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1. Introduction

A continuous medical test (marker) may be used to discriminate diseased individuals from

their healthy counterparts. Without loss of generality, assume the marker tends to be higher

among individuals with the disease. A specified threshold of the test above which an individ-

ual is classified as diseased generates a value for the true positive rate (sensitivity) and false

positive rate (1-specificity). The receiver operating characteristic (ROC) curve is a tool to

show the relationship between the true positive rate and false positive rate as the threshold

of the test is varied. Mathematically we can write this as ROC(t) = SD(S−1
D̄

(t)), where SD

and SD̄ are the survival functions in the diseased and healthy populations, respectively. A

very low threshold correctly classifies the majority of diseased cases (high sensitivity) but

may incorrectly classify the majority of healthy individuals (low specificity). Similarly, a

very high threshold has low sensitivity and high specificity.

As an example CA-125 and CA-19-9 are two markers used for identifying individuals with

pancreatic cancer (Pepe 2003). A comparison of the two respective ROC curves can help

determine which marker is able to better discriminate individuals with pancreatic cancer

from the general healthy population.

Various statistical regression methods have been developed to contrast the discriminatory

ability of different markers across covariate groups. Pepe (1998) distinguished three methods

for ROC analysis, focusing on modeling either the marker distribution, a summary measure

of the ROC curve such as area under the curve (AUC), or the ROC curve directly. Early re-

gression methods included a full parametric model, where the unknown parameter describing

the marker distribution in the healthy and diseased populations was of finite dimension, and

the ROC curve was similarly defined by a finite-dimensional parameter. Fully parametric

models previous described for this approach include binormal, logistic and negative expo-

nential (Zweig and Campbell 1993). In an attempt to relax the strong assumptions of the

fully parametric approach, one semi-parametric approach focuses on modeling a marker’s
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survival function in both populations. After specifying these two distributions, a family of

ROC curves are induced. As an example, a location-scale family could be specified for each

survival function, so the marker is a shift from a common unknown function. This approach

allows for interpretable covariate effects on the ROC curve, induced through the separate

estimated effects for healthy and disease markers. But this specification may induce a family

of ROC curves that remains dependent on this unknown function, and therefore be infinite

dimensional: parameter estimates by themselves may not provide information on the actual

shape of the ROC curve.

To avoid this issue of infinite dimensionality, a second semi-parametric approach, ROC-

GLM, focuses on modeling the ROC curve directly (Pepe 2003). This method specifies a finite

dimensional parametric family of ROC curves that induce a semi-parametric model of marker

distributions, which may or may not correspond to a semi-parametric model commonly used

in other statistical applications. Covariates can be flexibly estimated at either the marker

level, similar to the location-scale family, or directly on the ROC curve.

While it is immediate that this latter semi-parametric approach is more flexible than the

fully-parametric model, semi-parametric models may still lose particular robustness proper-

ties under model misspecification. Consider the situation of comparing the discriminatory

abilities of two potential markers that in truth have the same ROC curve but do not neces-

sarily have the same distribution in the underlying population. Under misspecification of the

parametric ROC form, we will likely predict the individual ROC curves and some summary

of the curves, such as AUC, to be dissimilar from the true underlying curve or value. This

by itself will not pose a problem when testing the strong null of ROC1(t) = ROC2(t) ∀

t, provided the misestimation is consistent for any given true ROC curve. If a regression

method is able to consistently estimate exact equivalence, regardless of whether the true

ROC is estimated, it is immediate that any two functionals can be estimated. This situation

is highlighted in panel (a) of Figure 1, where two fitted ROC curves overlap even though
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the true ROC curve is not correctly predicted. But the degree of misestimation may differ,

and we could incorrectly estimate the two ROC curves to be nonequivalent. In this latter

situation, the equivalence of any two functionals can not in general be correctly detected.

The situation where the degree of misestimation differs for two marker is shown in panel (b)

of Figure 1.
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Figure 1: Fitted curves for two markers that have the same true ROC curve (solid). (a)
The degree of misestimation is the same for the two markers and the two fitted ROC curves
overlap. (b) The degree of misestimation differs for the two fitted curves.

In this paper, we investigate the ability of various regression methods to test the strong

null for two markers over the entire ROC curve in the presence of model misspecification.

To illustrate these issues, we focus on the power ROC curve, defined as ROC(t) = texp{θ}.

While not common in ROC modeling, the power curve is attractive in this setting as it is

a single parameter family of curves and has various parametric and semi-parametric models

readily available for estimation. For instance, the power ROC curve can either be estimated

by parametrically modeling the marker distributions using exponential or Weibull regression,

by semi-parametrically modeling the marker distributions using the estimating equation de-

rived by the usual partial likelihood methods in proportional hazards time-to-event analyses,
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or by parametrically modeling the ROC curve directly using the estimating equations pro-

posed by Pepe (2003). When the necessary assumptions hold, all three methods consistently

estimate the same ROC curve. But when the underlying assumptions are violated, the de-

gree of robustness for the three methods may vary widely. In this paper, we investigate

the robustness properties of these methods under misspecification of the marker distribution

and/or parametric form of the ROC curve.

2. Estimation using exponential regression

Fully parametric approaches to modeling the marker distribution that lead to the power

ROC curve are the exponentional and Weibull regression models. In this paper, we will fo-

cus on exponential regression. For this approach, define the survival function in the healthy

and disease populations to be SD̄(y) = e−λ1y and SD(y) = e−λ2y, respectively. This in-

duces the power ROC curve through ROC(t) = SD(S−1
D̄

(t)) = e(λ2/λ1) log(t) = texp{θ}, where

θ = log(λ2/λ1). The maximum likelihood estimate (MLE) for the two rates are λ̂1 = 1/ȲD̄

and λ̂2 = 1/ȲD; therefore, the MLE of the parameter in the power ROC curve is θ̂ = log( ȲD̄
ȲD

).

3. Estimation using Cox regression

The semiparametric model of the marker distributions that leads to the power ROC curve is

Cox proportional hazards regression. Under the proportional hazards assumption, the corre-

spondence between the healthy and diseased survival functions is SD(y) = (SD̄(y))exp{θ}. The

power ROC curve is then induced through ROC(t) = SD(S−1
D̄

(t)) = (SD̄(S−1
D̄

(t)))exp{θ} =

texp{θ}.

For this regression approach, let Yi, i ∈ 1 . . . N , denote marker values in the pooled

healthy and diseased sample, and let xi denote the design matrix. Without censoring or ties,

the partial likelihood based estimating equation is
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U(θ) =
N∑
i=1

(
xi −

∑N
j=1 I[Yj ≥ Yi]xje

xTj θ∑N
j=1 I[Yj ≥ Yi]e

xTj θ

)
= 0.

For this paper, we focus on the estimating equation without covariates. It can be rewrit-

ten in terms of the empirical ROC curve ˆROC(t) as

U(θ) =
1

ND

ND∑
i=1

r ˆROC
−1

(ui)

uieθ + r ˆROC
−1

(ui)
− 1

ND̄

ND̄∑
i=1

ˆROC(ti)e
θ

r−1 ˆROC(ti)eθ + ti
,

where r = ND̄
ND

, ui = ND−i+1
ND

and ti = ND̄−i+1

ND̄
. As ND → ∞ and ND̄ → ∞ but the ratio

of sample sizes, r, stays constant, empirical process theory provides ˆROC(t) → ROC(t),

ˆROC(t)−1 → ROC−1(t), and the estimating equation converges to

0 =

∫ 1

0

rROC−1(u)

ueθ + rROC−1(u)
du−

∫ 1

0

ROC(t)eθ

r−1ROC(t)eθ + t
dt.

4. Estimation using ROC-GLM

The ROC-GLM method uses a parametric model of the ROC curve which induces a semi-

parametric relationship between the two marker distributions. This approach focuses on

minimizing a weighted difference between a nonparametric estimate of the ROC curve and

a specified parametric ROC curve across an interval of evenly spaced false positive fractions

(FPFs). Since the aim here is to estimate the entire ROC curve, let the interval T be a

vector of evenly spaced FPFs across the range (0,1). Let Nt denote the total number of
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points in T and let k denote the index of T .

Define an invertible link function g() so that g(ROC(tk)) = α0(tk)+~θT ~α(tk) is linear in its

parameters and ROC(tk) is monotonic and increasing over the interval (0,1). Furthermore,

when choosing the link function, the specified curve must be a proper ROC curve as tk → 1−

and tk → 0+. To this end, we introduce the offset α0(tk), which is shown below to be a

requirement for certain parameterizations of the ROC curve.

Using the weighting function w(t) =
d
dl
ROC(l)

ROC(l)(1−ROC(l))
, where l = α0(tk) + θα(tk) + βX,

the general form for the ROC-GLM estimating equation is

U(θ, β) =
Nt∑
k=1

ND∑
i=1

(α(tk), Xi)
Tw(tk)

[
Ûi,t − g−1(α0(tk) + θα(tk) + βXi)

]
,

where the mean of Ûi,tk over the diseased population is a nonparametric estimate of the ROC

curve at the FPF tk:
1
ND

∑ND
i=1 Ûi,tk = ˆROC(tk).

When applying this method to the power ROC curve family, the required link is the com-

plementary log-log function, g(x) = log(− log(x)), so that g(ROC(tk)) = θ+log(− log tk))+

Xiβ. Here α(tk) = 1, w(tk) =
log te

θ+Xiβ

k

(1−teθ+Xiβk )
, and α0(tk) = log(− log tk) the required offset. The

complementary log-log function must be used here over the single log, since in the latter case

the ROC would then be defined as ROC(tk) = exp{eθ log(tk) +Xiβ}; this quantity may not

be defined as a proper ROC curve when tk → 1−.

Without covariates, the estimating equation for the power curve ROC-GLM is then

U(θ) =
Nt∑
k=1

ND∑
i=1

log te
θ

k

(1− teθk )

[
Ûit − te

θ

k

]
= 0

=
1

Nt

Nt∑
k=1

log te
θ

k

(1− teθk )

[
ˆROC(tk)− te

θ

k

]
= 0

If T is defined as the vector T = {1/ND̄, . . . , (ND̄ − 1)/ND̄} and ND, ND̄ → ∞, the ROC-
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GLM estimating equation converges to

∫ 1

0

log te
θ

(1− teθ)

[
ROC(t)− teθ

]
dt = 0 (1)
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Figure 2: An empirical ROC curve for 10 individuals in both the healthy and diseased
samples. Each mark (×, ◦) corresponds to the empirical FPF and TPF when the test
threshold is identical to an observed marker value.

For the nonparametric estimate of the ROC curve, ˆROC(tk) = 1
ND

∑ND
i=1 Ûi,tk , Pepe

(2003) used the indicator function Ûi,tk = I[ŜD̄(YDi) ≤ tk]. This can be expanded to a class

of nonparametric estimates Ûi,tk = I[ŜD̄(YDi) < tk] + αI[ŜD̄(YDi) = tk], where α ∈ [0, 1].

The estimates corresponding to different values of α can be viewed in Figure 2. For a given

FPF tk corresponding to vertical jump on the empirical curve, any TPF along the vertical

segment would be a valid estimate of ROC curve at tk. A value of α = 1 corresponds to

assigning the maximum TPF for the vertical segment, as adopted by Pepe, while α = 0

corresponds to assigning the minimum TPF. Other options include assigning the midpoint

of the segment, or some weighted combination of the estimated curves using α = 1 and α = 0
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as suggested by Alonzo and Pepe (2002).

While most values of α will be consistent estimates of the ROC curve, some may provide

systematically less bias with smaller samples. Consider ROC-GLM estimates of the power

ROC curve when the true value of θ = −1.2, and there are 300 individuals in the healthy

and diseased samples both of which have an exponential marker distribution. In 5,000 sim-

ulated studies, the mean and standard deviation of parameter estimates and corresponding

z-statistics were calculated when α = 0, α = 1, α = 0.5. As shown in Table 1, the average

θ̂ depart from the true value depending on the choice of α, and these deviations are large

based on the z-statistic. For the remainder of this article, we will use α = 0.5, as it provides

smaller bias.

Table 1: ROC-GLM estimates of θ for three possible Ûi,tk options.

Ûi,tk Mean (SD) z-statistic
α = 0 -1.194 (0.106) 4.00
α = 0.5 -1.203 (0.107) -1.98
α = 1 -1.212 (0.107) -7.93

5. Comparing the three regression methods

We are interested in the ability of the regression methods to contrast two or more markers

when the power curve is the correct specification of the true curve in the population and

when it is not the true underlying curve. Within correct and incorrect specification of the

ROC curve, we further investigate whether the parameter estimates are dependent on the

marker distribution in the population.

Correct specification of the ROC curve

Under the power ROC curve, the inverse survival function in the diseased population is

specified knowing the healthy marker distribution through S−1
D (t) = S−1

D̄
(texp{−θ}). Using

this relationship, data were generated when the distribution in the healthy population was

Exponential(λ = 1), Normal (µ = 150, σ = 5), and Log-Normal (µ = 3, σ = 1) and the true
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value of θ = −1.2 . Fixing the total sample size at 600, we considered three situations when

the ratio of diseased to healthy was either 1:1, 1:5 or 5:1. Over 5,000 replications of the data

generating process, the mean and standard deviation of θ̂ estimates were calculated.

For estimates using ROC-GLM, we considered three different vectors of FPFs. These

included one based on the empirical distribution using the maximal set of FPFs Tmax =

{1/ND̄, . . . , (ND̄ − 1)/ND̄}, and two other vectors using 10 and 100 evenly spaced FPF

points, T10 and T100, respectively.

Simulation results are presented in Table 2. The exponential regression model provides

unbiased and efficient estimates when the marker distribution is exponential, but the esti-

mates deviate from the true value when the marker is no longer exponential. The estimated

ROC curves under the three marker distributions are shown in Figure 3(a). While the esti-

mated ROC curve for an exponential healthy distribution appears identical to the true ROC,

the curves for the two other distributions are considerably different from the true curve. This

approach appears to estimate the same parameter value for any ratio of sample sizes.

Under any combination of marker distribution and sample size ratio, the Cox and ROC-

GLM methods provide similar estimates of θ. As the most efficient rank-based method under

proportional hazards, standard errors from the Cox model appear to be consistently smaller

than from ROC-GLM. Estimates from both methods appear slightly negatively biased. The

efficiency of the ROC-GLM estimates appears to be dependent upon the choice of T. Stan-

dard errors for the estimates of θ from Tmax are always smaller than either T100 or T10. The

Tmax and T100 vectors are equal when the diseased to healthy ratio is 500:100. The standard

errors are consistently largest for the T10 vector.

Misspecification of the ROC curve

Unlike the construction above, data here were generated when the true underlying ROC

curve was binormal. The binormal ROC curve is parameterized as ROC(t) = SD(S−1
D̄

(t)) =

Φ(a + bΦ−1(t)), where a = µD−µD̄
σD

and b = σD̄
σD

. Using this relationship, and a specified

9
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Figure 3: (a) Exponential regression estimates of θ when the true ROC curve is a power
curve. The estimated curve when the healthy marker distribution is exponential overlaps
the true ROC curve. There were 300 individuals in both the healthy and diseased samples.
(b) Estimated ROC curves from Cox regression when the true ROC curve is binormal and
the healthy marker distribution is exponential. The estimate θ̂ was the average over 5,000
replications.

marker distribution in the healthy population, the inverse survival function in the diseased

population is defined as S−1
D (t) = S−1

D̄
(Φ(Φ−1(t)−a

b
)). Data were again generated in the healthy

population from exponential, normal and log-normal distributions, and the true value for a

and b were both 0.5. The number of replications and sample sizes ratios were the same as

before. Since the true ROC curve is not a power curve, there is no true value of θ.

Results from this simulation are provided in Table 3. Exponential regression again pro-

vides different estimates of θ depending on the marker distribution in the healthy; but, for a

specified healthy distribution, this approach provides similar estimates across different ratios

of sample sizes. In constrast to this, Cox regression provides similar estimates for a fixed

sample size ratio; but as this ratio is varied, this model estimates different values for the

parameter. Figure 3(b) displays the estimated ROC curves using Cox regression when the

sample size ratio is varied.
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Unlike exponential or Cox regression, ROC-GLM estimates similar values for θ for any

combination of healthy marker distribution and ratio of sample sizes. Again, the standard

error for the estimates appear to vary slightly depending on the choice of T. Parameter

estimates from T10 differ from the other two vectors, potentially due to the degree of curvature

in the chosen binormal curve.

6. Discussion

There are various statistical regression models available to estimate the single parameter

in the power ROC curve. These parametric or semi-parametric methods focus on either

modeling the marker distributions, which induce a ROC curve, or direct modeling of the

parametric form of the ROC curve. In this paper, we investigated the ability of these

methods to contrast two or more markers under correct and incorrect specification of the

ROC curve with various underlying marker distributions.

Fully parametric exponential regression provides efficient estimates under correct speci-

fication of the marker distribution, but the ability to provide consistent estimates remains

dependent on the marker distribution.

The two other regression models attempt to relax the strong distributional assumptions

inherent in fully-parametric models. Cox regression provides similar estimates for various

marker distributions, as long as the true ROC curve follows a power curve. When the

parametric form was not a power curve, the dependence of the estimating equation on the

ratio of the two sample sizes is apparent; the model estimates varying values of the parameter

depending this ratio.

An alternative regression model, ROC-GLM, instead focuses on modeling the parametric

form of the ROC curve. The estimating equation for this method does not depend on

characteristics of the combined healthy and diseased samples. Therefore, this approach was

able to consistently provide similar contrasts of the markers independent of whether the
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parametric ROC form was correctly specified. The choice of the FPF vector in ROC-GLM

did appear to influence efficiency as previously reported in Alonzo and Pepe (2002). While

a large vector may influence the computational complexity of this approach, we feel that the

majority of users will likely use the vector based on the empirical healthy distribution.

In summary, ROC-GLM appears to be more robust to model misspecification when test-

ing the strong null. ROC-GLM was able to consistently test the equality of ROC curves under

all marker distributions or misspecification of the parametric ROC form. The dependence

on the ratio of sample sizes for the partial likelihood estimating equation in proportional

hazards regression, and its impact on parameter misestimation, suggest difficulty in case-

control studies where the prevalence of disease may be chosen by study design. We found

that when ROC inference is the goal using estimating equations based on the parametric

form of the ROC curve rather than the marker distribution is important. The weighted dif-

ference basically between a nonparametric estimate θ̂NP and a chosen semiparametric form

θSP of the ROC curve

U(θ) =
N∑
i

wi(θ̂
NP
i − θSPi ),

for ROC-GLM appears to be the source of the better behavior.
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Table 2: Comparison of exponential, Cox proportional hazards and ROC-GLM estimates of
θ when the true ROC curve is a power curve and θ = −1.2. Estimates were calculated as
the mean and standard deviation of 5,000 replications.

Ratio of Diseased:Healthy
Regression Type FD̄ 300:300 500:100 100:500

Exponential Exp. −1.198 (0.082) −1.204 (0.109) −1.195 (0.109)
Normal −0.044 (0.003) −0.044 (0.004) −0.044 (0.005)

Log-Norm. −2.057 (0.205) −2.073 (0.203) −2.026 (0.318)
Cox PH −1.202 (0.095) −1.206 (0.117) −1.202 (0.125)

−1.202 (0.093) −1.206 (0.117) −1.202 (0.124)
−1.203 (0.094) −1.207 (0.120) −1.201 (0.127)

ROC-GLM Tmax −1.203 (0.107) −1.204 (0.122) −1.208 (0.156)
−1.202 (0.104) −1.203 (0.122) −1.207 (0.155)
−1.204 (0.105) −1.204 (0.124) −1.208 (0.157)

ROC-GLM T10 −1.204 (0.115) −1.204 (0.130) −1.210 (0.170)
−1.202 (0.112) −1.202 (0.130) −1.209 (0.169)
−1.204 (0.113) −1.203 (0.131) −1.211 (0.172)

ROC-GLM T100 −1.203 (0.107) −1.204 (0.122) −1.208 (0.157)
−1.202 (0.104) −1.203 (0.122) −1.209 (0.157)
−1.204 (0.105) −1.204 (0.124) −1.208 (0.159)
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Table 3: Comparison of exponential, Cox proportional hazards and ROC-GLM estimates
of θ when the true ROC curve is binormal. Estimates were calculated as the mean and
standard deviation of 5,000 replications.

Ratio of Diseased:Healthy
Regression Type FD̄ 300:300 100:500 500:100

Exponential Exp. −1.197 (0.092) −1.201 (0.115) −1.190 (0.131)
Normal −0.033 (0.004) −0.033 (0.004) −0.033 (0.007)

Log-Norm. −2.448 (0.294) −2.470 (0.268) −2.383 (0.441)
Cox PH −0.969 (0.092) −0.885 (0.095) −1.060 (0.138)

−0.969 (0.091) −0.888 (0.095) −1.058 (0.139)
−0.970 (0.090) −0.886 (0.093) −1.059 (0.140)

ROC-GLM Tmax −0.782 (0.095) −0.778 (0.098) −0.788 (0.153)
−0.782 (0.094) −0.780 (0.097) −0.788 (0.150)
−0.784 (0.093) −0.778 (0.095) −0.788 (0.155)

ROC-GLM T10 −0.741 (0.098) −0.739 (0.100) −0.747 (0.159)
−0.741 (0.097) −0.742 (0.100) −0.747 (0.155)
−0.742 (0.096) −0.740 (0.097) −0.747 (0.160)

ROC-GLM T100 −0.779 (0.095) −0.778 (0.098) −0.784 (0.153)
−0.779 (0.094) −0.780 (0.097) −0.784 (0.150)
−0.780 (0.093) −0.778 (0.095) −0.784 (0.155)

14

http://biostats.bepress.com/uwbiostat/paper355



References

[1] Zweig, M.H. and Campbell, G. (1993). Receiver-Operating Characteristic (ROC) Plots:

A Fundamental Evaluation Took in Clinical Medicine. Clinical Chemistry 39, 561-577.

[2] Pepe, M.S. (1998). Three Approaches to Regression Analysis of Receiver Operating Char-

acteristic Curves for Continuous Test Results. Biometrics 54, 124-135.

[3] Alonzo, T.A. and Pepe, M.S. (2002). Distribution-free ROC analysis using binary regres-

sion techniques. Biostatistics 3, 421-432.

[4] Pepe, M.S. (2003). The Statistical Evaluation of Medical Tests for Classification and

Prediction. Oxford University Press, New York.

Hosted by The Berkeley Electronic Press


	1-30-2010
	Robustness of approaches to ROC curve modeling under misspecification of the underlying probability model
	Sean Devlin
	Elizabeth Thomas
	Scott S. Emerson
	Suggested Citation


	tmp.1264897125.pdf.DVMZd

