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Abstract

Sequential analysis is frequently employed to address ethical and financial issues in clinical trials.
Sequential analysis may be performed using standard group sequential designs, or, more recently, with
adaptive designs that use estimates of treatment effect to modify the maximal statistical information to
be collected. In the general setting in which statistical information and clinical trial costs are functions of
the number of subjects used, it has yet to be established whether there is any major efficiency advantage
to adaptive designs over traditional group sequential designs. In survival analysis, however, statistical
information (and hence efficiency) is most closely related to the observed number of events, while trial
costs still depend on the number of patients accrued. As the number of subjects may dominate the cost
of a trial, an adaptive design that specifies a reduced maximal possible sample size when an extreme
treatment effect has been observed may allow early termination of accrual and therefore a more cost-
efficient trial. We investigate and compare the tradeoffs between efficiency (as measured by average
number of observed events required), power, and cost (a function of the number of subjects accrued
and length of observation) for standard group sequential methods and an adaptive design that allows
for early termination of accrual. We find that when certain trial design parameters are constrained,
an adaptive approach to terminating subject accrual may improve upon the cost efficiency of a group
sequential clinical trial investigating time-to-event endpoints. However, when the spectrum of group
sequential designs considered is broadened, the advantage of the adaptive designs is less clear.

1 Introduction

In designing a clinical trial, investigators typically determine the statistical information required to discrim-
inate between a null hypothesis of no treatment effect and some alternative hypothesis representing the
minimal clinically important difference. When evaluating a proposed clinical trial design, the sponsor must
balance the scientific goals with the cost of the trial and the ethical issues of human experimentation.

The number of subjects involved and the duration of a clinical trial are two key factors in determining
the overall cost of the trial. Requiring fewer patients will decrease the trial costs associated with screening,
treatment, and follow-up. Shorter trials allow earlier profit from treatments that are effective and waste
fewer resources (investigator time, cost of following patients over time, cost of money, etc.) on ineffective
treatments. Trial duration also plays a role in ethical considerations: Ending a trial sooner rather than
later will expose fewer patients to an ineffective or harmful treatment and allow the broader population of
patients earlier access to new effective treatments. This also frees up patients for the investigation of other
treatments, which in turn can speed up the process of new treatment discovery in a disease for which clinical
trial participants may be in short supply.

When measurements of treatment effect are based on comparisons of means or proportions, statistical
information is generally directly proportional to the number of subjects accrued. Hence, any ability to de-
crease calendar time is generally related to an ability to increase the number of centers recruiting patients.

1

Hosted by The Berkeley Electronic Press



However, in a survival analysis/time-to-event setting with potentially censored observations, statistical infor-
mation is more directly related to the number of observed events rather than the number of subjects. Thus
in such a setting there are more tradeoffs possible between sample size and calendar time, as decreasing the
number of subjects accrued generally increases the calendar time required to observe the requisite number
of events and vice versa.

Historically, group sequential tests have been the primary statistical method used to address the ethical
and efficiency concerns in clinical trials. In a typical group sequential design, a rule is specified for determining
the maximal statistical information NJ . Then, at periodic intervals during the conduct of the study, up to
J interim analyses are performed to determine whether the trial should stop early. More recently there
has been much interest in the statistical literature related to “adaptive designs”. Such adaptation typically
takes the form of decisions to extend a clinical trial beyond some previously planned maximal stopping time.
The advantages of such an approach over the group sequential design have not been established in general.
Tsiatis and Mehta [1] and Jennison and Turnbull [2] have not found any efficiency gains of the adaptive
approach over the more standard group sequential designs. However, such explorations have focused on the
setting in which statistical information was directly proportional to the number of subjects accrued to the
study.

In a survival analysis/time-to-event setting, there may be a clearer advantage to adaptive designs due
to the need to consider both the number of patients accrued and the calendar time of follow-up necessary
to observe the desired number of events. The appeal of an adaptive design in this setting is that it offers
the possibility that early trends in the estimated treatment effect may suggest a modification of the number
of subjects that need to be accrued. For instance, suppose a clinical trial is designed based on a maximal
statistical information of NJ . Suppose further that at the jth analysis, the estimated treatment effect
were so extreme that it seemed likely that the ultimate decision for efficacy or futility could be precisely
determined prior to observing all NJ events. Then it might seem advantageous to consider a re-designed
trial in which the revised maximal number of observed events N∗

J∗ were strictly less than originally planned,
i.e., N∗

J∗ < NJ . Such a re-design might allow the number of patients accrued to the study to be similarly
decreased, thereby possibly reducing the number of subjects involved. Alternatively, if at an early interim
analysis of the data a less extreme treatment effect were observed than was initially anticipated, the sponsor
might want to increase the maximal number of events N∗

J∗ > NJ in order to increase the conditional power
of the study to attain statistical significance. In such a setting, it may be necessary to increase the number
of subjects accrued to the clinical trial in order to observe the increased number of events in an acceptable
interval of calendar time.

As the focus of this manuscript is the relative flexibility of standard group sequential designs and more
recently described adaptive designs to meet the optimality criteria of the collaborators in a clinical trial, we
restrict attention to a single hypothetical clinical trial setting. We then consider a range of stopping rules,
both group sequential and adaptive, that address the types of operating characteristics most often addressed
in the statistical design of a clinical trial. In particular, we consider a setting that is a slight modification
of a design proposed for an industry sponsored clinical trial. In that setting, the sponsor adopted a group
sequential clinical trial design to detect a specified design alternative. The initial trial design was based
on estimates of subject accrual rates and event rates. In order to protect against the possibility that the
observed treatment effect might be less than that indicated by the specified design alternative, the sponsor
also incorporated an adaptive modification of both the maximal number of subjects to be accrued and the
maximal number of events to be observed. The conditions under which the sampling rule was modified
were defined based on an interim estimate of the treatment effect. In this manuscript, we model such a
modification of the clinical trial design through an adaptive switch between two group sequential stopping
rules. We note that this particular form of adaptive sequential design was proposed for a confirmatory
clinical trial that was to be used for regulatory approval. As such, the adaptation is completely prespecified.
The statistic used to define the adaptive design stopping rule is a sufficient statistic. Furthermore, because
we consider a prespecified stopping rule, there is no need to address the worst case scenarios that must be
considered when any adaptation is not completely prespecified. Statistical inference can be based on the
distribution of the sufficient statistic under the sampling plans specified by the sequential stopping rules.
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Emerson et al. [3, 4] discuss the breadth of operating characteristics commonly considered when compar-
ing candidate sampling plans for a clinical trial. In this manuscript we presume that the stopping boundaries
at the first interim analysis were chosen based on results that would be judged clinically important and sta-
tistically credible. Hence, we only consider alternative designs that agree in their stopping boundaries at
the first interim analysis. In keeping with the sponsor’s initial exploration of designs, we further primarily
consider the possibility that logistical constraints might be the driving force in choosing the accrual rates
and the schedule of interim analyses. Thus we consider in depth comparisons in which the accrual rate is
the same for a group sequential design and an adaptive design, and interim analyses are to be performed
at identical intervals of accrual of statistical information. We then measure the possible advantage of the
adaptive approach over the group sequential approach (and vice versa) according to the expected study
duration and average number of subjects accrued for a range of adaptive and group sequential designs and
several combinations of accrual and event distributions. Using the setting in which we observed the greatest
advantage for the adaptive approach over a group sequential approach, we explored the effect of relaxing the
constraint on the schedule of interim analyses. In so doing, we found a group sequential design that incurred
lower costs than the adaptive design, thus illustrating the need for careful evaluation of a broad spectrum
of group sequential rules when attempting to adaptively improve design operating characteristics.

In Section 2, we describe the survival analysis setting that will be used to compare the group sequential
approach to a more adaptive approach. We define the particular form of the adaptive designs considered in
this manuscript, as well as the design parameters that are held constant between the group sequential and
adaptive designs. The relative behavior of the group sequential and adaptive designs are then investigated
in the absence of censoring in Section 3 and in the presence of censoring in Section 4. Section 5 introduces
a simple cost model used to summarize the comparisons between pairs of adaptive and group sequential
designs. We conclude in Section 6 with a discussion of the impact of the particular design parameters and
operating characteristics that were constrained to be equal in our comparisons, and demonstrate our ability
to find more efficient group sequential designs when those constraints are relaxed.

2 Background

In designing a clinical trial there are several competing concerns: Efficiency, statistical power to detect an
effect of interest, and ethical considerations are key factors in assessing the suitability of a proposed design.
Efficiency generally refers to the number of subjects or events required, and is often measured as the expected
sample size or average sample number (ASN). The maximal possible sample size is also frequently considered
in efficiency comparisons. Power to detect an effect is the probability of deciding to reject the null hypothesis
at a given effect size. Both power and ASN are functions of the true effect size. Ethical considerations are
also addressed by minimizing the number of subjects and the time required to complete the trial.

Sequential analysis is a tool that is often employed to address these tradeoffs. The basic idea is that
if results are convincing early on, there is no need to increase costs and lose efficiency by continuing with
more subjects. At the jth of J potential interim analyses, a test statistic Tj is computed and compared to
stopping boundaries. Following Kittelson and Emerson [5], it is generally sufficient to define at each analysis
up to four stopping boundaries aj ≤ bj ≤ cj ≤ dj , with early termination if Tj ≤ aj , if bj < Tj < cj , or
if Tj ≥ dj . Designs with fewer than four early stopping boundaries can be obtained by setting aj = −∞,
bj = cj , or dj = ∞, as appropriate for the setting. Ensuring that at the Jth analysis aJ = bJ and
cJ = dJ guarantees termination of the study. Group sequential clinical trial design typically involves choosing
stopping boundaries which will maintain a desired type I error, and choosing a maximal statistical information
NJ such that the study will have adequate power to detect a specified design alternative under a schedule
of analyses occurring when statistical information is N1, N2, . . . , NJ .

It should be noted that NJ can be specified in units of some unknown variance of individual observations,
in which case only the maximal sample size is pre-specified. Alternatively, the maximal statistical information
is pre-specified and the actual maximal sample size is determined using estimates of the variance observed
during the conduct of the clinical trial. Emerson [6] discusses further the scientific and statistical validity of
both approaches to the pre-specification of the rule for determining maximal statistical information in the
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setting of group sequential clinical trials. In the analysis of time-to-event data that are potentially right-
censored, it is most common to design a clinical trial based on the maximal statistical information, which is
proportional to the number of events. The number of subjects required is then determined based on accrual
rate, accrual time, and the distribution of failure times.

By way of example, we will consider a group sequential design appropriate for testing for a lessened
instantaneous risk of death (decreased hazard) when administering some new treatment or placebo to a
population of severely ill patients. We will let θ(x) denote the hazard ratio hT (x)

hC(x) where hT (x) is the hazard
at time x for the treatment arm, and hC(x) is the hazard at time x for the control arm. We use a proportional
hazards model, meaning that we assume that θ(x) ≡ θ is constant for all values of x.

As noted previously, we consider a setting that is a slight modification of a design proposed for an
industry sponsored clinical trial. We start with an initial simple group sequential design, Design A, with two
analysis points, at 100 and 200 events. The test statistic for this design is the estimated hazard ratio, and
we desire a statistical sampling plan based on a one-sided level 0.025 type I error to discriminate between
a null hypothesis of no effect (a hazard ratio of 1.0) and a design hypothesis of improved survival on the
treatment arm relative to the control arm (hazard ratio less than 1.0).

2.1 Specification of the initial group sequential design: Design A

In selecting a stopping rule to be used as a guideline for early termination of the clinical trial, we take the
common approach of selecting an efficacy (lower) boundary that is relatively conservative at the earliest
interim analyses. The motivation for such early-conservatism is that the standards of evidence for adoption
of a new, unproven treatment dictate that the drawbacks of having less available data to examine safety,
longer term survival, and other secondary endpoints need to be counterbalanced by a marked benefit on
survival over the shorter period of observation prior to the first interim analysis. That is, with lesser follow-
up, we need to be confident of a highly effective treatment, and we should focus on stopping rules that would
stop early only if, say, a 95% confidence interval includes only hazard ratios that correspond to strong effect
of the new treatment. We note that it is common for clinical trialists to focus instead on the criterion that
early stopping should occur only if we are highly confident of an effective treatment, e.g., perhaps a 99.9%
confidence interval that excludes 1.0. However, such a criterion may not be measuring the most important
scientific, clinical, and ethical issues that relate to ensuring that early-occurring effects are of sufficient benefit
to outweigh uncertainty about safety and long-term effects.

We also consider the specification of a futility (upper) boundary that would correspond to a decision
that the treatment effect is not sufficiently beneficial to warrant continued study. The advantages of early
termination of a study for futility are that it avoids continued exposure of patients to an unproven therapy
that is unlikely to be adopted and that it avoids continued delay of investigating other, more promising
therapies. If there is no important secondary information that can be obtained from studying a therapy that
we have with high confidence determined is not associated with a clinically important effect, there is also
no need to build in the early-conservatism desirable for the efficacy boundary. Hence, a futility boundary
might be chosen to afford more efficiency.

In concordance with the above criteria, we consider the popular O’Brien and Fleming [7] boundary
relationship for the efficacy boundary, but we choose a less conservative, more efficient Pocock [8] futility
boundary. In considering the efficiency of the stopping boundary, we follow the most common approach
based on examination of the ASN.

In the unified family described by Kittelson and Emerson [5], there are typically several different pa-
rameterizations that lead to nearly the same stopping boundary or, in the case of a stopping rule with a
maximum of two analyses, the exact same boundary. We prefer parameterizations that maintain the same
level of confidence when rejecting the null hypothesis (when setting the efficacy boundary) and rejecting the
design alternative (when setting the futility boundary). Hence, in this case we choose to define the boundary
to reject the design alternative with 97.5% power. We further tend to restrict attention to boundary shapes
within the extended Wang and Tsiatis [9] family. In the unified family, these boundary shape functions
have parameters A = 0 and R = 0, with P allowed to vary. In this setting, the P parameter measures

4

http://biostats.bepress.com/uwbiostat/paper356



the early-conservatism of the boundary, with P = ∞ corresponding to no early stopping. Two important
cases within this family are the Pocock [8] boundary shape function when P = 0.5 and the O’Brien and
Fleming [7] boundary shape function when P = 1. Emerson and Fleming [10] found that boundary shape
functions similar to the Pocock [8] boundaries tended to nearly minimize the ASN under the hypothesis
being accepted. That is, the ASN-efficient efficacy boundary shape for rejecting the null when the design
alternative is true is close to a Pocock boundary, as would be the ASN-efficient futility boundary shape for
rejecting the design alternative when the null is true. For the purposes of this manuscript, we chose a futility
boundary that corresponds to the Pocock P = 0.5 boundary.

Using S+SeqTrial [11], we compute the design boundaries to have type I error α = 0.025, giving bound-
aries at the first analysis of a1 = 0.5792, b1 = c1, d1 = 0.8645. The study stops at the first analysis (100
observed events) if the estimated hazard ratio T1 ≤ a1 = 0.5792 (in which case the null hypothesis θ ≥ 1.0
is rejected) or T1 ≥ d1 = 0.8645 (in which case the null hypothesis θ ≥ 1 is not rejected). At the second
(and maximal) analysis, a result corresponding to T2 ≤ d2 = 0.7611 would correspond to a rejection of the
null hypothesis. With these boundary shape parameters, a design allowing analyses at 100 and 200 observed
events provides 97.5% power to detect a hazard ratio of θ1 = 0.5596. Hence, the futility boundary can be
interpreted based on a rejection of that design alternative, just as the efficacy boundary rejects the null
hypothesis of a hazard ratio of 1.0. A more detailed examination of the power curve reveals that this design
has 80% power against a hypothesis θ1 = 0.6646.

As noted above, the way in which we specified the stopping boundaries allowed greater interpretation of
the study design parameters. Equal statistical errors (type I under the null and type II under the alternative)
are chosen in order to have the trial design indicate the hypotheses that would be discriminated by a 95%
confidence interval: At the end of the study, a 95% confidence interval for the true hazard ratio has probability
0 of including both the null hazard ratio of θ0 = 1.0 and the design alternative hazard ratio of θ1 = 0.5596.
Were it to be the case that larger sample sizes were not feasible, the design alternative takes on the role
of the de facto minimal clinically important difference in the sense that any smaller difference will not be
detected with the prescribed confidence. The choice of an O’Brien-Fleming efficacy boundary is recognizable
as providing early conservatism in a decision to reject the null, and the choice of a futility boundary closer to
a Pocock boundary is recognizable as providing greater efficiency (and therefore perhaps better addressing
ethical issues) in a decision to reject the minimal clinically important difference when the null hypothesis
is true. Furthermore, with the symmetric type I and type II errors, there are generalizable approximate
relationships between the stopping boundaries at each analysis and the hypotheses being rejected by the
respective boundaries. For instance, halfway through accrual of the maximal statistical information in a
group sequential trial, the stopping boundary under an O’Brien-Fleming boundary shape is approximately
equal to the hypothesis being rejected. For a Pocock boundary, this relationship holds when one-quarter the
way through accrual. (These sorts of relationships hold exactly when the boundary shape functions, as well
as the statistical errors, are the same for both the efficacy and futility boundaries.)

However, we could have arrived at an almost identical boundary by choosing statistical power of 80% (a
type II error of 0.2), and an O’Brien-Fleming boundary shape function for the futility boundary “rejecting”
(with only 60% two-sided confidence) an alternative corresponding to a hazard ratio of θ1 = 0.6652. It
should be noted that under this parameterization, we do not have the same benefit of interpretation we
had when we chose identical type I and type II errors. A 95% confidence interval will not necessarily
discriminate between the null and alternative hypotheses. In fact, if the alternative hypothesis is true, there
is a 17.5% probability that the 95% CI computed at the end of the trial will include both the null and
alternative hypotheses. Furthermore, the interpretation of the “early-conservatism” of the O’Brien-Fleming
is also muddled: Though the O’Brien-Fleming boundary shape function is proposed for both the efficacy and
futility boundaries, the relationship between the stopping boundaries at the first analysis and the hypotheses
used to define the boundaries are not comparable, because the magnitude of statistical errors varies. There
is also no similarity of the boundaries on the scale of the error spending function. For instance, in terms
of the error spending function, the O’Brien-Fleming efficacy boundary spends 12.5% of the type I error
(or 0.0031 out of the total error of 0.025) at the first analysis. On the other hand, the O’Brien-Fleming
futility boundary spends 45.0% of the type II error (or 0.09 out of the total error of 0.2) at the first analysis.
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(Emerson et al. [4] further elaborate on the difficult correspondence between error spending functions and
O’Brien-Fleming and Pocock boundary shape functions.)

2.2 Specification of adaptive design

Next we consider an adaptive design to increase the power of Design A at various effect sizes θ. The basic
idea is that at the first interim analysis we might 1) observe results so extreme that the stopping rule defined
by Design A would suggest early termination of the study, 2) observe results that did not exceed a stopping
boundary, but were close enough to the boundary as to suggest the eventual decision reached at the next
analysis, or 3) observe results that were sufficiently far from our expectations that additional data might be
desired to increase the power to obtain a statistically significant result. The form of adaptive design that
we consider throughout is a prespecified adaptation based on an interim estimate of the effect size, and the
statistic used in the specification of the stopping rule is a sufficient statistic. This differs from the adaptive
designs described in, for example, Proschan and Hunsberger [12] and Cui, Hung, and Wang [13], which are
not necessarily prespecified and are not based on a sufficient statistic.

Let Design B be an extension of Design A, constrained to have the same boundary as Design A at the
first analysis, but with three analyses at 100, 200, and 300 events. The same parameters used in construction
of Design A are used to define the boundaries at the 2nd and 3rd analyses for Design B: the test should
be of level α = 0.025 with an O’Brien-Fleming efficacy boundary and a Pocock futility boundary. Such an
approach is easily performed using the constrained boundary approach described by Burington and Emerson
[14] and implemented in S+SeqTrial.

The adaptive design that we consider performs an analysis at 100 subjects just as in Design A. We define
parameters A and D such that a1 ≤ A ≤ D ≤ d1 to be the values that define the adaptive behavior of the
design. Based on the statistic at the first analysis, T1, the design either proceeds with Design A, or switches
to Design B∗(A,D), a version of Design B that is slightly modified to maintain the overall experiment-wise
type I error. If T1 ∈ (a1, A) or T1 ∈ (D, d1) then the Design A boundary is used for the remainder of the
study. If, however, T1 ∈ (A,D), Design B∗(A,D) is used, and the maximal possible sample size is therefore
increased from 200 to 300. Design B∗(A,D) has the same specifications and constraints as Design B, except
that the type I error α∗(A,D) is chosen based on the values of A and D in order to guarantee the desired
experiment-wise error for the adaptive procedure. This modified type I error and design can be found using
S+SeqTrial as described in the Appendix. Figure 1 illustrates the boundaries corresponding to this adaptive
design procedure.

The parameters A and D which define the adaptive behavior can be chosen based on several different
criteria, such as conditional power or symmetry considerations. Note that if A = D, the adaptive design
reduces to Design A, and if A = a1 and D = d1, the adaptive design reduces to Design B. As shown in Figure
2, different choices of A and D move the power curves and ASN curves of the resulting adaptive designs
smoothly between the power curve of Design A and the power curve of Design B. In our investigations, we
consider a full range of possible A and D values to explore the space of adaptive designs defined in this way.

2.3 Specification of a nonadaptive group sequential design for comparison

Let ASD(A,D) denote the adaptive sequential design resulting from a particular choice of A and D. For
fixed parameters A and D we then seek to identify a comparable, nonadaptive group sequential design
GSD(A,D). The spectrum of group sequential designs is quite extensive and flexible, and, as noted by
Tsiatis and Mehta [1] and Jennison and Turnbull [2], it is in general possible to find a group sequential
design that matches the efficiency of an adaptive design. Our goal, however, is to determine the extent to
which a traditional group sequential design may equally well satisfy the sponsor’s constraints, which extend
beyond the usual statistical power and sample size considerations. As such, these considerations, rather than
error-spending functions, guide our choice of competing group sequential designs to consider.

To that end we presume that the stopping boundaries at the first interim analysis (when N1 = 100 events)
were chosen to guarantee the scientific and statistical credibility of results should the study be terminated
early. We further presume that the timing of possible interim analyses was fixed by logistical constraints,
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Figure 2: Operating characteristics for the range of adaptive designs considered, illustrating that the adaptive
designs provide a continuous transition from the operating characteristics for Design A to those of Design B:
(a) Power curves; (b) Change in power from Design A, with the corresponding A and D adaptive parameters
given on the left; (c) ASN curves; (d) Change in ASN from Design A, with the corresponding A and D
adaptive parameters given on the left.
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and thus consider only group sequential tests having analyses at 100, 200, and 300 events. We also restrict
attention to those group sequential test designs that have power curves that closely match the power curve
of the corresponding adaptive design. That is, we want power curves βASD(A,D)(θ) ∼= βGSD(A,D)(θ) for all θ
in a range that includes the null and alternative hypotheses. Note that the adaptive design ASD(A,D) and
the matching group sequential design GSD(A,D) have the same maximal possible sample size.

Even under the above constraints, there are likely many different group sequential stopping boundaries
that could be considered. In searching for a group sequential design that matched the power curve of a given
adaptive design ASD(A,D), we found that a specially modified version of Design B worked remarkably well.
We defined GSD(A,D) to be a standard group sequential design with the same boundaries as Design B at
the first and third analyses (N1 = 100 events and N3 = 300 events). Then we modified the boundary at the
second analysis by changing the value of the P parameter for the design to be zero for the efficacy boundary
(Pa = 0), and to be some appropriately chosen positive number (in the range 0.05 - 1.25 for the examples
we consider) for the futility boundary (Pd = P ∗(A,D)). This modification effectively shrinks the stopping
boundary at the second analysis in from that of Design B toward the boundary of Design A, and the value of
P ∗(A,D) controls the degree of shrinkage: smaller values of P ∗(A,D) result in boundaries closer to Design
A, while larger values of P ∗(A,D) result in boundaries closer to Design B. An example with further details is
provided in the Appendix. Figure 1 displays one example of the resulting group sequential design boundary,
GSD(A,D).

In the next section we explore the behavior of this adaptive design and matching group sequential design
in the (unrealistic) setting of no censoring, and find no advantage to this adaptive design. With no censoring,
the statistical information is proportional to the number of subjects accrued. As such, the same results will
hold for comparisons of means or differences of proportions. Then in the following section we add in censoring
and explore the tradeoffs of number of subjects versus calendar time, where we do find instances in which
the adaptive design exhibits some advantages over a traditional group sequential design.

3 No censoring

In Figure 3 we show power and ASN comparisons for a selection of six adaptive designs and the corresponding
matched group sequential designs. As these figures show, the group sequential designs GSD(A,D) are more
efficient than the adaptive designs ASD(A,D) in terms of ASN, with equal or slightly superior power across
the range of true effect size considered. Similar results were obtained as we explored the behavior of the
adaptive designs and the group sequential designs over the complete range of possible values of A and D.
Thus in settings where information is measured by number of subjects, these group sequential designs are
observed to be uniformly superior to the corresponding adaptive designs over the range of alternatives that
would typically be considered during design of the study. In explorations not shown here, these results were
found to generalize to clinical trial settings using means or binomial proportions.

4 Censoring

Censoring occurs when we accrue subjects and only follow them for a certain amount of time, as opposed to
following them indefinitely until an event occurs. Generally the amount of follow-up time is determined by
a certain date at which the study ends, at which time subjects who have not yet had an event are censored.
Note that in this administrative censoring scenario the follow-up time for individual subjects may differ,
depending on when they were accrued to the study.

In a setting with censoring, we now have to consider the costs associated with accrual of subjects and
follow-up time. Follow-up time can be reduced by accruing more subjects, and conversely, the number
of subjects required may be reduced by extending the follow-up time. Here the adaptive design has the
advantage of allowing accrual to stop earlier when it is determined that the maximum number of events
needed is only 200 instead of 300. We explore the behavior of study duration versus number of subjects
required under a variety of accrual patterns and event rates. Following Schoenfeld and Richter [15], as
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Figure 3: Matched designs ASD(A,D) and GSD(A,D) operating characteristics comparison: (a) Change in
power from Design A, matched designs shown in same color with a solid line for ASD(A,D), and a dashed line
for GSD(A,D); (b) Change in ASN from Design A, matched designs shown in same color with a solid line for
ASD(A,D), and a dashed line for GSD(A,D); (c) Difference in power and ASN (GSD(A,D)−ASD(A,D))
for matched pairs. Note that we were able to find group sequential designs that have higher power and smaller
ASN over the range of alternatives that would typically be considered in the design of a clinical trial.
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Figure 4: Example number of subject versus study duration plots for adaptive designs, with the same points
represented in both panels. Note the different effects of changing the accrual times for Design A and Design
B, respectively: (a) Connected points have constant accrual time for Design A, tA, with tA increasing from
left to right; (b) Connected points have constant accrual time for Design B∗(A,D), tB , with tB increasing
from top to bottom.

implemented in S+SeqTrial [16], the accrual patterns we consider have a constant number of subjects accrued
per time unit, and event rates are modeled as exponential with hT = θhC where hT is the hazard rate for
the treatment arm, hC is the hazard for the control arm, and θ is the hazard ratio.

To reduce the dimension of the space of parameters that we consider, we fix the control group event
rate to have a median of 1. Note that this reduction still allows us to explore the complete space of accrual
patterns and event rates, as it is equivalent to changing the unit of time used. For instance, an accrual rate
of 20 patients per month with a median control event time of 6 months is equivalent to an accrual rate of
120 patients per six-month period with a median control event time of 1 six-month period. Similarly, any
combination of accrual rate r and median control event time mC expressed in time units u may also be
expressed as an accrual rate of r∗ = rmC and a median control event time of 1 in time units u∗ = umC . We
choose to explore accrual rates in {40, 60, 100, 150, 200, 250} as a reasonably comprehensive representation
of possible accrual scenarios.

To compare the behavior of the adaptive designs ASD(A,D) to the matching group sequential designs
GSD(A,D) under a particular accrual rate r and effect size θ, we considered the range of possible accrual
times and the resulting estimated number of subjects and trial duration. We will assume that if accrual ends
before the first analysis then the accrual time t must have been sufficient to obtain at least 300 subjects
to ensure that analyses at 300 events will be possible (otherwise, if fewer than 300 subjects were accrued
and if the Design B∗(A,D) boundary were selected at the first analysis, it could prove necessary to restart
accrual–a practice that is generally avoided). In this case, the adaptive design clearly offers no benefit of
curtailed accrual, and is therefore slightly less efficient than the matching group sequential design. In the
setting we consider here, accrual rates higher than 250 subjects per unit time were not explored, as they tend
to result in accrual ending before the first analysis. For the adaptive designs, if accrual continues beyond
the first analysis, we must consider two independent accrual times tA and tB depending on which boundary
is adaptively chosen for the later analyses. Each combination of tA and tB produces an estimated number
of subjects and trial duration. The factors involved in choosing accrual times tA and tB for the adaptive
design are:

• Each of tA and tB are constrained (as discussed above) to be larger than the time of the first analysis.
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We consider the case of accrual finishing before the first analysis separately.

• tA and tB are required to be large enough to obtain at least 200 and 300 subjects respectively, in order
to ensure that we will be able to observe the necessary number of events.

• The maximum accrual time considered for each design was chosen to be the accrual time that resulted
in zero follow-up time after the end of accrual for that design. Accrual times greater than this maximum
would be pointless, as this would mean accruing subjects after the study finished.

• Since accrual is fixed such that it never ends before the first analysis, we can freely decide which
combination of accrual times we will use to achieve the adaptive design. Therefore we consider all
possible combinations of accrual times for Design A and accrual times for Design B.

We explored a range of 20 values for each of tA and tB subject to the above constraints. For a given
combination of accrual times tA and tB we calculate the estimated number of subjects and estimated study
duration as follows. Define the following quantities:

r = rate of accrual

p1 = probability of stopping at the first analysis
p2A

= probability of stopping at the second analysis, using Design A
p2B

= probability of stopping at the second analysis, using Design B
p3 = probability of stopping at the third analysis

τ1(tA) = τ1 = estimated time of first analysis
τ2A

(tA) = τ2A
= estimated time of second analysis for Design A

τ2B
(tB) = τ2B

= estimated time of second analysis for Design B
τ3(tB) = τ3 = estimated time at third analysis

S = number of subjects accrued
T = total study duration

Then the expected number of subjects S, and the expected trial duration T , for the adaptive design with
accrual times tA and tB are given by:

E[S] = [p1 × τ1 × r] + [p2A
× tA × r] + [p2B

×min (τ2B
, tB)× r] + [p3 × tB × r]

E[T ] = [p1 × τ1] + [p2A
× τ2A

] + [p2B
× τ2B

] + [p3 × τ3]

Figure 4 illustrates an example of a plot resulting from these calculations. Each dot in the figures
represents the expected number of subjects and expected trial duration resulting from one combination of
tA and tB . In the left panel, contours connect points corresponding to a constant choice of tA; in the right
panel, contours connect points corresponding to a constant choice of tB .

The number of subjects versus study duration curves for the matching group sequential designs GSD(A,D)
were similarly obtained by considering a range of accrual times tG:

• The minimum accrual time for tG is required to be large enough to achieve the maximum possible
number of events (300).
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• The maximum accrual time considered was chosen to be the accrual time that resulted in zero follow-up
time after the end of accrual.

A range of 30 accrual times were considered between the minimum and maximum accrual times for tG.
For a given accrual time tG we calculate the expected number of subjects and expected duration of study as
follows. Define the following quantities:

r = rate of accrual

p1 = probability of stopping at the first analysis
p2 = probability of stopping at the second analysis
p3 = probability of stopping at the third analysis

τ1(tG) = τ1 = estimated time of first analysis
τ2(tG) = τ2 = estimated time of second analysis
τ3(tG) = τ3 = estimated time of third analysis

S = number of subjects accrued
T = total study duration

Then the expected number of subjects S, and the expected trial duration T , for the group sequential
design with accrual time tG are given by:

E[S] = [p1 ×min (τ1, tG)× r] + [p2 ×min (τ2, tG)× r] + [p3 × tG × r]
E[T ] = [p1 × τ1] + [p2 × τ2] + [p3 × τ3]

The estimated analysis times are computed using the S+SeqTrial function seqPHSubjects, which com-
putes the expected number of events observed by a time τ , and then solves for τj such that the expected
number of events observed by time τj is Nj . Note that this is very slightly different from the expected time at
which Nj events are observed, but the differences are of an insignificant order of magnitude in the examples
we are considering, so we will interchangeably use the phrases “estimated study duration” and “expected
study duration”, and similarly “estimated number of subjects” and “expected number of subjects”.

Figures 5 and 6 demonstrate some of the possible relationships between the number of subjects needed
and trial duration for the adaptive and matching group sequential designs. Figure 5 presents results for the
adaptive design with A = 0.62, D = 0.66, for accrual rates of 60 and 200 in panels 5(a) and 5(b) respectively.
Figure 6 shows results for the adaptive design with A = 0.70, D = 0.86, for accrual rates of 40 and 250 in
panels 6(a) and 6(b) respectively. In each figure, the black dots correspond to results for the adaptive design,
and the solid green line corresponds to the matching group sequential design.

For the adaptive design and accrual rate of 60 in Figure 5(a), there is a clear potential for benefit using
the adaptive design over the group sequential design. With this slow accrual rate, there is a limited range
for tB (and also for tG), and thus the dots corresponding to the same value of tB are very close together.
The lines corresponding to the group sequential design are at the far right end of the plots, demonstrating
the benefit of accrual modification in Design A of the adaptive design, for this scenario. The adaptive design
allows the possiblity of reducing the number of subjects required by 20 to 50 depending on the effect size. Of
course, there is a tradeoff of increasing the trial duration, but a moderate reduction in number of subjects
does not produce a dramatic increase in study time. For instance, at a hazard ratio of θ = 0.7, the number
of subjects can be reduced from a minimum of 263 for the group sequential design to 230 for the adaptive
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design, while only increasing the expected study duration from 4.5 to 4.7 time units. As the accrual rate
increases, the benefit of the adaptive design becomes less pronounced, and eventually disappears.

At an accrual rate of 200 subjects per time unit (median survival time on the control arm), the same
adaptive design shows much less potential for subject reduction. Depending on the treatment effect and the
relative costs of time versus number of subjects, either the adaptive or the group sequential design may be
preferable. For strong treatment effect, e.g., a hazard ratio of θ = 0.5, the group sequential design is very
slightly superior. Also, when study duration is the primary concern, the group sequential design dominates
across the range of treatment effect. However, there are points in Figure 5(b) that still demonstrate a
marginal benefit to using the adaptive design. When the hazard ratio is θ = 0.8, the group sequential design
requires an average of 2.285 time units when the expected number of subjects is 297.31. In comparison, the
adaptive design requires an average of only 2.185 time units when the expected number of subjects is 297.27.
Clearly these are not dramatic differences, but for this pair of designs, the adaptive design seems to provide
more flexibility in number of subjects required at some treatment effect sizes.

The adaptive design and accrual rates presented in Figure 6 illustrate a rather different scenario. For
this pair of designs there is no clear benefit to using the adaptive design over the group sequential design.
For example, in Figure 6(a) when the accrual rate is 40, we can see that for hazard rates of θ = 0.8 and
higher, the group sequential design may allow a shorter trial duration for the same number of subjects. As
the accrual rate increases to 250 in Figure 6(b) for this design, the curves for the group sequential design
and adaptive design become quite close, with the group sequential design dominating.

Clinical trialists would choose from among the spectrum of adaptive designs considered in Figure 2 based
on the efficiency and power curves desired. We present the two examples in Figures 5 and 6 to demonstrate
the patterns of behavior resulting from the range of adaptive designs and accrual scenarios, with similar
trends observed for other choices of A, D, and accrual rates. The following general trends were observed:
As accrual rate increases, the difference between an adaptive design and the corresponding group sequential
design tends to disappear, with the group sequential design tending to be slightly more efficient. For lower
accrual rates, the ability of either the adaptive design or the group sequential design to improve upon the
other, in terms of expected trial duration at a given expected number of subjects, will depend on the choices
of A, D, and the effect size. More generally, there are tradeoffs between the adaptive designs and the
matching group sequential designs that depend on the relative importance of minimizing the number of
subjects versus minimizing trial duration. In the next section, we attempt to explore these tradeoffs.

5 Cost Estimation

In order to explore the tradeoffs between increased sample size and decreased study duration, we consider
the cost to the sponsor using a simple discrete time economic model. We presume the setting of the design
of a Phase III clinical trial. At the start of the trial, the sponsor will have incurred costs related to treatment
development and early phase clinical trials, and there are costs to the sponsor associated with the money
invested in that development program. For instance, the cost of prior development might total $10 million.
Then, the Phase III trial might engender costs on the order of, say, $10,000 per patient. In our simple model,
we consider the cost of that prior investment, as well as the cost of the patients accrued. We then further
consider the cost of study duration by allowing for interest to be paid by the sponsor on its investment.
Letting nt represent the number of subjects accrued between time t− 1 and time t and letting p be the per
patient costs, we can then calculate the total cost C(t) up to calendar time t as C(t) = nt×p+(1+ω)×C(t−1),
where ω is the cost of money per unit time. Without loss of generality, it is sufficient for us to consider merely
the ratio C(0)/p. The interest rate is used to represent the cost of time, i.e., study duration, and may serve
as a surrogate for all time-related costs such as the expenses related to maintaining databases, personnel,
and borrowing money. The ratio of the prior costs to the per-patient costs determines the direction of the
tradeoff between trial duration and number of subjects. For relatively higher per-patient costs, the total
trial cost is minimized when fewer patients are used and a longer study duration is permitted.

With this cost model, for each design and each accrual scenario, we can calculate the ratio of the optimal
trial cost for GSD(A,D) to the optimal trial cost for ASD(A,D) for a range of θ values. As an example, we
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Figure 5: Number of subjects versus study duration for the adaptive design with A = 0.62, D = 0.66 and
the matching group sequential design, under two different accrual rates. The black points represent adaptive
design results, and the green line represents the group sequential design results: (a) Accrual rate = 60
subjects per unit time; (b) Accrual rate = 200 subjects per unit time.
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Figure 6: Number of subjects versus study duration for the adaptive design with A = 0.70, D = 0.86 and
the matching group sequential design, under two different accrual rates. The black points represent adaptive
design results, and the green line represents the group sequential design results: (a) Accrual rate = 40
subjects per unit time; (b) Accrual rate = 250 subjects per unit time.
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consider a time cost of money based on ω = 0.005, which if the unit of time is one month would correspond
to a 6% yearly interest rate. Higher interest rates tend to favor shorter trial duration, which would cause
the group sequential designs to be more advantageous, as indicated by Figures 5 and 6. The resulting cost
ratio plots for the adaptive designs considered in Section 4 are shown in Figure 7. As indicated by these
plots, the adaptive design typically offers some cost improvements over the group sequential design for slow
accrual rates, but as the accrual rate increases the cost improvement disappears. Figure 7(a) shows the cost
ratio plots corresponding to the adaptive design of Figure 5 for the full range of accrual rates considered,
and for prior to patient cost ratios of 100, 1000, and 10000. The most significant benefit of the adaptive
design is seen for mid-range values of the true effect size (θ ∈ (0.65, 0.8)), when the patient costs are high (at
a prior cost to per-patient cost ratio of 100), and for accrual rates near the low end of the spectrum (40 - 100
patients per unit time). In this range, the group sequential design may be 10–15% more expensive than the
matched adaptive design. However, when accrual rates are high, the group sequential design is actually very
slightly more cost effective than the adaptive design, saving a small fraction of a percent over the adaptive
design. Figure 7(b) shows the cost ratio plots summarizing the adaptive design of Figure 6. The results for
this design are similar to those of Figure 7(a), though the cost benefit of the adaptive design is somewhat
attenuated. Again, for the highest accrual rate of 250 subjects per unit time, the group sequential design
offers a very slight improvement over the adaptive design. We note that an anonymous referee commented
that the prior to patient cost ratio may well exceed 10,000, which we acknowledge. The general trend
presented here indicates that as the prior to patient cost ratios increase, the ratio of the adaptive to group
sequential trial costs will tend toward 1. As the ratio of prior costs to per patient costs increases with the
simple economic model considered here, the cost difference, which may be of greater importance than the
cost ratio, tends to favor designs which minimize calendar time regardless of the sample size.

6 Discussion

In our comparisons considered here, we compared adaptive designs of a form similar to those initially proposed
for an industry sponsored clinical trial to traditional group sequential designs that might have had the same
operating characteristics. There are many parameters that can be considered in a group sequential stopping
rule including the type I error, the power under some design alternative, the number of interim analyses,
the relative timing of the interim analyses, and boundary shape functions for each of the decisions that
might be reached. The boundary shape functions can in turn be defined for any one of several different
statistics: partial sum of (potentially transformed) observations, the maximum likelihood estimate, the
standardized Z statistic, the fixed sample P value, the error spending function, the conditional power under
some hypothesized treatment effect, the Bayesian predictive power under some prior distribution for the true
treatment effect, or the Bayesian posterior probability of some hypothesis. For each of these statistics, the
boundary shape function relates the early conservatism with which the boundary would allow termination
of the study at the earliest analyses. In the unified family of Kittelson and Emerson [5], a user may choose
from a broad spectrum of boundary shape functions through the choice of three parameters that can be
chosen separately for each stopping boundary.

This wide flexibility of group sequential stopping rules means that there are likely many different group
sequential designs with the same power curves and ASN curves, for instance. Hence, when evaluating
the ability of adaptive designs to improve on standard group sequential methods, we must ensure that we
understand the design constraints that are to be held constant, and those that are allowed to vary. In the
investigations presented in this paper, we presumed that we needed to maintain the criteria for stopping at
the earliest analyses, as well as the schedule and timing of interim analyses. As part of our interest was to
see how easily we could match the adaptive designs, we considered only a single method of modifying the
group sequential boundaries at the second analysis in order to achieve a comparable group sequential design.

While it is clear that the adaptive designs offer no advantages in uncensored settings such as when
evaluating the difference of means or proportions, there are some distinct advantages to the adaptive design
in certain survival analysis settings, because we may gain efficiency in the number of subjects needed and/or
the calendar time required for the study to complete. Such considerations will also be relevant in trials
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Figure 7: Cost ratio plots for the adaptive designs considered in Figures 5 and 6, for a range of accrual
rates. Cost ratio is calculated as the ratio of the minimal cost for the group sequential design to the minimal
cost for the adaptive design, where costs are estimated as described in Section 5. Three different prior to
patient cost scenarios are considered, representing high patient costs (black line), mid-range patient costs
(red line), and low patient costs (green line). Note that the y-axis scale changes for the two highest accrual
rates. (a) Cost ratio plots comparing ASD(0.62, 0.66) to GSD(0.62, 0.66); (b) Cost ratio plots comparing
ASD(0.70, 0.86) to GSD(0.70, 0.86). 18

http://biostats.bepress.com/uwbiostat/paper356



Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 40

Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 60

Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 100

Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 150

Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 200

Theta

C
os

t R
at

io
 G

S
D

*:
A

S
D

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 250

Prior:Patient =  100
Prior:Patient =  1000
Prior:Patient =  10000

A = 0.62, D = 0.66: GSD*

Figure 8: Cost ratio plots comparing a less-constrained, optimized group sequential design GSD∗(0.62, 0.66)
to the adaptive design ASD(0.62, 0.66), for a range of accrual rates. Cost ratio is calculated as the ratio
of the minimal cost for the group sequential design to the minimal cost for the adaptive design, where
costs are estimated as described in Section 5. Three different prior to patient cost scenarios are considered,
representing high patient costs (black line), mid-range patient costs (red line), and low patient costs (green
line).

with a delayed response or in longitudinal studies, as observed by an anonymous referee. We found that the
degree of benefit depends on the distributions of event times and accrual rate as well as on the particular
adaptive design under consideration. It is therefore worth considering the cost-effectiveness of using such an
adaptive design in time-to-event endpoints. Even the simple cost model considered here, when used with
trial specific values of prior development costs, per patient costs, accrual rates, and the current interest rates
reflecting the time cost of money, could provide useful insight into the tradeoffs between potentially higher
patient accrual or longer calendar time.

It is worth noting however, that our decision to hold the number and schedule of interim analyses constant
may represent an unreasonable restriction. To briefly explore the effects of relaxing these constraints, we
consider the example with A = 0.62, D = 0.66, where the adaptive design appeared to offer the most potential
for benefit. We relaxed the constraint on the timing of the second and third analyses to explore a broader
class of group sequential designs, but we continued to enforce the stopping boundary for the first analysis at
100 events. Having searched across a range of possible maximal sample sizes and P parameters to find an
improved group sequential design within these relaxed constraints, we found that a design with maximum
sample size of 210 events (analyses at 100, 155, and 210 events) and P = (1.3, 1.3) matched the power curve
of ASD(0.62, 0.66) while dramatically improving ASN. The cost ratio plots resulting from comparing this
design to ASD(0.62, 0.66) are shown in Figure 8, from which we can see that significant reductions in total
trial cost are possible for certain accrual and cost scenarios.

We do acknowledge that the above exercise is not totally fair. We presumed that the adaptive person
tipped his/her hand first. Thus we only had to show we could improve over their choice. In the context of this
example, which was based loosely on the type of design proposed for an industry sponsored study, we found
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that we could easily find a group sequential design that met the same general operating characteristics. Given
the small number of operating characteristics that were actually considered relative to the large number of
group sequential test parameters at our disposal, this is not surprising. It would be similarly unsurprising
to find that a proponent of adaptive designs could match the specified constraints of any particular group
sequential design, and perhaps improve on some others. However, we believe the advantages of the well-
developed group sequential trial theory makes it advantageous to use the group sequential design whenever
the two approaches are roughly comparable.

As noted in Emerson [6], there remain problems with inference following the use of such an adaptive
design, so in cases where there is questionable or insignificant gain from the adaptive design it may be wiser
to continue to use a standard group sequential design where inferential methods are readily available in
commercially available statistical software. Thus, we would argue that the time of clinical trialists is probably
better spent exploring the wide range of group sequential trials already described and implemented, rather
than trying to find ad hoc adaptive designs. Our belief is that the careful evaluation of candidate group
sequential designs can largely address the issues that have motivated the development of adaptive designs.

One such area of evaluation that we have not explored here, but one that should receive careful attention
in a time-to-event setting, is that of the ability to assess time varying treatment effects: In the setting of
treatment effects that might be of greater magnitude either soon after randomization or after some delay,
the tradeoffs between sample size and calendar time take on great importance. A study that terminates
early with most events corresponding to short periods of treatment may not detect a clinically important
difference in treatment behavior with additional follow-up.

Appendix

We consider the adaptive switching from a pre-specified group sequential design A to a pre-specified design
group sequential design B∗(A,D) according to whether the test statistic θ̂(N1) computed at the first analysis
is between the values of A and D.

Notationally we define group sequential design A as a level α one-sided test of a lesser alternative having
continuation sets C1 = (a1, d1) and C2 = ∅ for θ̂(N1) and θ̂(N2), respectively, computed at analyses performed
when the accrued sample sizes are N1 = n1 and N2 = N1 + n2, respectively. The threshold a2 for statistical
significance at the second analysis is defined to guarantee an experimentwise error of α. Hence

P
(

θ̂1 ≤ a1

∣∣∣ θ = 1
)

+ P
(

a1 ≤ θ̂1 ≤ d1, θ̂2 ≤ a2

∣∣∣ θ = 1
)

= α.

Now, suppose that if we do not terminate the clinical trial at the first analysis, we want to switch to an
alternative stopping rule whenever θ̂1 is observed between pre-specified values of A and D satisfying

a1 ≤ A ≤ D ≤ d1.

If a1 < θ̂(N1) < A or D < θ̂(N1) < d1, we will continue to use the sampling plan that specified a maximal
sample size of N2, with a threshold for statistical significance of a2 at that last analysis.

Based on the pre-specified values of A and D, we further prospectively identify a group sequential design
B∗(A,D) having continuation sets C∗2 = (a∗2, d

∗
2) and C∗3 = ∅ for θ̂(N∗

2 ) and θ̂(N∗
3 ), respectively, computed

at analyses performed when the accrued sample sizes are N∗
2 = N1 + n∗

2 and N∗
3 = N∗

2 + n∗
3, respectively.

Values of θ̂(N∗
2 ) ≤ a∗2 or θ̂(N∗

3 ) ≤ a∗3 will be judged cause to reject the null hypothesis. Hence, we need to
pre-specify values of a∗2, d∗2, and a∗3 that, when used in conjunction with the group sequential design A and
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the adaptation pre-specified through the choice of A and D, will preserve the experimentwise error of α:

P (Reject H0 | θ = 1) = P
(

θ̂(N1) ≤ a1

∣∣∣ θ = 1
)

+ P
(

D ≤ θ̂(N1) < d1, θ̂(N2) ≤ a2

∣∣∣ θ = 1
)

+ P
(

a1 < θ̂(N1) ≤ A, θ̂(N2) ≤ a2

∣∣∣ θ = 1
)

+ P
(

A < θ̂(N1) < D, θ̂(N∗
2 ) ≤ a∗2

∣∣∣ θ = 1
)

+ P
(

A < θ̂(N1) < D, a∗2 < θ̂(N∗
2 ) < d∗2, θ̂(N∗

3 ) ≤ a∗3

∣∣∣ θ = 1
)

= α.

Now using the fact that the original specification of group sequential design A was a level α test, and the
fact that (a1, A], (A,D), and [D, d1) form a partition of (a1, d1), we have that we only need

P (Reject H0 | θ = 1) = α− P
(

A < θ̂(N1) < D, θ̂(N2) ≤ a2

∣∣∣ θ = 1
)

+ P
(

A < θ̂(N1) < D, θ̂(N∗
2 ) ≤ a∗2

∣∣∣ θ = 1
)

+ P
(

A < θ̂(N1) < D, a∗2 < θ̂(N∗
2 ) < d∗2, θ̂(N∗

3 ) ≤ a∗3

∣∣∣ θ = 1
)

= α

which in turn yields that we only need find a∗2, d∗2, and a∗3 to satisfy

P
(

A < θ̂(N1) < D, θ̂(N2) ≥ d2

∣∣∣ θ = 1
)

= P
(

A < θ̂(N1) < D, θ̂(N∗
2 ) ≤ a∗2

∣∣∣ θ = 1
)

+ P
(

A < θ̂(N1) < D, a∗2 < θ̂(N∗
2 ) < d∗2, θ̂(N∗

3 ) ≤ a∗3

∣∣∣ θ = 1
)

In particular, we can define a group sequential design using the constrained boundary approach of Burington
and Emerson (2003) in which analyses are performed at sample sizes N1, N∗

2 , and N∗
3 , the continuation set

(a∗1, d
∗
1) at the first analysis is constrained to be a∗1 = A and d∗1 = D, and a∗2, d∗2, and a∗3 can be chosen as

any resulting group sequential design that has type I error of

α∗ = P
(

θ̂1 ≤ A
∣∣∣ θ = 1

)
+ P

(
A < θ̂(N1) < D, θ̂(N2) ≤ a2

∣∣∣ θ = 1
)

.

Any such choice will thus preserve an experimentwise error of α for the adaptive procedure.
It should be noted that it is immaterial the group sequential design family that is used to parameterize

the specification of group sequential designs A and B∗(A,D). Hence, subject to the specification representing
a valid design, the group sequential designs could be specified in the unified family of Kittelson and Emerson
(1999), a family of error spending functions, a specification of Bayesian posterior probabilities, or conditional
or predictive power families.

The operating characteristics of the adaptive design considered here can be calculated using standard
group sequential software, so long as the software allows the specification of arbitrary boundaries and the
calculation of stopping probabilities at each analysis. The following approach will work in the program
S+SeqTrial.

Design A can be computed according to the specified design parameters, which might include specifying
the desired type I error, the number of analyses, the boundary shape parameters for both efficacy and
futility, and any two of the design alternative, the desired statistical power, and the maximal number of
events. For example, using the unified family of [5], the following code specifies Design A to be a one-sided
level 0.025 test of a lesser hazard ratio having a maximum of two analyses after 100 and 200 events have
been observed and using an O’Brien-Fleming efficacy (lower) boundary (so boundary shape parameters of
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Pa = 1, Ra = 0, Aa = 0) and a Pocock futility (upper) boundary (with boundary shape parameters of
Pd = 0.5, Rd = 0, Ad = 0), and also specifies Design B with three analyses at 100, 200, and 300 events using
the same parameters, constrained to match Design A at the first analysis:

> designA <- seqDesign(prob.model="hazard", test.type="less", size=0.025,
sample.size=c(100, 200), power=0.975, nbr.analyses=2, P=c(1, 0.5))

> bou <- seqBoundary(designA)
> bou <- matrix(NA, 3, 4)
> bou[1,] <- seqBoundary(designA)[1,]

> designB <- update(designA, sample.size=c(100, 200, 300), nbr.analyses=3,
exact.constraint=bou)

The actual stopping boundaries are printed with the command:

> designA

PROBABILITY MODEL and HYPOTHESES:
Two arm study of censored time to event response variable
Theta is hazard ratio (Treatment : Comparison)
One-sided hypothesis test of a lesser alternative:

Null hypothesis : Theta >= 1 (size = 0.025)
Alternative hypothesis : Theta <= 0.5596 (power = 0.975)

STOPPING BOUNDARIES: Sample Mean scale
a d

Time 1 (N= 100) 0.5792 0.8645
Time 2 (N= 200) 0.7611 0.7611

Then, a modification of Design A, Design Acomp(A,D), is specified in order to assist in computations
reflecting the adaptive switching from Design A to a modification of Design B. For specified A and D, we
modify the boundary of Design A to allow stopping and switching to the modified Design B if the observed
hazard ratio is between A and D at the first analysis. We make use of the facility for constrained boundaries
(Burington and Emerson, 2003). For instance, if we choose A = 0.62 and D = 0.66,

> bouA <- seqBoundary(designA)
> bouA[1,2] <- 0.62
> bouA[1,3] <- 0.66
> designAcomp.AD <- update(designA, test.type="two.sided", exact.constraint=bouA)

The boundaries of the Design Acomp(A,D) are obtained as:

> seqBoundary(designAcomp.AD)

STOPPING BOUNDARIES: Sample Mean scale
a b c d

Time 1 (N= 100) 0.5792 0.62 0.66 0.8645
Time 2 (N= 200) 0.7611 NA NA 0.7611

Stopping probabilities computed under Design Acomp(A,D) then reflect the probabilities of decisions made
using Design A. For instance, under the null hypothesis of a hazard ratio of 1.0:

> seqOC(designAcomp.AD, theta=1)
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Operating characteristics at theta= 1
ASN= 121.9633
Lower Power= 0.0218
Upper Power= 0.9677

Stopping Probabilities:
Lower Null Upper Total

Analysis time 1 0.0032 0.0105 0.7668 0.7804
Analysis time 2 0.0187 0.0000 0.2010 0.2196

From the above, we see that for these values of A and D under the null hypothesis there is a probability
of 0.0032 of stopping at the first analysis (when 100 events have been observed) with a decision for efficacy,
a probability of 0.7668 of stopping at the first analysis with a decision for futility, a probability of 0.0187
of staying with Design A and then deciding for efficacy at the second analysis (when 200 events have been
observed), and a probability of 0.2010 of staying with Design A and then deciding for futility at the second
analysis. The remaining probability of 0.0105 corresponds to deciding to switch to Design B∗(A,D) based
on the observation of an estimated hazard ratio between 0.62 and 0.66.

Design B∗(A,D) is a modification of Design B found in such a way as to ensure the experimentwise
type I error of 0.025. There are an infinite number of ways to proceed. For the purposes of this paper,
we considered maintaining the parameterization of the boundary shapes within the unified family, but
constraining the stopping boundaries at the first analysis to agree with the boundaries of Design A, as
discussed previously. In order to perform the necessary computations, we must specify a design, Design
Bcomp(A,D) that will have the same boundary as Design B∗(A,D), except that the continuation region at
the first analysis will be defined by A and D rather than matching the Design A boundary. The operating
characteristics of Design Bcomp(A,D) will then correctly reflect the probabilities resulting from adaptively
switching to Design B∗(A,D). The specified type I error for Design Bcomp(A,D) was found to guarantee the
experimentwise error, which is computed as the probability of 0.0218 of deciding for efficacy using Design A
plus the probability of deciding for efficacy at either the second or third analysis using Design Bcomp(A,D).
This is easily computed from a single iteration: The specified size for Design Bcomp(A,D) should equal the
desired experimentwise type I error of 0.025 minus the probability of 0.0218 for declaring efficacy when using
Design A(A,D) plus the probability of observing an estimated hazard ratio less than A = 0.62 at the first
analysis in Design Bcomp(A,D). In the example presented in this Appendix, a type I error of 0.0116 was
found to satisfy the constraint. Hence, we used code:

> bouB <- matrix(NA, 3, 4)
> bouB[1,1] <- 0.62
> bouB[1,4] <- 0.66
> bouB <- seqBoundary(bouB)
> designBcomp.AD <- update(designA, size=0.0116, nbr.analyses=3, sample.size=c(100, 200, 300),

exact.constraint=bouB)

The stopping boundaries when using Design Bcomp(A,D) are found to be:

> seqBoundary(designBcomp.AD)

STOPPING BOUNDARIES: Sample Mean scale
a d

Time 1 (N= 100) 0.6200 0.6600
Time 2 (N= 200) 0.7283 0.9386
Time 3 (N= 300) 0.8095 0.8095

We can verify the experimentwise error for the design resulting from adaptively switching from Design A to
Design B∗(0.62, 0.66) by using the operating characteristics of Design Acomp(A,D) and Design Bcomp(A,D):
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> seqOC(designBcomp.AD, theta=1)

Operating characteristics at theta= 1
ASN= 101.8519
Lower Power= 0.0116

Stopping Probabilities:
Lower Null Upper Total

Analysis time 1 0.0084 0 0.9811 0.9895
Analysis time 2 0.0018 0 0.0006 0.0024
Analysis time 3 0.0014 0 0.0067 0.0081

In the adaptive design based on Design A and Design B∗(A,D) with parameters A = 0.62, D = 0.66, we thus
find an experimentwise error of 0.025: A probability of deciding for efficacy of 0.0032 at the first analysis
and 0.0187 at the second analysis when using Design A and a probability of 0.0018 at the second analysis
and 0.0014 at the third analysis when using Design B∗(A,D). Using similar computations of stopping
probabilities under the design alternative of a hazard ratio of 0.5596, we find an experimentwise power of
0.9757: A probability of deciding for efficacy of 0.5684 at the first analysis and 0.3079 at the second analysis
when using Design A and a probability of 0.0970 at the second analysis and 0.0024 at the third analysis when
using Design B∗(A,D). The average sample size (ASN) for the adaptive design can be found by multiplying
the number of events at study termination by the probability of stopping with a decision for futility or
efficacy at the first or second analyses using Design A and the probability of stopping at the second or third
analyses for Design B∗(A,D).

In order to find a comparable pre-specified group sequential design, we can again use the constrained
boundary approach in order to match the decision boundaries at the first analysis. There are then an infinite
number of ways that the design parameters can be modified at future analyses in order to closely match the
unconditional power curve or the ASN curve to that of the adaptive approach. For instance, the following
code could be used if the boundary shape parameters were to be modified:

> bouGS <- seqBoundary(designB)
> bouGS[2,] <- NA

> designGS <- update(designB, exact.constraint=bouGS, P=c(0, 0.08))

> designGS

PROBABILITY MODEL and HYPOTHESES:
Two arm study of censored time to event response variable
Theta is hazard ratio (Treatment : Comparison)
One-sided hypothesis test of a lesser alternative:

Null hypothesis : Theta >= 1 (size = 0.025)
Alternative hypothesis : Theta <= 0.5617 (power = 0.975)

STOPPING BOUNDARIES: Sample Mean scale
a d

Time 1 (N= 100) 0.5792 0.8645
Time 2 (N= 200) 0.7589 0.7665
Time 3 (N= 300) 0.8025 0.8025

In this example, the group sequential design has marginally higher power and slightly lower ASN than the
adaptive design given above for all alternatives corresponding to hazard ratios between 0.3 and 1.2.
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