 500, asymptotic results began to come into

focus, though a few of the tests expected to reject looked to be slightly underpowered due to

the sample not being large enough. Still, the multiply-robust estimator outperformed the other

estimators at this sample size in terms of robustness. At n = 5000, confidence intervals were

tighter, as expected, but t test results were the same as those at n = 1000. The simulation

study with n = 1000 is comparable to our data analysis in terms of sample size; every treatment

comparison consisted of at least 1000 patients.

6. HARVARD PEPFAR NIGERIA ANALYSIS

We now present results of the Harvard PEPFAR data analysis. The data set consisted of 9968

complete observations, i.e., observations with no missing variables, which was 41.9% of the

entire data set. We first consider the path-specific effect of treatment regimen assignment on

virologic failure through adherence, expressed on the log-risk ratio scale. We used each of the

four estimators for β0 from Section 4, and in each case, δ0 was estimated using only a subset

of the models used to estimate β0. In particular, the doubly-robust estimator (Bang and Robins,

2005) was used to estimate δ0 when contrasted with β̂b and the multiply-robust estimator, β̂mr;

the inverse-probability-weighted estimator (IPW) (Horvitz and Thompson, 1952) was used to es-

timate δ0 when contrasted with β̂a; and the MLE was used to estimate δ0 when contrasted with the

MLE for the β0, β̂mle. Accordingly, let P̂EMY ;mle denote the effect estimate using β̂mle, P̂EMY ;a

denote the effect estimate using β̂a, P̂EMY ;b denote the effect estimate using β̂b, and P̂EMY ;mr de-

note the effect estimate using β̂mr. We computed all four estimates and corresponding bootstrap

confidence intervals for each pairwise comparison of treatments. The wild bootstrap (Mammen,
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1993) with weights sampled from Exp(1) was used to account for instability of resamples due

to a small number of cases in some strata of E. Results are summarized in Figure 1 of the

supplementary materials.

P̂EMY ;a agreed with P̂EMY ;mr across all comparisons, suggesting that it did not suffer much

from model misspecification, or at least any worse than did P̂EMY ;mr. It also proved to be the

more efficient estimator in this setting, with confidence intervals that were narrower than those

of P̂EMY ;mr, and comparable to those of P̂EMY ;mle, which did not appear to be as robust. Thus,

we chose to perform inference using P̂EMY ;a for this portion of the analysis.

Recall that the treatment regimens were coded in descending order of magnitude of their

total effects on risk of virologic failure, i.e., they were coded in ascending order of counterfactual

risk of virologic failure had everyone been assigned to that treatment, since a lower counterfactual

risk of failure corresponds to a higher magnitude of total effect. Because in practice we are more

interested in learning how less-effective treatments can be improved, we only consider the higher-

coded treatment in a pair as the baseline, e′. Using this ordering, the path-specific effect gives

the improvement over the total effect of the less-effective treatment when intervening to make

patients adhere as if they were on the more-effective treatment, but had the toxicity and direct

effectiveness of the less-effective treatment.

We are primarily interested in the proportion of the total effect attributable to the mediated

effect, i.e., the percent mediated by PEMY . If this proportion is close to or exceeds one, we can

conclude that the drugs themselves likely have the same effectiveness on virologic failure, and

that it is their differential effect on adherence not due to toxicity that is driving the difference in

total effects. If, on the other hand, this proportion is small or negative, we can only say that the

difference in total effects is not driven by a difference in effects through PEMY . It may be the

case that the efficacies of the drugs themselves do, in fact, differ, or that the difference in total

effects is driven by the differential effect on adherence due to toxicity, but we cannot confirm

either. Table 2 shows P̂EMY ;a divided by the total effect estimates, which are also on the log-risk

ratio scale and are estimated by IPW. Superscripts indicate the comparisons with significant and

marginally-significant path-specific effects. Due to the treatment coding, the denominators of

the Table 2 values are always negative. Thus, a negative path-specific effect will be in the same

direction as the total effect, and hence will explain a positive proportion of it.
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Table 2: Proportion of total effect on virologic failure due to PEMY -specific effect

Baseline treatment
Comparison trt 2 3 4 5

1 0.41† 0.21 -0.059 -0.068∗

2 - 0.13 -0.49∗ -0.20∗

3 - - -0.57† -0.13∗

4 - - - -0.027†

NOTE: ∗Significant path-specific effect (α = 0.05). †Marginally-significant path-specific effect
(α = 0.1).

Note that all significant and marginally-significant proportions of total effects due to the ef-

fects through PEMY were negative apart from the one comparing treatment 1 (TDF+3TC/FTC+

EFV) to baseline treatment 2 (d4T+3TC+NVP). This occurs when the PEMY -specific effect

estimate is in the opposite direction of the total effect estimate, suggesting that directionally-

opposite effects through other pathways overwhelm our estimated effect, and that the total effect

would have been even greater if not for the PEMY -specific effect. For example, had the PEMY -

specific effect been null in the case comparing treatment 3 (AZT+3TC+EFV) with treatment 5

(TDF+3TC/FTC+NVP), we estimate that the total effect would have been 13% larger. The effect

of treatment 3 is stronger than 5 not because of its effect through PEMY , but in spite of it. All

differences between treatment 5 and another treatment, and all differences between treatment 4

(AZT+3TC+NVP) and another treatment besides 1 were observed to exhibit this phenomenon as

well.

Now consider the exception noted above: the comparison of treatment 1 (TDF+3TC/FTC+

EFV) to baseline treatment 2 (d4T+3TC+NVP). We saw a marginally-negative effect, which

would have the following interpretation: the effect of treatment 2 on the risk of virologic failure

would be improved by patients adhering as if they were assigned to treatment 1, but still had the

same toxicity that they did on treatment 2. Unfortunately, treatment 2 is known to have toxicities

that were not measured in this data set that are likely to also be affected by underlying biological

causes of virologic failure. This interpretation cannot even be considered to be valid for the effect

through these unmeasured toxicities, since they induce unmeasured confounding that once again

renders this effect unidentifiable. If there were no unmeasured toxicities, we would interpret this
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effect as accounting for an estimated 41% of the differences in total effects between treatments 1

and 2.

In conclusion, of the significant PEMY -specific effects we observed, all apart from those

involving unmeasured toxicities were countervailing to the total effect. This means that for these

treatment pairs, the differences in their total effects on virologic failure would have been even

greater if not for the effect along PEMY . Thus, the effect through PEMY does not explain the

differential effects on virologic failure, and in some cases actually works against them. As men-

tioned above, the differential effects may instead be due to the drugs themselves differing in

efficacy, or they may be driven by the differential effects on adherence due to toxicity, but such

hypotheses require further investigation beyond the scope of our analysis.

We now consider the path-specific effect of treatment regimen assignment on log CD4 count,

expressed on the mean difference scale. We again analyzed the four estimators given in Section

4. This time P̂EMY ;a and P̂EMY ;b were drastically less efficient than P̂EMY ;mle and P̂EMY ;mr.

One possible explanation for this is that the density of log CD4 count was less concentrated

around zero, making P̂EMY ;a and P̂EMY ;b more sensitive to small weights. P̂EMY ;mle disagreed

with P̂EMY ;mr on several occassions, so P̂EMY ;mr was the best choice in terms of achieving both

robustness and efficiency. It is worth noting that the linear outcome model for CD4 count did not

seem to suffer too much from misspecification, while the logistic outcome model for virologic

failure did. Results are summarized in Figure 2 of the supplementary materials.

Table 3 shows P̂EMY ;mr divided by the total effect estimates, which are also on the log-risk

ratio scale and are estimated using doubly-robust estimators. As before, we are interested in

Table 3: Proportion of total effect on CD4 count due to PEMY -specific effect

Baseline treatment
Comparison trt 3 1 5 2

4 0.48∗ 0.095 -0.045† 0.036
3 - -0.47 -0.13 0.030
1 - - -0.080 0.062
5 - - - 0.099

NOTE: ∗Significant path-specific effect (α = 0.05). †Marginally-significant path-specific effect
(α = 0.1).
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learning how the less-effective treatment can be improved, but now less-effective is in terms of

CD4 count. Since the order of the effectiveness of the treatments for CD4 count is not the same as

the order for virologic failure, the treatments which should be considered the comparison versus

baseline level in a pair no longer correspond to the treatment coding. The order of the treatments

in the margins of Table 3 is rearranged to reflect this different ordering of effectiveness. The de-

nominator for each of the values in the table is positive, since a higher counterfactual CD4 count

corresponds to a higher magnitude of total effect. Therefore, positive proportions correspond to

positive path-specific effects, and negative proportions correspond to countervailing path-specific

effects.

The path-specific effect was found to be significant for only one of the pairwise compar-

isons: treatment 4 (AZT+3TC+NVP) vs. treatment 3 (AZT+3TC+EFV). This effect is estimated

to be in the positive direction, therefore we conclude that the effect of treatment 3 on CD4 count

would be improved by patients adhering as if they were assigned to treatment 4 but without nec-

essarily altering toxicity experienced under treatment 3 that they did on treatment 3. The effect

through this pathway accounted for almost half of the total effect at an estimated 48%. Thus,

if one were interested in improving the effect of AZT+3TC+EFV on CD4 count, it would be

worthwhile to examine what mechanisms other than toxicity may be implicated in differential

adherence rates between these two regimens. The PEMY -specific effect comparing treatments 4

and 5 (TDF+3TC/FTC+NVP) was found to be marginally-significantly less than zero. Thus, the

difference in total effects of these two treatments is not attributable to their differential effect on

adherence not due to toxicity, as the effect through this pathway was in fact in the opposite direc-

tion. Rather, this difference was due to differential effects through other pathways as previously

described.

7. DISCUSSION

In the PEPFAR case study, we observed an interesting trend of countervailing effects alongPEMY

to the total effects on virologic failure for most treatment comparisons, meaning that the differ-

ences in the total effects of treatment assignment would have been even greater if not for the

effects along PEMY . While this does not help explain why the treatment assignment effects are

different (or at least different in the direction that we observe), it does suggest a method for im-
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proving the regimens that we observed to have greater effects on virologic failure. For a treatment

comparison with a significant PEMY -specific effect, if we could identify what is different about

the more effective drug regimen that is causing people to not adhere to it as well, then we could

potentially eliminate this mechanism in order to reduce the countervailing PEMY -specific effect

and consequently improve its total effect on virologic failure.

A countervailingPEMY -specific effect on CD4 count was also observed between AZT+3TC+

NVP and TDF+3TC/FTC+NVP, which has the same interpretation as the countervailing ef-

fects on virologic failure. On the other hand, almost half of the difference in the effects of

AZT+3TC+EFV and AZT+3TC+NVP on CD4 count was found to be attributable to the effect

through adherence, but not toxicity. This suggests that the effect of AZT+3TC+EFV on CD4

count could be improved up to that of AZT+3TC+NVP if one could identify and eliminate the

mechanisms driving the difference in these treatments’ effects on adherence. In the other treat-

ment comparisons, none of the differences in total effects on CD4 count were found to be at-

tributable to an effect through PEMY . Overall, we have achieved an enhanced understanding of

the role of adherence in the effects of the five ART regimens considered on both virologic failure

and CD4 count.

The most significant methodologic contribution of this paper is the extension of mediation

analysis methods to settings in which the NDE and NIE may not be identified, viz. settings

with unmeasured confounding and exposure-induced confounding of the mediator. We present

conditions under which the PEMY -specific effect is nonparametrically identified as well as four

estimators, including an efficient estimator that is multiply robust to model misspecification for

settings where nonparametric estimation is not feasible.

Often effects of adherence are evaluated regarding the treatment assignment as an instrumen-

tal variable, relying on an assumption of no direct effect of assignment with respect to adherence.

Furthermore, instrumental variable methods rely on an assumption of monotonicity in the effect

of assignment on adherence. However, neither of these assumptions are reasonable in our setting

where we are forced to compare treatments head-to-head rather than to a control exposure level.

This paper suffers from a few limitations. One is that our identifiability assumptions, though

weaker than those of the Markovian model, are still untestable as stated. When possible, we can

embed our mediation problem in a larger model represented by a larger graph where treatments
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can be split into a component corresponding to the EMY pathway and a component correspond-

ing to all other pathways. This can provide a testable reformulation of identifying assumptions,

as was done in Robins and Richardson (2010) in simpler mediation contexts. Another limitation

is that this method is not yet equipped to handle missing data. As such, only a complete-case

analysis was conducted for the HIV data, allowing for the possibility of bias due to informative

missingness. Additionally, for both virologic failure and CD4 count outcomes, it is possible that

we are underestimating the effect of substantive interest if adherence over the first six months

plays a large mediating role since we are forced to control for early adherence and can only esti-

mate the effect through adherence over the second six months. Finally, not a limitation, but rather

a caveat, is that the PEMY -specific effect is not a substitute for the NIE. The NIE is not fully cap-

tured by this effect and, in fact, even if the effects along both PEMY and E → C1 → M → Y

are in the same direction, the NIE does not necessarily have to be. Strong assumptions are needed

to draw this conclusion. As such, while often practically meaningful, the PEMY -specific effect

must be interpreted with care and not blindly substituted for the NIE.

Future directions for this work would, of course, include adjusting the method to account

for missing data, which could improve the analysis conducted in this paper. Another important

extension would be to the full longitudinal case, with repeated exposures, mediators, and con-

founders. Shpitser (2013) gives the identifying functional for the analog to the PEMY -specific

effect in this setting, but no estimation strategy exists as of yet. Finally, it is not uncommon for a

mediator to be measured with error, which tends to induce bias as shown by VanderWeele et al.

(2012). It would be valuable to adapt the methods of Tchetgen Tchetgen and Lin (2012) for

handling this problem to our setting. Alternatively, parametric approaches have been suggested

(Valeri et al., 2014) that could also potentially be adapted.

8. SUPPLEMENTARY MATERIALS

All supplementary materials are contained in a single archive and can be obtained via a single

download.

Proofs and theoretical results: We prove Theorem 1, derive the four estimation strategies, de-

rive the efficient influence function of β0, and a prove its robustness. (PDF file)

23

Hosted by The Berkeley Electronic Press



Additional stabilization technique for the multiply-robust estimator: We present an additional

method to account for instability of the multiply-robust estimator due to near-positivity vi-

olations. (PDF file)

Plots comparing estimators in the PEPFAR Nigeria study: Plots summarizing the estimation

results for the PEMY -specific effect on virologic failure and CD4 count using the four

estimators. These plots were used to assess model misspecification and select the most

appropriate estimator. (PDF file)
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A. PROOFS AND THEORETICAL RESULTS

A.1 Identification Result Proof

Proof of Theorem 1.

β0 ≡ E[Y (M(C1(e′), e),C1(e′), e′)]

=

∫
c0,c1,m,y

ydFY (M(C1(e′),e),C1(e′),e′),M(C1(e′),e),C1(e′),C0(y,m, c1, c0)

=

∫∫
c0,c1,m,y

ydFY (m,e′),M(c1,e),C1(e′)|C0(y,m, c1|c0)dFC0(c0)

=

∫∫∫
c0,c1,m,y

ydFY (m,e′),C1(e′)|C0(y, c1|c0)dFM(c1,e)|C0(m|c0)dFC0(c0) (2)

=

∫∫∫
c0,c1,m,y

ydFY (m,e′),C1(e′)|E,C0(y, c1|e′, c0)dFM(c1,e)|C0(m|c0)dFC0(c0) (3)

=

∫∫∫
c0,c1,m,y

ydFY (m),C1|E,C0(y, c1|e′, c0)dFM(c1,e)|C0(m|c0)dFC0(c0) (4)

=

∫∫∫∫
c0,c1,m,y

ydFY (m)|C1,E,C0(y|c1, e′, c0)dFM(c1,e)|C0(m|c0)dFC1|E,C0(c1|e′, c0)dFC0(c0)

=

∫∫∫∫
c0,c1,m,y

ydFY (m)|M,C1,E,C0(y|m, c1, e′, c0)dFM(c1,e)|C1,E,C0(m|c1, e, c0)

× dFC1|E,C0(c1|e′, c0)dFC0(c0) (5)

=

∫∫∫∫
c0,c1,m,y

ydFY |M,C1,E,C0(y|m, c1, e′, c0)dFM |C1,E,C0(m|c1, e, c0)

× dFC1|E,C0(c1|e′, c0)dFC0(c0), (6)

where (2) follows from {Y (m, e′),C1(e′)}⊥⊥M(c1, e)|C0, (3) follows from {Y (m, e′),C1(e′)}

⊥⊥E|C0, (4) follows by consistency, (5) follows from Y (m)⊥⊥M |C1, E,C0 and M(c1, e)⊥⊥

{C1, E}|C0, and (6) follows by consistency.
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A.2 Derivation of Estimation Strategies

A.2.1 Maximum Likelihood Estimator

The maximum likelihood estimator arises from the alternative representation of (1):∫∫∫
m,c1,c0

E(Y |m, c1, e′, c0)dFM |C1,E,C0(m|c1, e, c0)dFC1|E,C0(c1|e′, c0)dFC0(c0)

= E(E(E(E(Y |M,C1, e
′,C0)|C1, e,C0)|e′,C0)).

We replace the inner three expectations with their arguments’ means under the empirical laws

f̂C1|e′,C0 , f̂M |C1,e,C0 , and f̂Y |M,C1,e′,C1 respectively, and compute the empirical mean. Thus, we

have

β̂mle ≡ Pn
{
Ê(Ê(Ê(Y |M,C1, e

′,C0)|C1, e,C0)|e′,C0)
}
.

A.2.2 Estimator a

β̂a arises from another alternative representation of (1):∫∫∫
m,c1,c0

E(Y |m, c1, e′, c0)dFM |C1,E,C0(m|c1, e, c0)dFC1|E,C0(c1|e′, c0)dFC0(c0)

=
∑

e∗∈{e′,e}

∫
y,m,c1,c0

y
1e′(e

∗)

f(e′|c0)

f(m|c1, e, c0)

f(m|c1, e∗, c0)
dFY,M,C1,E,C0(y,m, c1, e

∗, c0)

= E
{
Y

1e′(E)

f(e′|C0)

f(M |C1, e,C0)

f(M |C1, e′,C0)

}
.

We simply plug in the empirical laws, f̂E=0|C0 , f̂M |C1,e,C0 , and f̂M |C1,e′,C0 for fE=0|C0 , fM |C1,e,C0 ,

and fM |C1,e′,C0 respectively, and compute the empirical mean. Thus, we have

β̂a ≡ Pn

{
Y

1e′(E)

f̂(e′|C0)

f̂(M |C1, e,C0)

f̂(M |C1, e′,C0)

}
.
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A.2.3 Estimator b

β̂b arises from a third representation of (1):∫∫∫
m,c1,c0

E(Y |m, c1, e′, c0)dFM |C1,E,C0(m|c1, e, c0)dFC1|E,C0(c1|e′, c0)dFC0(c0)

=
∑

e∗∈{e′,e}

∫
m,c1,c0

E(Y |M,C1, e
′,C0)

1e(e
∗)

f(e∗|c0)

f(c1|e′, c0)

f(c1|e∗, c0)
dFM,C1,E,C0(m, c1, e

∗, c0)

= E
[

1e(E)

f(e|C0)

f(C1|e′,C0)

f(C1|e,C0)
E(Y |M,C1, e

′,C0)

]
.

Again, we plug in the empirical laws f̂C1|e′,C0 , f̂C1|e,C0 , and f̂E=1|C0 for fC1|e′,C0 , fC1|e,C0 , and

fE=1|C0 , respectively, replace E(Y |M,C1, e
′,C0) with Ê(Y |M,C1, e

′,C0), the expectation of

Y under the empirical law f̂Y |M,C1,e′,C0 , and compute the empirical mean. Thus, we have

β̂b ≡ Pn

{
1e(E)

f̂(e|C0)

f̂(C1|e′,C0)

f̂(C1|e,C0)
Ê(Y |M,C1, e

′,C0)

}
.

We develop the multiply-robust estimator and prove its robustness properties in the following two

sections.

A.3 Derivation of the Influence Function

Theorem 2. The efficient influence function of β0 in modelMnonpar is given by

V eff (β0) =
1e′(E)f(M |e,C1,C0)

f(M |e′,C1,C0)f(e′|C0)
{Y −B(M,C1, e

′,C0)}

+
1e(E)f(C1|e′,C0)

f(C1|e,C0)f(e|C0)
{B(M,C1, e

′,C0)−B′(C1, e
′, e,C0)}

+
1e′(E)

f(e′|C0)
{B′(C1, e

′, e,C0)−B′′(e′, e,C0)}+ {B′′(e′, e,C0)− β0},

implying that the asymptotic variance of a regular, asymptotically linear (RAL) estimator of β0

in modelMnonpar can be no smaller than E{V eff (β0)
2}−1, the semiparametric efficiency bound

for the model.
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β̂mr is obtained simply by solving the estimating equation V eff (β0) for β0. Since our model

is nonparametric, the asymptotic variance is the same for any estimator inMnonpar so long as it

is RAL. Furthermore, since all such estimators share the common influence function V eff (β0),

they also share a common asymptotic expansion, viz. n1/2(β̂0 − β0) = n1/2PnV eff (β0) + op(1),

where Pn denotes the empirical mean.

Proof. Let ν denote the appropriate dominating measure or product measure corresponding to

each combination of random variables. Let FO;t = FY |M,C,E,C0;tFM |C1,E,C0;tFC1|E,C0;tFE|C0;tFC0;t

denote a one-dimensional regular parametric submodel ofMnonpar with FO,0 = FO, and let

βt = β0(FO;t) = Et(Y (M(e,C1(e′)),C1(e′), e′))

=

∫
m,c1,c0

Et(Y |m, c1, e′, c0)ft(M = m|c1, e, c0)ft(C1 = c1|e′, c0)ft(C0 = c0)dν(m, c1, c0)

and UO = Ot=0ft(O)
f(O)

be the score for O. Then

∂βt
∂t

∣∣∣∣
t=0

=∫
m,c1,c0

Ot=0Et(Y |m, c1, e′, c0)f(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(m, c1, c0)

(7)

+

∫
m,c1,c0

E(Y |m, c1, e′, c0)Ot=0ft(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(m, c1, c0)

(8)

+

∫
m,c1,c0

E(Y |m, c1, e′, c0)f(M = m|c1, e, c0)Ot=0ft(C1 = c1|e′, c0)f(C0 = c0)dν(m, c1, c0)

(9)

+

∫
m,c1,c0

E(Y |m, c1, e′, c0)f(M = m|c1, e, c0)f(C1 = c1|e′, c0)Ot=0ft(C0 = c0)dν(m, c1, c0),

(10)

28

http://biostats.bepress.com/harvardbiostat/paper186



where

(7) =

∫
m,c1,c0

Ot=0Et(Y |m, c1, e′, c0)f(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(m, c1, c0)

=

∫
m,c1,c0

∫
y

y

{
Ot=0ft(y,m, c1, e

′, c0)

f(m, c1, e′, c0)
− f(y,m, c1, e

′, c0)Ot=0ft(m, c1, e
′, c0)

f(m, c1, e′, c0)2

}
dν(y)

× f(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(m, c1, c0)

=

∫
y,m,c1,c0

{
y
Ot=0ft(y,m, c1, e

′, c0)

f(m, c1, e′, c0)
− Ot=0ft(m, c1, e

′, c0)

f(m, c1, e′, c0)
E(Y |m, c1, e′, c0)f(y|m, c1, e′, c0)

}
× f(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(y,m, c1, c0)

=

∫
y,m,c1,e∗,c0

{
y
Ot=0ft(y,m, c1, e

∗, c0)

f(m, c1, e′, c0)
− Ot=0ft(m, c1, e

∗, c0)

f(m, c1, e′, c0)
E(Y |m, c1, e′, c0)f(y|m, c1, e′, c0)

}
× 1e′(e

∗)f(M = m|c1, e, c0)f(C1 = c1|e′, c0)f(C0 = c0)dν(y,m, c1, e
∗, c0)

=E
[

1e′(E)f(M |C1, e
′,C0)f(C1|e′,C0)f(C0)

f(Y,M,C1, E,C0)

×
{
Y
Ot=0ft(Y,M,C1, E,C0)

f(M,C1, e′,C0)
− f(Y |M,C1, e

′,C0)
Ot=0ft(M,C1, E,C0)

f(M,C1, e′,C0)
B(M,C1, e

′,C0)

}]
=E

[
1e′(E)f(M |C1, e,C0)f(C1|e′,C0)f(C0)

f(Y,M,C1, E,C0)f(M,C1, e′,C0)
{Y Ot=0ft(Y,M,C1, E,C0)

−[Ot=0ft(Y,M,C1, E,C0)− f(M,C1, e
′,C0)Ot=0ft(Y |M,C1, E,C0)]B(M,C1, e

′,C0)}
]

=E
[
Ot=0ft(Y,M,C1, E,C0)

f(Y,M,C1, E,C0)
× 1e′(E)f(M |C1, e,C0)

f(M |C1, e′,C0)f(E = e′|C0)
{Y −B(M,C1, e

′,C0)}
]

+

∫
m,c1,c0

f(c1|e′, c0)f(m|c1, e, c0)f(c0)Ot=0

{∫
y

ft(y|m, c1, e′, c0)dν(y)

}
×B(m, c1, e

′, c0)dν(m, c1, c0)

=E
[
UO

1e′(E)f(M |C1, e,C0)

f(M |C1, e′,C0)f(E = e′|C0)
{Y −B(M,C1, e

′,C0)}
]
,

(8) =

∫
m,c1,c0

E(Y |m, c1, e′, c0)

{
Ot=0ft(m, c1, e, c0)

f(c1, e, c0)
− Ot=0ft(c1, e, c0)f(m, c1, e, c0)

f(c1, e, c0)2

}
× f(c1|e′, c0)f(c0)dν(m, c1, c0)
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=

∫
m,c1,c0

E(Y |m, c1, e′, c0)
Ot=0ft(m, c1, e, c0)

f(c1, e, c0)
f(c1|e′, c0)f(c0)dν(m, c1, c0)

−
∫

c1,c0

Ot=0ft(c1, e, c0)

f(c1, e, c0)
E(E(Y |m, c1, e′, c0)|c1, e, c0)f(c1|e′, c0)f(c0)dν(c1, c0)

=

∫
m,c1,c0

f(c1|e′, c0)f(c0)

f(c1, e, c0)

{
Ot=0ft(m, c1, e, c0)E(Y |m, c1, e′, c0)

− Ot=0ft(c1, e, c0)f(m|c1, e, c0)B′(c1, e
′, e, c0)

}
dν(m, c1, c0)

=

∫
m,c1,c0

f(c1|e′, c0)

f(c1|e, c0)f(e|c0)

{
Ot=0ft(m, c1, e, c0)E(Y |m, c1, e′, c0)

− [Ot=0ft(m, c1, e, c0)− f(c1, e, c0)Ot=0ft(m|c1, e, c0)]B′(c1, e
′, e, c0)

}
dν(m, c1, c0)

=

∫
m,c1,c0

Ot=0ft(m, c1, e, c0)
f(c1|e′, c0)

f(c1|e, c0)f(e|c0)
{E(Y |m, c1, e′, c0)−B′(c1, e′, e, c0)} dν(m, c1, c0)

+

∫
c1,c0

f(c1|e′, c0)f(c0)Ot=0

∫
m

ft(m|c1, e, c0)dν(m)B′(c1, e
′, e, c0)dν(c1, c0)

=

∫
m,c1,c0

{∫
y

f(y|m, c1, e, c0)dν(y)Ot=0ft(m, c1, e, c0)

+Ot=0

∫
y

ft(y|m, c1, e, c0)dν(y)f(m, c1, e, c0)

}
f(c1|e′, c0)

f(c1|e, c0)f(e|c0)

× {E(Y |m, c1, e′, c0)−B′(c1, e′, e, c0)} dν(m, c1, c0)

=

∫
y,m,c1,c0

Ot=0ft(y,m, c1, e, c0)
f(c1|e′, c0)

f(c1|e, c0)f(e|c0)

× {E(Y |m, c1, e′, c0)−B′(c1, e′, e, c0)} dν(y,m, c1, c0)

=

∫
y,m,c1,e∗,c0

Ot=0ft(y,m, c1, e
∗, c0)

1e(e
∗)f(c1|e′, c0)

f(c1|e, c0)f(e|c0)

× {E(Y |m, c1, e′, c0)−B′(c1, e′, e, c0)} dν(y,m, c1, e
∗, c0)

=E
[
UO

1e(E)f(C1|e′,C0)

f(C1|e,C0)f(e|C0)
{E(Y |M,C1, e

′,C0)−B′(C1, e
′, e,C0)}

]
,

(9) =

∫
m,c1,c0

E(Y |m, c1, e′, c0)f(m|c1, e, c0)

{
Ot=0ft(c1, e

′, c0)

f(e′, c0)
− Ot=0ft(e

′, c0)f(c1, e
′, c0)

f(e′, c0)2

}
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× f(c0)dν(m, c1, c0)

=

∫
c1,c0

E(E(Y |M,C1, e
′,C0)|c1, e, c0)

{
Ot=0ft(c1, e

′, c0)

f(e′, c0)
− Ot=0ft(e

′, c0)

f(e′, c0)
f(c1|e′, c0)

}
× f(c0)dν(c1, c0)

=

∫
c1,c0

B′(c1, e
′, e, c0)

Ot=0ft(c1, e
′, c0)

f(e′, c0)
f(c0)dν(c1, c0)

−
∫
c0

E(E(E(Y |M,C1, e
′,C0)|C1, e,C0)|e′, c0)

Ot=0ft(e
′, c0)

f(e′, c0)
f(c0)dν(c0)

=

∫
c1,c0

f(c0)

f(e′, c0)
{Ot=0ft(c1, e

′, c0)B′(c1, e
′, e, c0)

−Ot=0ft(e
′, c0)f(c1|e′, c0)B′′(e′, e, c0)} dν(c1, c0)

=

∫
c1,c0

1

f(e′|c0)
{Ot=0ft(c1, e

′, c0)B′(c1, e
′, e, c0)

− [Ot=0ft(c1, e
′, c0)− Ot=0ft(c1|e′, c0)f(e′, c0)]B′′(e′, e, c0)} dν(c1, c0)

=

∫
c1,c0

1

f(e′|c0)
Ot=0ft(c1, e

′, c0) {B′(c1, e′, e, c0)−B′′(e′, e, c0)} dν(c1, c0)

+

∫
c0

f(c0)Ot=0

∫
c1

ft(c1|e′, c0)dν(c1)B′′(e′, e, c0)dν(c0)

=

∫
c1,c0

1

f(e′|c0)


∫
y,m

f(y,m|c1, e′, c0)dν(y,m)Ot=0ft(c1, e
′, c0)

+Ot=0

∫
y,m

ft(y,m|c1, e′, c0)dν(y,m)f(c1, e
′, c0)

 {B′(c1, e′, e, c0)−B′′(e′, e, c0)} dν(c1, c0)

=

∫
y,m,c1,c0

Ot=0ft(y,m, c1, e
′, c0)

f(e′|c0)
{B′(c1, e′, e, c0)−B′′(e′, e, c0)} dν(y,m, c1, c0)

=

∫
y,m,c1,e∗,c0

Ot=0ft(y,m, c1, e
∗, c0)

1e′(e
∗)

f(e′|c0)
{B′(c1, e′, e, c0)−B′′(e′, e, c0)} dν(y,m, c1, e

∗, c0)

=E
[
UO

1e(E
′)

f(e′|C0)
{B′(c1, e′, e,C0)−B′′(e′, e,C0)}

]
,
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and

(10) =

∫
c0

E(E(E(Y |M,C1, e
′,C0)|C1, e,C0)|e′,C0)Ot=0ft(c0)dν(c0)− β0EUO

=

∫
c0


∫

y,m,c1,e∗

f(y,m, c1, e
∗|c0)dν(y,m, c1, e

∗)Ot=0ft(c0)

+Ot=0

∫
y,m,c1,e∗

ft(y,m, c1, e
∗|c0)dν(y,m, c1, e

∗)f(c0)

B′′(e′, e, c0)dν(c0)− E[UOβ0]

=

∫
y,m,c1,e∗,c0

Ot=0ft(y,m, c1, e
∗, c0)B′′(e′, e, c0)dν(y,m, c1, e

∗, c0)− E[UOβ0]

=E [UO {B′′(e′, e,C0)− β0}] .

Thus, ∂βt
∂t

∣∣
t=0

= E[UOV
eff (β0)] where

V eff (β0) =
1e′(E)f(M |e,C1,C0)

f(M |e′,C1,C0)f(e′|C0)
{Y −B(M,C1, e

′,C0)}

+
1e(E)f(C1|e′,C0)

f(C1|e,C0)f(e|C0)
{B(M,C1, e

′,C0)−B′(C1, e
′, e,C0)}

+
1e′(E)

f(e′|C0)
{B′(C1, e

′, e,C0)−B′′(e′, e,C0)}+ {B′′(e′, e,C0)− β0} ,

so if a RAL estimator exists, then V eff (β0) is the corresponding influence function. It is efficient

because the modelMnonpar is nonparametric.

A.4 Multiple-Robustness of the Efficient Influence Function

Let B̃, ˜θM = {M̃ ratio, Ẽ[B̃(M,C1, e
′,C0)|C1, e,C0]}, θ̃C1 = {C̃ratio

1 , Ẽ[B̃′(C1, e, c0)|e′,C0]},

and f̃E|C0 denote limits of the estimators using the working models BW , θWM , θWC1
, and fWE|C0

.

We have established the following multiply-robust property of V eff :

Theorem 3. The estimating equation V eff (β0, B̃, θ̃M, θ̃C1 , f̃E|C0) is unbiased provided that one

of the following holds:

(a){θ̃M, f̃E|C0} = {θM , fE|C0},
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(b){B̃, θ̃C1 , f̃E|C0} = {B,θC1 , fE|C0}, or

(c){B̃, θ̃C1 , θ̃M} = {B,θC1 ,θM}.

Proof.

EV eff (β0,B̃, θ̃M, θ̃C1 , f̃E|C0) =

E

 ∫
m,c1

M̃ ratio

f̃(e′|C0)

{
B(m, c1, e

′,C0)− B̃(m, c1, e
′,C0)

}
× f(m|c1, e′,C0)f(c1|e′,C0)f(e′|C0)dν(m, c1)

+

∫
c1

1

C̃ratio
1 f̃(e|C0)

{
E
[
B̃(M, c1, e

′,C0)|c1, e,C0

]
− Ẽ

[
B̃(M, c1, e

′,C0)|c1, e,C0

]}
× f(c1|e,C0)f(e|C0)dν(c1)

+
f(e′|C0)

f̃(e′|C0)

{
E
[
Ẽ
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]
−Ẽ

[
Ẽ
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]}
+Ẽ

[
Ẽ
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]
− E [E [B(M,C1, e

′,C0)|C1, e,C0] |e′,C0]


Substituting under (a):

EV eff (β0,B̃, θ̃M, θ̃C1 , f̃E|C0) =

E

 ∫
m,c1

{
B(m, c1, e

′,C0)− B̃(m, c1, e
′,C0)

}
f(m|c1, e,C0)f(c1|e′,C0)dν(m, c1)

+
{
E
[
E
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]
− Ẽ

[
E
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]}
+Ẽ

[
E
[
B̃(M,C1, e

′,C0)|C1, e,C0

]
|e′,C0

]
− E [E [B(M,C1, e

′,C0)|C1, e,C0] |e′,C0]


= 0
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Substituting under (b):

EV eff (β0,B̃, θ̃M, θ̃C1 , f̃E|C0) =∫
c1

{
E [B(M, c1, e

′,C0)|c1, e,C0]− Ẽ [B(M, c1, e
′,C0)|c1, e,C0]

}
f(c1|e′,C0)dν(c1)

+E
[
Ẽ [B(M,C1, e

′,C0)|C1, e,C0] |e′,C0

]
− E [E [B(M,C1, e

′,C0)|C1, e,C0] |e′,C0]


= 0

Substituting under (c):

EV eff (β0, B̃, θ̃M, θ̃C1 , f̃E|C0) = 0, trivially.

Thus, β̂mr can be shown to be asymptotically normal under each of these scenarios using a

Taylor expansion of PnV eff (β̂mr, B̂, θ̂M, θ̂C1 , f̂E|C0) and applying the central limit theorem to

n−1/2
∑

i V
eff
i (β0, B

∗,θ∗M ,θ
∗
C1
, f ∗E|C0

).
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B. ADDITIONAL STABILIZATION TECHNIQUE FOR

THE MULTIPLY-ROBUST ESTIMATOR

This technique is an adaptation of the approach presented by Robins et al. (2007). The idea is to

carefully select regression models and an estimation strategy such that the three terms in β̂mr de-

pending on weights are empirically evaluated as null, leaving the term B̂′′(e′, e,C0), which does

not depend on weights. This can be accomplished with the following steps. First, fit propensity

score models to estimate fE|C0 , M ratio, and Cratio
1 . Substitute these estimates into the first term

of β̂mr, and include the result in a set of estimating equation to solve for the Y -regression-model

parameters. Next, plug in all parameters estimated thus far into the second term of β̂mr, and once

again use the result in a set of estimating equations to solve for the M -regression-model parame-

ters. Repeat this step with the third term of β̂mr to solve for the C1-regression-model parameters.

Finally, plugging all of these parameter estimates into β̂mr leaves B̂′′(e′, e,C0), as desired. If Y ,

M , and C1 are all scalar, continuous random variables, this procedure is equivalent to repeatedly

fitting regression models with intercepts using weighted least squares with appropriately-chosen

weights.

35

Hosted by The Berkeley Electronic Press



C. PLOTS COMPARING ESTIMATORS IN THE PEPFAR

NIGERIA STUDY

1, 1 1, 2 1, 3 1, 4 1, 5

2, 1 2, 2 2, 3 2, 4 2, 5

3, 1 3, 2 3, 3 3, 4 3, 5

4, 1 4, 2 4, 3 4, 4 4, 5

5, 1 5, 2 5, 3 5, 4 5, 5
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Figure 3: PEMY -specific effects on virologic failure. The plot in each cell represents estimates
for the effect with comparison-level treatment, e, equal to the first index of the cell and baseline-
level treatment, e′ equal to the second index of the cell. That is, comparison level treatment varies
across rows and baseline level treatment varies across columns. Within each plot, the dots and
vertical bars represent point estimates using the four estimators and their corresponding bootstrap
confidence intervals.
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Figure 4: PEMY -specific effects on CD4 count. The plot in each cell represents estimates for the
effect with comparison-level treatment, e, equal to the first index of the cell and baseline-level
treatment, e′ equal to the second index of the cell. That is, comparison level treatment varies
across rows and baseline level treatment varies across columns. Within each plot, the dots and
vertical bars represent point estimates using the four estimators and their corresponding bootstrap
confidence intervals.
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