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Brian Caffo and Daniel Reich
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Abstract

We develop fast fitting methods for generalized functional linear models. An un-

dersmooth of the functional predictor is obtained by projecting on a large number of

smooth eigenvectors and the coefficient function is estimated using penalized spline

regression. Our method can be applied to many functional data designs including

functions measured with and without error, sparsely or densely sampled. The meth-

ods also extend to the case of multiple functional predictors or functional predictors

with a natural multilevel structure. Our approach can be implemented using standard

mixed effects software and is computationally fast. Our methodology is motivated by

a diffusion tensor imaging (DTI) study. The aim of this study is to analyze differences

between various cerebral white matter tract property measurements of multiple sclero-

sis (MS) patients and controls. While the statistical developments proposed here were

motivated by the DTI study, the methodology is designed and presented in general-

ity and is applicable to many other areas of scientific research. An online appendix

provides R implementations of all simulations.

1 Introduction

Unarguably, advancements in technology and computation have led to a rapidly increasing

number of applications where measurements are functions or images. These developments

have been accompanied and, in some cases, anticipated by intense methodological develop-

ment in regression models where some covariates are functions Cardot et al. (2003); Cardot

and Sarda (2005); Crainiceanu et al. (2008); Ferraty and Vieu (2006); James (2002); Muller

and Stadtmuller (2005); Reiss and Ogden (2007); Ramsay and Silverman (2005). In this

paper we develop a novel inferential approach to functional regression. Our goals are to:
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1) simplify the methodology by reducing the number of tuning parameters; 2) increase the

spectrum of models and applications where functional regression can be applied automati-

cally; and 3) produce software that is fast and easy to generalize to more complex data and

models. These goals are achieved by smoothing the covariance operators, using a large num-

ber of eigenvectors to capture the variability of the functional predictors, and modeling the

functional regression parameters as penalized splines. The level of smoothing is estimated

using Restricted Maximum Likelihood (REML) or cross-validation in an associated mixed

effect model. Methods are implemented using standard mixed effects software.

An important advantage of our penalized functional regression (PFR) approach is that

it is designed for a wider class of problems than other published methods. In particular,

it applies to cases when functions are measured with or without error, at equal or unequal

intervals, at a dense or sparse set of points. Moreover, methods apply to outcomes distributed

in the exponential family class of models and to multiple functional regressors observed at

one or multiple levels. A second advantage is that our methodology allows the automatic

construction of confidence intervals using the mixed effects inferential machinery. A third

advantage is that our software is very fast and scales to very large data sets.

Briefly, functional regression seeks to quantify the relationship between a scalar outcome

and a functional regressor. To illustrate the main ideas, we start with the simple example

when univariate functional data are measured at a single level. More specifically, assume

that for each subject, i = 1, . . . , I, we observe data [Yi, Xi(t),Zi], where Yi is a scalar

outcome, Xi(t) ∈ L2[0, 1] are random functions, and Zi is a vector of nonfunctional covariates.

We call Xi(t) “univariate” functional data because in this example we only consider one

functional regressor. The case of multivariate functional regressors is considered in Section

3.1. Moreover, we call Xi(t) a “single level” sample of random functions, because only one

function, Xi(t), is sampled per subject. A multilevel or clustered case is considered in Section

3.2. The generalized functional linear model relating Yi to the covariates Xi(t),Zi is given

by Cardot and Sarda (2005); McCullagh and Nelder (1989); Muller and Stadtmuller (2005)

Yi ∼ EF(µi, η)

g(µi) = α +

∫ 1

0

Xi(s)β(s)ds+ Ziγ . (1)

Here EF (µi, η) denotes an exponential family distribution with mean µi and dispersion

parameter η, g(·) is a link function, and β(t) ∈ L2[0, 1]. The functional regression model is a

powerful and practical inferential tool, in spite of the fact that observations Xi(t) are never

truly functional. Rather, we observe {Xi(tij) : tij ∈ [0, 1]}, with j = 1, . . . , Ji. Further,
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the regressor functions are often measured with error; that is, one often measures a proxy

functional covariate, Wi(t) = Xi(t)+εi(t), where εi(t) is a mean-zero white noise process with

variance σ2
ε . Thus, for subject i, data typically are of the form [Yi, {Wi(tij) : tij ∈ [0, 1]},Zi],

i = 1, . . . , I, j = 1, . . . , Ji. In practice, functional data will have various sampling schemes.

For example, tij, j = 1, . . . , Ji could be equally or unequally spaced for each subject, sparse

at the subject level and dense at the population level, or dense at the subject and population

level. The functions Xi(t) can be measured with no, moderate or large measurement error.

Of interest are all the parameters of model (1) including the function β(·), which char-

acterizes the relationship between the transformed mean of Y and the covariate of interest

X(·). Before diving further into technical details it is worth explaining the interpretation of

model (1). Indeed, we have found difficulty in interpretation to be the major hurdle for the

adoption of such models by our collaborators. The core issue is that explaining the integral∫
Xi(s)β(s)ds is not straightforward. Consider a fine grid of points s1, . . . , sG in [0, 1] and

approximate the integral by a Riemann sum∫ 1

0

Xi(s)β(s)ds ≈ 1

G

G∑
g=1

Xi(sg)β(sg) =
G∑
g=1

Xi(sg){β(sg)/G}.

Thus, the β(·) function is, basically, re-weighting all subject level functions, Xi(·), using the

weights β(sg)/G. Each β(·) function, or equivalently, each weighting scheme, will tend to

emphasize certain parts of the functional regressor more than others. An extreme example

is when β(·) = β, that is all Xi(·) observations receive the same weight. In this case∫ 1

0
Xi(s)β(s)ds = β

∫ 1

0
Xi(s)ds and model (1) becomes a standard regression model which

contains the average functional covariate as a regressor. A less extreme example is when

β(t) = β if t ≤ 0.5 and 0 otherwise. In this case
∫ 1

0
Xi(s)β(s)ds = β

∫ 0.5

0
Xi(s)ds and model

(1) becomes a standard regression model which contains the average functional covariate over

the interval [0, 0.5] as a regressor. This considers all functional observations in the interval

[0, 0.5] equally important and all those in [0.5, 1] equally useless. Intuition could further be

enhanced by contemplating the interpretation of other simple step functions. In practice it

makes sense to consider a smoother transition in the weighting scheme, that is a smooth β(·)
function. We found the following interpretation of

∫ 1

0
Xi(s)β(s)ds useful, albeit imperfect:

The subject-specific random variable that is most predictive of the outcome ob-

tained by re-weighting each subject-specific curve by the same, population level,

weights, β(·). Weights close to zero de-emphasize subject-level areas that are

not predictive of the outcome, while large relative weights emphasize areas of the
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curve that are most predictive of the outcome. The collection of random variables∫ 1

0
Xi(s)β(s)ds can be interpreted as a population of scores or indexes; compar-

ing the outcomes for subjects with scores in the upper and lower quantiles of this

distribution could be used to illuminate the relationship between the outcome and

the functional variates.

Our proposed approach to estimating the coefficient function β(t) has two steps (the

following uses notation in Ramsay and Silverman (2005), Ch. 15). First, we estimate

the random functions using a finite series expansion Xi(t) =
∑Kx

j=1 cijψj(t), where ψ =

{ψ1(t), ..., ψKx(t)} is the collection of the first Kx eigenfunctions of the smoothed covariance

matrix KX(s, t) = cov[Xi(s), Xi(t)]. Second, we use a truncated power series spline basis

φ(t) = {φ1(t), ..., φKb
(t)} for β(t), so that β(t) = φ(t)b. The truncated power series rep-

resentation of β(t) imposes differentiability and allows simple control of smoothness. The

tuning parameters, Kx and Kb, are considered to be very important in practice and their

choice has been extensively debated in the functional and smoothing literature, respectively.

In the smoothing literature, the choice of the number of knots has been shown Li and Rup-

pert (2008); Ruppert (2002) to be unimportant as long as it is large enough to capture

the maximum complexity of the regression function. In penalized spline regression it is the

smoothing parameter that takes care of reducing the variability of the functional estimate

and avoids the heavy computational costs associated with choosing the number and posi-

tions of knots. We emulate this principle in the current functional setting and choose Kb

large; typically we set Kb = 35. The choice of the number of eigenfunctions Kx is subject

to the identifiability constraint Kx ≥ Kb, so we choose and fix Kx = min{35,M}, where

M is the dimension of KX(·, ·). That is, by choosing a large number we avoid the choice

of a “good” number of principal components (PCs). Once the bases for Xi(t) and β(t) and

the parameters Kx and Kb have been selected, model (1) may be expressed as a generalized

linear mixed effects model (GLMM); thus the GLMM inferential machinery can be applied.

Our methods are most closely related to the functional regression framework developed in

Cardot et al. (2003); Cardot and Sarda (2005), who proposed a penalized spline to estimate

the functional parameter. We incorporate this idea but expand its scope to functions Xi(t)

that are measured with error or are sparsely sampled; this is achieved by using a PC basis

to expand Xi(t). The same idea can be extended seamlessly to functional regression when

the exposure proxy has a multilevel structure Crainiceanu et al. (2008); Di et al. (2008).

By making and exploiting the connection to mixed effects models we also provide a natu-

ral framework for necessary generalizations. Our methods are much faster because we take

4

http://biostats.bepress.com/jhubiostat/paper204



advantage of the link to mixed effects models and existing well tested software. The mod-

ularity of our approach leads to straightforward extensions and seamless integration with

other popular regression frameworks.

It is important we distinguish our use of the PC decomposition from the widely used

functional principal components regression (FPCR) techniques Cardot et al. (1999); Reiss

and Ogden (2007). Stated shortly, FPCR regresses the vector of scalar outcomes Y on

the design matrix XVA, where X has ith row [Xi(t1), ..., Xi(tT )], VA is the truncated at A

version of the matrix V in UDVT, the singular value decomposition of X. That is, FPCR

regresses Y on the first A PC loadings of the functional regressors. In contrast, we use

the PC decomposition only to provide estimates of the functional covariates using a small

number of eigenfunctions. Indeed, using decompositions of the functional covariates in terms

of other bases in the PFR method is straightforward.

The paper is organized as follows. Section 2, provides the details of our approach to func-

tional regression. Section 3 describes the seamless generalization to multiple and clustered

functions, and Section 4 describes the generalization to sparse functional data. Section 5 pro-

vides a detailed simulation to compare these methods. We apply our method to the DTI data

in Section 6, and conclude with a discussion in Section 7. To ensure reproducibility of our

results we post code for all simulations at http://biostat.jhsph.edu/∼jgoldsmi/Downloads

/Web Appendix PFR.zip.

2 Approach

In this section we describe the PFR method for estimating the functional exposure effect

β(t). We focus first on estimating the subject specific functional effect, Xi(t), and then we

describe the estimators of β(t) and its variability, respectively.

2.1 Estimation of Xi(t)

The first step in our analysis is to estimate, or predict, Xi(t) in model 1 using an expansion

into the PC basis obtained from its covariance operator, KX(·, ·). As mentioned in Section 1,

the problem of choosing the number of components is avoided by choosing a large number of

PCs. This re-focuses the problem on estimating KX(·, ·), which is a much simpler problem.

Assume that instead of observing Xi(t) one measures a proxy Wi(t) = Xi(t) + εi(t),

where εi(t) is a mean-zero white noise process with variance σ2
ε . The covariance operator

for the observed data is KW (s, t) = KX(s, t) + σ2
ε δts, where KW (s, t) = Cov{Wi(s),Wi(t)}

5
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is the covariance operator on the observed functions, KX(s, t) = Cov{Xi(s), Xi(t)}, and

δts = 1 if t = s and is 0 otherwise. This suggests the following strategy for estimating

KX(s, t). First, construct a method of moments estimator K̂W (s, t) of KW (s, t) from the

observed data. Second, smooth K̂W (s, t) for s 6= t, as suggested by Staniswalis and Lee

(1998); Yao et al. (2003). The only serious problem we encountered in practice occurred

when the functions Xi(t) are unevenly or sparsely sampled. Consider the case when each

pair of sampling locations, (tik, til), is unique. In this situation KW (tik, til) is estimated by

{Wi(tik) − Wi(til)}2/2; the number of pairs (tik, til) can quickly explode making bivariate

smoothing of the estimated covariance matrix difficult. To avoid this problem we use the

ideas suggested in Di et al. (2008) to estimate KW (s, t)

1. Use a very small bandwidth smoother to obtain an undersmooth estimate of the co-

variance operator.

2. Use a fast automatic nonparametric smoother of the undersmooth surface obtained at

the previous step.

Let
∑∞

k=1 λkψk(s)ψk(t) be the spectral decomposition of K̂X(s, t), where λ1 ≥ λ2 ≥ . . .

are the non-increasing eigenvalues and ψ(·) = {ψk(·) : k ∈ Z+} are the corresponding

orthonormal eigenfunctions. An approximation for Xi(t), based on a truncated Karhunen-

Loeve decomposition, is given by Xi(t) =
∑Kx

k=1 cikψk(t), where Kx is the truncation lag and

cik =
∫ 1

0
Xi(t)ψk(t)dt. Unbiased estimators of cik are easy to obtain as the Riemann sum

approximation to the integral
∫ 1

0
Wi(t)ψj(t)dt; for example, ĉik =

∑Ji

j=1Wi(tij)ψk(tij) was

proposed by Muller and Stadtmuller (2005). This method works well when data are densely

sampled and each subject-specific function is sampled at many points Ji. When this is not

the case a better alternative is to obtain best linear unbiased predictors (BLUP) or posterior

modes in the mixed effects model Crainiceanu et al. (2008); Di et al. (2008)

Wi(tij) =
∑Kx

k=1 cikψk(tij) + εij

cik ∼ N(0, σ2
c ), εij ∼ N(0, σ2

ε ),
(2)

where cik and εij are mutually independent for every i, j, k. The subject-specific processes

Xi(t) are then predicted at any t by plugging-in the predictors of cij in the equality Xi(t) =∑Kx

k=1 cikψk(t). A potential criticism of this method is that cij could be predicted with sizeable

error which can lead to sizeable variability in the prediction of Xi(t). In some situations this

can lead to bias in the functional regression, as discussed in Crainiceanu et al. (2008). When

this problem is a real concern a solution is to jointly model the outcome model and model (2).

6
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This approach can be addressed using a fully Bayesian analysis Crainiceanu and Goldsmith

(2009) and is not the focus of this paper. Instead, we focus on the two stage approach, which

is the current state-of-the-art in functional regression.

We emphasize that the PC decomposition in the first step of our analysis is used to

estimate the Xi(t) when they are measured with error or sparsely sampled, rather than to

address the ill-posed nature of the functional regression, as in FPCR. Thus, we focus the

problem on estimating β(t) using a method that does not depend on the particular choice

of number of principal components, a non-trivial distinction.

2.2 Estimation of β(t)

The second step in our method is modeling β(t) and we borrow ideas from the penal-

ized spline literature O’Sullivan (1986); Ruppert et al. (2003); Wood (2006). Let φ(t) =

{φ1(t), φ2(t), ..., φKb
(t)} be a spline basis, so that β(t) =

∑Kb

k=1 bkφk(t) = φ(t)b, where

b = {b1, . . . , bKb
}T . Thus, the integral in model (1) becomes∫ 1

0

Xi(s)β(s)ds =

∫ 1

0

c′iψ
T (s)φ(s)b ds = c′iJψφb,

where c′i = (ci1, . . . , ciKx)T , Jψφ is a Kx×Kb dimensional matrix with the (k, l)th entry equal

to
∫ 1

0
ψk(s)φl(s)ds Ramsay and Silverman (2005).

It would be mathematically simpler to expand β(·) in the principal component basis

used for expanding the functional data, ψ1(·), . . . , ψKx(·). In spite of its apparent appeal,

this approach is not satisfactory in many applications. The main technical reasons are

that: 1) the principal component basis is typically not a parsimonious basis for the smooth

parameter function; and 2) the smoothing of the β(·) function is implicitly controlled by

Kx, the smoothing parameter for the functional process, Xi(t). Thus, we use the a spline

basis expansion β(t) = φ(t)b and induce smoothing by assuming that b ∼ N(0,D), where

D is a penalty matrix corresponding to the particular spline basis φ(t). The expression

b ∼ N(0,D) contains a slight abuse of notation for the case when some of the b parameters

are not penalized. For example, the assumption that b1 is not penalized can be conceptually

written as b1 ∼ N(0,∞).

Denote by C the I ×Kx dimensional matrix with the ith row equal to c′i and by Z the

I × p dimensional matrix with the ith row equal to Zi. The outcome model (1) can be

7
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reformulated in matrix format as:

Y | X(t) ∼ EF (µ,γ)

g(µ) = [1 CJψφ Z][α b γ]T

b ∼ N(0,D),

which is a mixed effect model with Kb random effects, b. This model can be fit robustly

using standard mixed effects software.

Model (3) depends on the choice of basis for β(t), Kb and Kz. While any penalized spline

approach could be used, in this paper we use a truncated power series basis with Kb knots

for β(t). Following Ruppert (2002) we select Kb = 35, which is large enough to prevent

undersmoothing in many applications, and select Kx ≥ Kb. However, as noted, the specific

value of Kb is unimportant as long as it is large enough to capture the maximum variability

in β(t); in some future applications it might be necessary to increase Kb, Kx. The position

of the knots is typically unimportant and we place them at the quantiles of the distribution

of tij.

It is worth noting that the complexity of fitting model (3) is the same as the complexity

of fitting a penalized spline model with Kb random coefficients, a well researched problem

with well-developed accompanying software Wood (2006).

2.3 Confidence intervals for β(t)

Because model (3) is a mixed effects model the typical inferential machinery for mixed effects

models can be used to obtain variance-covariance estimates of the model parameters. Vari-

ance estimators, pointwise and joint confidence intervals can be obtained following standard

methods and software Ruppert et al. (2003); Wood (2006).

For illustration, consider the case when Yi = α +
∫ T

0
Xi(t)β(t) dt + εi with εi ∼ N[0, σ2

ε ].

Take as the basis for β(t) the functions t, t2, (t − κ1)
2
+, ..., (t − κKb

)2
+. Let β = [α bT ]T ;

it is easy to show that β̂ = (WTW + λ2D)−1WTY where λ is the smoothing parameter,

W = [1 CJψφ] and

D =

[
03×3 03×K

0K×3 1K×K

]
.

The smoothing parameter λ2 = σ2
ε/σ

2
b can be estimated via REML in the corresponding

mixed effects model (3). Recall that β(t) = φ(t)bT . Let

Var[β̂] = σ2
ε (W

TW + λ2D)−1WTW(WTW + λ2D)−1

=

[
Σαα Σbα

ΣT
bα Σbb

]
.
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Then, at any t0 Var[β̂(t0)] = Var[φ(t0)b̂
T ] = φ(t0)Σbbφ(t0)

T ; we estimate ŝd{β̂(t)} =√
φ(t0)Σ̂bbφ(t0)T , where Σ̂bb is the (Kb + 2) × (Kb + 2) dimensional matrix obtained by

plugging in the REML estimate for λ into the formula for Var[β̂].

An approximate 95% confidence interval E[β̂(t0)] can be constructed as β̂(t0)±1.96 ŝd{β̂(t)}.
If E[β̂(t0)] ≈ β(t0), that is if bias is negligible, the above interval will approximate well the

95% CI for β(t0). For bias corrected confidence intervals see, for example, Ruppert et al.

(2003).

3 Multivariate and multilevel extensions

3.1 Multivariate extensions

In this section, we extend our model to the case of multiple functional regressors. Suppose our

observed data for subject i is of the form [Yi,Zi, {Wil(t), t ∈ [0, 1]}], where Yi is continuous

or discrete, Zi is a vector of covariates and Wil(t), 1 ≤ l ≤ L, are the observed proxies for

the true functional regressors Xij(t). We emphasize that the Xil(t) are distinct functional

regressors; a notationally similar - but conceptually different - setting is considered in the

next section. A multivariate extension of our regression model (1) is given by

Yi ∼ EF(µi, η)

g(µi) = α +

∫ 1

0

Xi1(s)β(s)ds+ ...+

∫ 1

0

XiL(s)β(s)ds+ Ziγ . (3)

The approach given in Section 2 extends naturally to the multivariate functional re-

gression setting. For each functional regressor, we estimate KX
l (s, t) = Cov{Xil(s), Xil(t)}

by smoothing the off-diagonal elements of the observed covariance operator KW
l (s, t) =

Cov{Wil(s),Wil(t)}. Let
∑∞

k=1 λklψkl(s)ψkl(t) be the spectral decomposition of K̂X
l (s, t),

where λ1l ≥ λ2l ≥ ... are the non-increasing eigenvalues and ψl(·) = {ψkl(·) : k ∈ Z+}
are the corresponding eigenfunctions. We approximate Xil(t) using a truncated Karhunen-

Loéve decomposition so that Xil(t) =
∑Kx

k=1 ciklψkl(t), where Kx is the truncation lag and

cikl =
∫ 1

0
Xil(t)ψkl(t)dt; unbiased estimators of cikl are given by ĉikl =

∑J
j=1Wil(t)ψkl(t).

As in Section 2, express each coefficient function in model (3) in terms of a spline basis

φ(t) = {φ1(t), φ2(t), ..., φKb
(t)}, so that βl(t) =

∑Kb

k=1 bklφk(t) and∫ 1

0

Xil(t)β(t)dt =

∫ 1

0

c′ilψ
T
l (t)φ(t)bl dt = c′ilJlbl,

where c′il = (ci1l, . . . , ciKxl)
T , Jl is a Kx × Kb dimensional matrix with the (k,m)th entry

equal to
∫ 1

0
ψkl(t)φm(t)dt Ramsay and Silverman (2005). We again induce smoothness on the

9
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estimate of βl(t) by assuming bl ∼ N(0,Dl), where Dl is the penalty matrix corresponding

to the spline basis φ(t) and the coefficient function βl(t).

Using notation analogous to the univariate case, the multivariate functional regression

model (3) can be expressed in matrix format as

Y | X(t) ∼ EF (µ,γ)

g(µ) = [1 C1J1...CLJL Z][α b1...bL γ]T

bl ∼ N(0,Dl), l = 1, ..., L

which is a mixed effect model with Kb random effects, bl, for each functional coefficient βl(t),

and can be fit using standard mixed model software.

Note that we express each coefficient function in terms of the same spline basis; indeed, we

typically use the truncated power series basis introduced in section 2.2 for each βl(t). How-

ever, different bases could be used for each function. Using φl(t) = {φ1l(t), φ2l(t), ..., φKbl(t)}
as the basis for βl(t), the matrix Jl has (k,m)th entry equal to

∫ 1

0
ψkl(t)φml(t)dt; all other

aspects of the multivariate regression model remain the same.

3.2 Multilevel extensions

Here, we briefly describe an extension of our method to a multilevel setting based on Crainiceanu

et al. (2008).

Suppose for subject i we observe [Yi,Zi, {Wij(t), t ∈ [0, 1]}], where Yi is continuous or

discrete, Zi is a vector of covariates and Wij(t) is the observed functional regressor at visit

j = 1, 2, ..., Ji. We assume that Wij(t) is a proxy for the true underlying subject-specific

function Xi(t), so that Wij(t) = µ(t) + ηj(t) +Xi(t) +Uij(t) + εij(t). Here µ(t) is the overall

mean function, ηj(t) is the visit-specific deviation from the overall mean, Xi(t) is subject i’s

deviation from the visit-specific mean function, Uij(t) is the remaining subject- and visit-

specific deviation for the subject specific mean, and εij(t) is a white noise process with

variance σ2
ε . We further assume that Xi(t), Uij(t) and εij(t) are uncorrelated to guarantee

identifiability. We construct µ̂(t) = W̄··(t) and ν̂j(t) = W̄··(t) = W̄·j(t), where W̄··(t) is the

mean taken over all subjects and visits and W̄·j(t) is the mean taken over all subjects at visit

j. Assume these estimates have been subtracted, so that Wij(t) = Xi(t) + Uij(t) + εij(t).

We use model (1) as our outcome model, so that the outcome Yi depends on the subject-

specific mean function Xi(t). The multilevel approach proceeds analogously to the single-

level approach. First, we express the subject-specific function Xi(t) in terms of a parsi-

monious basis that captures most of the variability in the space spanned by the regressor
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functions. Second, we express the coefficient function β(t) using a truncated power series

spline basis. Finally, we take advantage of the mixed models framework to construct a

smooth estimate β̂(t).

We use Multilevel Functional Principal Components Analysis (MFPCA) Crainiceanu

et al. (2008); Di et al. (2008) to construct parsimonious bases for Xi(t), Uij(t) based on

the spectral decomposition of the covariance operators KX(s, t) = Cov[Xi(s), Xi(t)] =∑∞
k=1 λ

(1)
k ψ

(1)
k (s)ψ

(1)
k (t) and KU

T (s, t) = Cov[Uij(s), Uij(t)] =
∑∞

l=1 λ
(2)
l ψ

(2)
l (s)ψ

(2)
l (t), where

λ
(1)
1 ≥ λ

(1)
2 ≥ λ

(1)
3 ... and λ

(2)
1 ≥ λ

(2)
2 ≥ λ

(2)
3 ... are the ordered eigenvalues and ψ(1)(·) =

{ψ(1)
i (·) : i ∈ Z+}, ψ(2)(·) = {ψ(2)

i (·) : i ∈ Z+} are the corresponding orthonormal eigen-

functions. The Karhunen-Loéve decomposition is used to provide the finite series approx-

imations Xi(t) =
∑Kx

j=1 cijψ
(1)
j (t) and Uij(t) =

∑Lx

l=1 ζijlψ
(2)
l (t), where Kx and Lx are the

truncation lags and cik =
∫ 1

0
Xi(t)ψ

(1)
k (t)dt, ζijk =

∫ 1

0
Uij(t)ψ

(2)
k (t)dt are the PC scores with

E[cik] = E[ζijk] = 0, Var[cik] = λ
(1)
k , Var[ζijk] = λ

(2)
k , for every i, j, k. As in Crainiceanu

et al. (2008), we estimate cik, ζijk using the mixed model

Wij(t) =
Kx∑
k=1

cikψ
(1)
j (t) +

L∑
l=1

ζijlψ
(2)
l (t) + εij(t) (4)

cik ∼ N[0, λ
(1)
k ]; ζijl ∼ N[0, λ

(2)
l ]; εij ∼ N[0, σ2

ε ]. (5)

Using the same notations as in the case of single-level regression the functional predictor

becomes ∫ T

0

Xi(s)β(s)ds =

∫ T

0

c′i[ψ
(1)(s)]Tφ(s)b ds = c′iJψφb.

Thus, the outcome model is identical to model (3), with the only difference that Xi(·) are

estimated using the MFPCA instead of the FPCA method. Penalized spline regression

modeling is employed for modeling β(t) and mixed model software is used.

This development is related to the one proposed in Crainiceanu et al. (2008). Specifically,

the method in Crainiceanu et al. (2008) uses MFPCA to construct a parsimonious basis for

Xi(t) and uses a mixed model to estimate the PC loadings cik. Similarly to FPCR, the PC

loadings are then treated as the regressors in a generalized linear model. In contrast, our

method estimates β(t) using a truncated power series spline basis and penalized regression

to construct a smooth estimate β̂(t). This method is flexible and was found to be superior

both in standard simulation settings and applications.

11
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4 Sparse data

Our method also extends to the case where the functional regressor is measured sparsely

at the subject level, but is dense across subjects. In this situation, we observe data of

the form [Yi, {Wi(tij) : tij ∈ [0, 1]},Zi], i = 1, . . . , I, j = 1, . . . , Ji, where Ji are small but

∪Ii=1

[
{tij}Ji

j=1

]
is dense in [0, 1]. Here again, the Wi(t) are measured-with-error proxies for

the true Xi(t) so that Wi(t) = Xi(t) + εi(t), where εi(t) ∼ N(0, σ2
ε ).

We use the following method, adapted from Di et al. (2008), to estimate the sub-

ject specific functional regressors based on a PC decomposition of the covariance opera-

tor KX(s, t). As indicated in section 2.1, we first use a fine grid of points on [0, 1] to

obtain an undersmooth of the observed covariance matrix. Call the points in this grid

t1, ..., tS, and for each subject let tijs be the point in this grid nearest to the observed

point tij. The undersmoothed covariance operator can be estimated using K̂W
1 (r, s) =∑

i∈I(r,s){Wi(tijr) − X(tr)}{Wi(tijs) − X(ts)}/N(r, s), where X(t) is the mean of observed

functions at t, I(r, s) is the index of subjects with observed points corresponding to both

tr, ts and N(r, s) is the number of such subjects. We then smooth the off-diagonal elements

of this undersmoothed covariance matrix to obtain K̂X(r, s), the estimated covariance oper-

ator of the sparsely observed subject-specific functional regressors on our newly defined grid

t1, ..., tS.

As before, we decompose K̂X(r, s) so that K̂X(r, s) =
∑∞

k=1 λkψk(r)ψk(s) where λ1 ≥
λ2 ≥ . . . are the non-increasing eigenvalues and ψ(·) = {ψk(·) : k ∈ Z+} are the corre-

sponding orthonormal eigenfunctions. The function Xi(t) is then approximated by Xi(t) =∑Kx

k=1 cikψk(t), where Kx is the truncation lag and cik are the subject-specific PC loadings.

Because subject-level data are sparse, numeric integration does not yield satisfactory esti-

mates of the cik. Instead, in this case we propose the following mixed model to describe the

observed data: {
Wi(t) = µ(t) +

∑Kx

k=1 cikψk(t) + εi(t)

cik ∼ N[0, λk]; εij ∼ N[0, σ2
ε ]

where µ(t) is the mean function estimated across subjects. Here, the PC loadings are ran-

dom effects and can be estimated using best linear unbiased predictions (BLUPs) or other

standard inferential procedures. Note that the Gaussian assumption is convenient, but it

could be relaxed.

Using the same notation as in other settings, the integral in the linear predictor of model

(1) has the matrix representation
∫ T

0
Xi(t)β(t)dt = c′iJψφb. Because of the sparseness of the

subject-level data, it is often necessary to reduce the number of knots used in the spline basis
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for β(t) and the number of PCs used to explain the variability in the Xi(t). In practice, we

have found that KX = Kb = 10 typically suffices. Penalized spline regression using mixed

models can be used to fit this sparsely-sampled functional regression model.

5 Simulation

In this section, we pursue several simulation studies to explore the viability of our method

in the univariate, multivariate, multilevel, and sparse functional regression settings. Where

applicable, we compare our method to other existing approaches.

5.1 Univariate Simulations

We begin by investigating performance in the simplest situation - a single level, single func-

tional regressor model, with a continuous outcome and no nonfunctional covariates. Consider

the grid {tg = g
10

: g = 0, 1, . . . , 100} on the interval [0,10]. We generate scalar outcomes Yi

and regressor functions Xi(t) from the following model

Yi =
1

G

G∑
g=1

Xi(tg)β(tg) + εi, i = 1, . . . , 200

Wi(tg) = Xi(tg) + δi(tg)

Xi(tg) = ui1 + ui2tg +
10∑
k=1

{
vik1 sin

(
2πk

10
tg

)
+ vik2 cos

(
2πk

10
tg

)}
(6)

where εi ∼ N[0, σ2
ε ], δi(tg) ∼ N[0, σ2

X ], ui1 ∼ N[0, 25], ui2 ∼ N[0, 0.04], and vik1, vik2 ∼
N[0, 1/k2]. For reference, Figure 1 displays a sample of 200 random functions Xi(t) as well

as the first six principal components estimated from the PC decomposition of the functions.

This method of generating the regressor functions Xi(t) is adapted from Muller and Stadt-

muller (2005). The first principal components of the Xi(t) capture a slope on t and sine

and cosine functions with one, two, and three periods on the range of t. In generating the

observed functions Wi(t) we consider σ2
X ∈ {0, 1}, and in generating the observed outcomes

Yi, we consider σ2
ε ∈ {0.5, 1} and three true coefficient functions β(·), yielding 12 possible

parameter combinations. The choices of the coefficient functions β(·) will be described below.

For each combination of the parameter values σ2
ε , σ

2
X , and β(·), we simulate 1200 datasets

[Yi,Wi(tg) : i = 1, . . . , 200]. We compare three alternative approaches to estimating β(·) to

our approach as described in Section 2. Performance in estimating β(·) is compared by
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Figure 1: The left panel displays a sample of 200 random functions generated from equa-

tion (6), highlighting two examples of the function measured with no error (solid) and with

measurement error σ2
X = 1 (dashed). The right panel displays plots of the first 6 estimated

principal components.

calculating the average mean square error (AMSE) over the 1200 samples as

AMSE(β̂(·)) =
1

1200

1200∑
r=1

[
1

G

G∑
g=1

{
β̂r(tg)− β(tg)

}2
]
,

where β̂r(·) is coefficient function from the rth simulated data set.

The first method for estimating β(·) is principal components regression (PCR). Let X

be the 200 × G matrix with ith row (Xi(t1), . . . , Xi(tG)) and calculate the singular value

decomposition UDVT of X. In PCR, the scalar outcomes Y are regressed on VA, the

200 × A matrix containing the first A columns of V, which are also referred to as the first

A principal components of X. We consider two commonly used approaches for selecting

A: cross validation (PCR-CV) and percent variance explained (PCR-PVE) with a 99%

threshold. For PCR-CV we implement the leave-one-out cross validation procedure to select

the number of principal components A for which the prediction sum of squares criterion∑n
i=1(Yi− Ŷ−i)2 is minimized. Here Ŷ−i is the predicted value for the ith data point obtained

from fitting the PCR model to the data with the ith observation deleted. Though this

procedure is computationally intensive, we implement a faster alternative formulation for

the statistic for a linear model, namely

n∑
i=1

(
Yi − Ŷi
1−Hii

)2

,
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whereHii is the ith diagonal element of the regression projection matrixH = VA(V′AVA)−1VA

and Ŷi is the ith fitted value. For PCR-PVE with a 99% threshold, we select the value of A

satisfying

A = min

{
a :

λ1 + · · ·+ λa
λ1 + · · ·+ λG

≤ 0.99

}
,

where λa is the eigenvalue corresponding to the ath principal component of X. Thus we

interpret A as the minimal number of principal components needed to explain 99% of the

total variation in the discretized versions of the random functions Xi(t).

The second method FPCRR (Reiss and Ogden (2007)) first projects the random func-

tions Xi(t) onto a B-spline basis and then performs a principal components analysis on the

projection XB. A penalized regression model is then fit to find ξ that minimizes the criterion

||Y −XBVAβ||2 + λξTVT
APTPVAξ,

where VA is the first A columns of V from the singular value decomposition XB = UDVT.

Given a particular value of A, the smoothing parameter λ may be selected either through

GCV or by representing the penalized regression in a LMM framework and using the REML

estimate. The number of principal components A is selected by multi-fold cross validation.

We implement this method using code provided by the authors, which utilizes the REML

estimate, a cubic B-splines basis with 40 equally spaced internal knots, and selects the

number of principal components A using 8-fold cross validation. The candidates for A were

1-10, 12, and 15-40 at intervals of 5.

Finally, we implement the method SPCR-GCV (Cardot et al. (2003)), using code pro-

vided by the authors. This approach first computes the PCR estimate β̂PCR(t) using the first

K principal components and then smoothes the resulting function using penalized splines. In

this approach, both the dimension K of the principal components basis and the smoothing

parameter ρ are selected using generalized cross validation (GCV). The number of knots of

the B-spline basis and the degree of the spline functions were fixed at 20 and 4, respectively.

We consider the same candidates for K as were used to select the number of principal com-

ponents (A) in the implementation of FPCRR described above, and the candidates for ρ

were 10−8 to 10−7 by intervals of 10−8, 10−7 to 10−6 by intervals of 10−7, and 10−6 to 10−5

by intervals of 10−6. We selected this range in order to contain the minimum GCV values for

each of the three true β(·) functions. We note that without this manual tuning the method

fails to work well.

The true coefficient functions we consider in our simulations are β1(t) = sin(πt/5), β2(t) =
√
t, and β3(t) = −p(t | 2, 0.3) + 3p(t | 5, 0.4) + p(t | 7.5, 0.5), where phi(· | µ, σ) is the normal
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density with mean µ and standard deviation σ. The function β1(t) was selected because

it is one of the functions used to generate the random functions Xi(t), and is expected to

favor methods that use the principal components basis for β(t). Both PCR methods (CV and

PVE) and FPCRR use the principal components as a basis for the unknown β(·). The second

coefficient function was chosen as an arbitrary and realistic smooth coefficient function. The

third has spikes at places where the variability in the Xi(t) is low, meaning that the peaks

will be very hard to detect with small sample sizes; we expect it will be difficult to estimate

for all of the approaches used here.

Method β1(·) β2(·) β3(·)
σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.5 σ2

ε = 1

PFR

σ2
X = 0 0.0023 0.0037 0.003 0.004 0.188 0.234

σ2
X = 1 0.0032 0.0042 0.0068 0.007 0.271 0.283

FPCRR

σ2
X = 0 0.0019 0.0024 0.0238 0.0301 0.15 0.193

σ2
X = 1 0.0054 0.0062 0.033 0.0366 0.255 0.266

SPCR-GCV

σ2
X = 0 0.0053 0.0091 0.0061 0.0098 0.157 0.177

σ2
X = 1 0.0076 0.0103 0.0104 0.0126 0.247 0.259

PCR-PVE

σ2
X = 0 0.002 0.0031 0.017 0.0181 0.289 0.290

σ2
X = 1 0.389 0.5850 0.429 0.626 0.581 0.778

PCR-CV

σ2
X = 0 0.058 0.1130 0.0936 0.172 0.381 0.615

σ2
X = 1 0.0108 0.0128 0.0329 0.0363 0.306 0.313

Table 1: Average MSE over the 1200 repetitions for each combination of the true coefficient

function β(t), the measurement error variance σ2
X and the outcome variance σ2

ε .

Table 1 compares the AMSE for each set of the parameters across approaches. We first

note that both our approach and SPCR-GCV have smaller AMSE than the PCR-CV for

every parameter combination, and the FPCRR method has smaller AMSE than PCR-CV

in all cases except for β2 with σ2
X = 1, in which case the two yield very similar results.

The PCR-PVE method has poor performance for σ2
X 6= 0 compared to all other methods.
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When there is no measurement error, its performance is similar to both our approach and

the FPCRR approach and superior to the SPCR-GCV and CV methods for β1; for β2 and β3,

PCR-PVE is worse than nearly all other methods except CV, with the exception of FPCRR

for β2(·) with σ2
ε .

The function β1 was selected because it is a basis function for the Xi(t), so the methods

that use the principal components as a basis for β(t) (PCR-CV, PCR-PVE, FPCRR, and

SPCR-GCV) are expected to perform well. However, our method performs only slightly

worse for β1 than both the FPCRR and PVE methods when σ2
X = 0 and performs slightly

better when σ2
X = 1; our method also has less than half the AMSE as the SPCR-GCV and

PCR-CV approaches, with and without measurement error on the Xi(t).

For the smooth β2, our approach performs much better than SPCR-GCV which, in turn,

performed much better than than the other approaches. As expected, none of the methods

perform well for the third true coefficient function β3; The FPCRR and SPCR-GCV methods

provides the closest estimates, with our method performing slightly worse. In Figure 2 we
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Figure 2: For the simulation with σ2
X = 0 and σ2

ε = 1, we plot the estimated beta functions

β̂1, β̂2, and β̂3 from each method that have the median MSE.

select the estimated beta functions from each approach that have the median MSE for the

case where σ2
X = 0 and σ2

ε = 1. This plot reiterates the comparable performance across

methods for β1, the superiority of our approach as well as SPCR-GCV for the smooth β2,

and the relatively poor performance across all methods for β3.

Another consideration in fitting functional models is computation time, particularly as

the sample size n increases. To compare computation time in our approach to that in the
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FPCRR and SPCR-GCV approaches, we examined the case where σ2
X = 0 and σ2

ε = 1. To

investigate how much computation time increases as sample size increases, we considered n =

100, 200, 400, and 2000. For each n, we generated a single dataset [Yi,Wi(tg) : i = 1, . . . , n]

with true coefficient function β1 and fit each model 10 times. The average computation

n PFR SPCR-GCV FPCRR

100 0.111 2.451 16.720

200 0.126 4.536 18.545

400 0.157 13.330 26.070

2000 0.390 231.214 57.469

Table 2: Mean computation time (seconds) over 10 model fits by sample size and regression

approach, for σ2
X = 0, σ2

ε = 1, and β(t) = β1(t).

time for a single fit across the three methods is displayed in Table 2. The driver behind

increasing computation times as sample size increases is implementation of a cross validation

or generalized cross validation procedure. In the FPCRR method, 8-fold cross validation

selects the number of principal components A. Though generalized cross validation reduces

the computational burden of cross validation, the SPCR-GCV approach has a nested GCV

procedure, leading to a large increase in computation time as the sample size n doubles.

It should not be surprising that such computational problems would snowballed in more

complex settings. In fact, no competing method was generalized to the more complex settings

considered in this paper. The computational issues pointed out above are probably the main

reason for this.

5.1.1 Confidence Intervals

We evaluate the performance of 95% pointwise confidence intervals for β̂(t) for our approach,

using the methodology described in section 2.3 for each of the three true β(t). For each point

tg along the range [0, 10], let (lg, ug) denote the estimated 95% confidence interval about

β̂(tg). We compute the proportion of times during the 1200 iterations of the simulation that

the calculated interval (lg, ug) contains the truth β(tg). These proportions are displayed in

Figure 3 for the cases where σ2
ε = 0.5 without measurement error on the Xi(t); taking σ2

ε = 1

yields similar confidence interval coverage probabilities.

The observed coverage proportions are often significantly below the nominal coverage

probabilities. A likely reason for this is the variability in estimating the subject-specific PC
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Figure 3: For the simulation with σ2
ε = 0.5, a plot of the point-wise coverage probabilities

for each true β(t) and the correction factor a(t).

loadings is not accounted for in the construction of the interval. Another possibility is that

the functional regressors are not highly variable in some regions, making estimation of β(t)

difficult (see especially β3(t), and β2(t) for t < .5). To examine the underperformance of the

confidence intervals, for each β(t) in our simulation we calculate a correction factor a(t) such

that the interval β̂(t0)± 1.96 a(t)ŝd{β̂(t)} achieves 95% coverage. A plot of a(t) is included

in Figure 3. The correction factor a(t) is quite large for β3(t), but not unreasonable for

β1(t), β2(t). A similar approach could be used in an application: simulate data from β̂(t)

and calculate a(t) needed to achieve 95% coverage.

Figure 4 displays plots of the true β(t), along with plots of various empirical quantiles

of the estimated confidence intervals over the 1200 iterations for the case where σ2
X = 0 and

σ2
ε = 1. For β1, confidence intervals performed the best, achieving the nominal coverage

over some subsets of the range [0, 10] of t, and with coverage between 78-95% across the

entire range when there was no measurement error on the Xi(t) and coverage between 71-

96% with measurement error. For β2, as can be seen in Figure 2, all approaches struggle

with estimation at the lower range of t, and the confidence intervals have corresponding

difficulty with coverage at these values. As larger values of t, coverage improves, but remains

consistently below the nominal rate. For β3, estimation in our approach is unable to capture

the bumpy shape and as a result coverage is quite poor for most of the range of t.
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Figure 4: For the simulation with σ2
X = 0 and σ2

ε = 1, the median pointwise confidence

intervals, as well as the lower and upper 2.5%, and minimum and maximum.

5.2 Multivariate Simulations

In this section, we pursue a simulation exercise to study the model presented in section 3.1.

We generate samples from the model

Yi =

∫ 10

0

Xi1(t)β1(t)dt+

∫ 10

0

Xi2(t)β2(t)dt+ εi, i = 1, . . . , 200

Wi1(t) = Xi1(t) + δi1(t); Wi2(t) = Xi2(t) + δi2(t)

Xi1(t) = ui1 + ui2t+
10∑
k=1

{
vik1 sin

(
2πk

10
t

)
+ vik2 cos

(
2πk

10
t

)}
Xi2(t) = a+ .2(t− b)2 + c cos(

2πt

d
)

where εi ∼ N[0, σ2
ε ], δli(tg) ∼ N[0, σ2

X ], ui1 ∼ N[0, 25], ui2 ∼ N[0, 0.04], vik1, vik2 ∼ N[0, 1/k2],

a ∼ U [0, 5], b ∼ N [5, σ = .5], c ∼ N [1, 1], and d ∼ U [4, 6]. We assume I = 200 subjects,

and select β1(t) = sin(t) and β2(t) =
√
t. The first functional regressor is generated as in

Equation 6; the second functional regressor consists of a random intercept, a parabola with

randomly shifted minimum, and a cosine term with random period and amplitude. Figure

5 provides samples of the random functions used in our current simulation exercise.

We simulated 1000 such datasets, and used the method given in section 3.1 to fit the

multivariate functional regression. We are unaware of other methods for fitting this model;

however, for comparison, we implemented a straightforward extension of the PCR-PVE
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panel, functions are combinations of random intercepts, slopes, and several sine and cosine

terms. In the right panel, functions are combinations of random intercepts, parabolas shifted

horizontally by random amounts, and cosines of random period and amplitude.

method used in the univariate case. That is, we regressed on the principal component

loadings for each of the regressor functions (decomposed separately), choosing the number

of loadings for each regressor function based on the percent of the variance explained by the

eigenfunctions. Note that, similarly to section 5.1, the β1(t) is exactly a principal component

of the Xi1(t), which favors PCR-PVE, while β2(t) is an arbitrary smooth function.

Table 3 shows the results of the simulation study of the multivariate functional regres-

sion model. Not surprisingly, the average MSEs are higher for our method in this simulation

than in the univariate simulations: without increasing the number of subjects, we have added

complexity to the model. Despite this, our penalized spline approach continues to perform

well in the multivariate setting, for both noiseless and noisy observations of functional regres-

sors. We again see that the PCR-PVE method performs well when the coefficient function

is exactly an early principal component of the corresponding regressor functions, less well
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Method True β1(·) True β2(·)
σ2
ε = .5 σ2

ε = 1 σ2
ε = .5 σ2

ε = 1

PFR

σ2
X = 0 0.0063 0.0092 0.0053 0.0061

σ2
X = 1 0.0269 0.0278 0.0205 0.0211

PCR-PVE

σ2
X = 0 0.0047 0.0060 0.0234 0.0240

σ2
X = 1 0.4530 0.483 0.7116 0.7563

Table 3: Mean MSE over the 1000 simulated multivariate functional regression models for

the method presented in this manuscript and an adapted PCR-PVE method.

when the coefficient function is an arbitrary smooth function and considerably worse in the

presence of measurement error.

5.3 Multilevel Simulations

Next we pursue a brief simulation exercise to examine the performance of our proposed

method in the multilevel setting (Section 3.2).

We generate samples from the model

Yi =

∫ 10

0

Xi(t)β(t)dt+ εi, i = 1, . . . , 200

Wij(t) = Xi(t) + Uij(t) + δij(t), j = 1, . . . , 3

Xi1(t) = ui1 + ui2t+
10∑
k=1

{
vik1 sin

(
2πk

10
t

)
+ vik2 cos

(
2πk

10
t

)}
Uij(t) = a · f1(t) + b · f2(t) + c · f3(t)

where εi ∼ N[0, σ2
ε ], δli(tg) ∼ N[0, σ2

X ], ui1 ∼ N[0, 25], ui2 ∼ N[0, 0.04], vik1, vik2 ∼ N[0, 1/k2],

a ∼ N [0, σ2 = 2], b ∼ N [0, σ2 = 1], and c ∼ N [0, σ2 = .5]. Further, the components used in

the construction of the Uij(t) are given by

f1(t) =
1√
10

; f2(t) =

√
3

10

(
t

5
− 1

)
; f3(t) =

√
5

10

{
6

(
t

10

)2

− 6

(
t

10

)
+ 1

}
.

Again, we choose β1(t) = sin(t) and β2(t) =
√
t.

We generate 100 such data sets and fit the resulting models using the extension detailed

in Section 3.2. Here (as in Di et al. (2008)), we estimate the subject-specific PC loadings
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in model (4) using Markov chain Monte Carlo because ψ
(1)
j and ψ

(2)
j are not mutually

orthogonal. We compare the penalized functional regression presented here to the functional

regression method described in Di et al. (2008), which is an extension of PCR-PVE.

Method True β1(·) True β2(·)
σ2
ε = .5 σ2

ε = 1 σ2
ε = .5 σ2

ε = 1

PFR

σ2
X = 0 0.0344 0.0663 0.0225 0.0207

σ2
X = 1 0.1301 0.1356 0.0241 0.0251

PCR-PVE

σ2
X = 0 0.0086 0.0094 0.0751 0.0761

σ2
X = 1 0.0133 0.0120 0.0864 0.0877

Table 4: Mean MSE over the 1000 simulated multivariate functional regression models for

the method presented in this manuscript and an adapted PCR-PVE method.

Table 4 shows the results of this simulation. As before, when the coefficient function

is an arbitrary smooth function, the PFR method performs several times better than the

PCR-PVE method. Also as before, the PCR-PVE approach outperforms the PFR method

when the the coefficient function is taken to be an early principal component. Unlike before,

this advantage remains in the presence of measurement error. The mostly likely reason for

this is that the PCR-PVE method described in Di et al. (2008) uses a smoothed covariance

matrix to estimate the PCs.

5.4 Sparse Data Simulations

Our final simulations test the extension of our method to the case where the functional

regressor is sparsely observed at the subject level but densely observed over subjects, as

described in Section 4.

We generate samples from the model

Yi =

∫ 10

0

Xi(t)β(t)dt+ εi, i = 1, . . . , 200

Wi(t) = Xi(t) + δi(t)

Xi1(t) = ui1 + ui2t+
10∑
k=1

{
vik1 sin

(
2πk

10
t

)
+ vik2 cos

(
2πk

10
t

)}

23

Hosted by The Berkeley Electronic Press



where εi ∼ N[0, σ2
ε ], δli(tg) ∼ N[0, σ2

X ], ui1 ∼ N[0, 25], ui2 ∼ N[0, 0.04], and vik1, vik2 ∼
N[0, 1/k2]. Sparseness at the subject level is introduced by uniformly sampling 10 points in

T independently for each subject, so that for each subject we observe [Yi, {Wi(tij) : tij ∈
[0, 10]}], i = 1, . . . , 500, j = 1, . . . , 10; note however that the sampling takes place after the

outcome is generated.

We simulate 1000 data sets in this way, and use the extension described in Section 4 to fit

the functional regression model for sparsely observed subject-level data. For our simulations,

we estimate the covariance operator KW (s, t) on the full grid T rather than a subset thereof,

but we note that our code allows one to use a smaller grid to undersmooth the covariance

operator. Figure 6 shows a sample of sparsely observed functions, as well as the estimated

function based on the PC decomposition of KW (s, t).
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Figure 6: A sample of sparsely observed functions, measured with error. For each panel, the

black curve represents the true Xi(t), the black points are observed points (the Xi(tij), and

the red curve is the estimated function.

Table 5 gives the results of the sparsely observed functional regression simulation. Be-

cause of the presence of a few very large MSEs, we include both the average and the median

MSE; also, we indicate whether σ2
ε is known or unknown.

Somewhat paradoxically, the presence of measurement error seems to dramatically im-

prove the estimation of β(t). This stems from the estimation of the Xi(t): in the case of no or

little measurement error, the functions are systematically over- or underestimated at various

regions of [0, 10], leading to similar errors across subjects. In turn, this dramatically reduces

the ability to estimate β(t). In the case of higher measurement error, the across-subject

errors are less biased and the estimate of β(t) are better.
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Not surprisingly, the median MSE is higher in the sparse data case than in the univariate

regression simulation of Section 5.1. However, we are typically able estimate β(t) fairly

accurately with comparatively little information for each subject by borrowing information

across subjects to estimate the Xi(t).

Method True β1(·) True β2(·)
σ2
ε = 0.5 σ2

ε = 1 σ2
ε = 0.5 σ2

ε = 1

σ2
X unknown

σ2
X = 0 3751 3785 26230 25410

(.2596) (.1974) (.0242) (.0215)

σ2
X = 1 1.942 1.9810 0.0991 0.1212

(.0856) (.0853) (.0175) (.0175)

σ2
X known

σ2
X = 0 1.657 1.690 .5774 .6787

(.0366) (.0354) (.0138) (.0138)

σ2
X = 1 1.574 1.331 .0990 .0886

(.0753) (.0755) (.0170) (.0170)

Table 5: Mean MSE over the 1000 repetitions for each combination of the true coefficient

function β(t), the measurement error variance σ2
X and the outcome variance σ2

ε . Median

MSE is given in parentheses.

6 Application to DTI Tractography

Our application is to a study comparing the cerebral white matter tracts of multiple sclerosis

patients to the tracts of controls. White matter tracts consist of axons, the long projections

of nerve cells that carry electrical signals, that are surrounded by a fatty insulation called

myelin. The myelin sheath allows an axon in a white matter tract to transmit signals

at a much faster rate than is possible in a non-myelinated axon. Multiple sclerosis is a

demyelinating autoimmune disease that causes lesions in the white-matter tracts of affected

individual and results in severe disability.

Diffusion tensor imaging (DTI) tractography is a magnetic resonance imaging (MRI)

technique that allows the study of white-matter tracts by measuring the diffusivity of water

in the brain: in white-matter tracts, water diffuses anisotropically in the direction of the
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tract, while elsewhere water diffuses isotropically. Using measurements of diffusivity along

several gradients, DTI can provide relatively detailed images of white-matter anatomy in the

brain Basser et al. (1994, 2000); LeBihan et al. (2001); Mori and Barker (1999).

For each white-matter tract, DTI provides us several measures describing the diffusivity

of water. One example of these measures is parallel diffusivity, which is the diffusivity along

the principal axis of the tract. Parallel diffusivity is recorded at many locations along the

tract, so that for each tract we have a continuous profile or function. Figure 7 shows the

parallel diffusivity profile for a single tract, separated into cases and controls.
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Figure 7: Display of the parallel diffusivity profile for the left intracranial cortico-spinal tract,

separated by MS status.

Our study consists of 20 controls and 65 cases, for whom we have a full DTI scan at

baseline. Here, we focus on parallel diffusivity profiles as a way to classify subjects as cases

or controls. Specifically, we take as our functional predictor the parallel diffusivity profile of

the left intracranial cortico-spinal tract. Our first approach to this problem builds intuition:

we bin the parallel diffusivity profiles and regress on the bin means, keeping those that are

significantly related to the MS status. While straightforward, we recall that this is equivalent

to constraining β(t) in a functional regression model to be a step function. We compare this

to the penalized functional regression model presented in this manuscript.
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The far-left panel of Figure 8 shows the estimates β̂(t) resulting from the two approaches.

Both approaches emphasize the same two regions of the tract as important for distinguishing

cases from controls, and give similar weights to these regions. Thus, those individuals whose

parallel diffusivity profile is above average between distances 20 and 40 are more likely to be

MS patients. Similarly, those individuals whose parallel diffusivity profile is above average

between distances 50 and 65 are less likely to be MS patients. Moreover, the middle-left

panel of this compares the predictive ability of the bin-mean and PFR methods via their

respective ROC curves.
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Figure 8: The far-left panel shows the estimated β(t)from the PFR and bin-mean approaches.

The middle-left panel shows the ROC curves generated by these approaches. The middle-

right panel shows the distribution of the linear predictor
∫ 1

0
β(t)Xi(t) dt for the PFR method

(cases orange, controls green). The far-right panel shows the tract profiles with the lowest

(black), middle (red), and highest (blue) linear predictors (Note that the tract profiles have

been de-meaned).

For each subject, we also compute the linear predictor
∫

Xi(t)β(t)dt from the PFR

method; the middle-right panel of Figure 8 shows the distribution of these quantities for

both cases and controls. As anticipated,
∫

Xi(t)β(t)dt provides a reasonable quantity for

distinguishing cases from controls based on the tract profile. The far-right panel of Figure

8 compares the tract profile resulting in the lowest three, the middle three and the highest

three linear predictors. We note that the tract profiles in this panel are Xi(t)− µ(t), where

µ(t) is the overall mean profile. Thus, profiles with a low linear predictor will tend to be be-

low zero between distances 20-40 and above average between distances 50-65, and conversely

for profiles with high linear predictors.
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7 Discussion

By combining several well-known techniques in FDA, we have developed a method for gen-

eralized functional regression with the following properties: i. flexibly estimates β(t); ii.

is applicable in cases of measurement error, multilevel observations, and sparse data; and

iii. compares favorably with existing methods in simulation studies. Although it builds on

existing work, this method is conceptually new in that we estimate the regressor functions

Xi(t) using a PC decomposition, which allows the use of our method when the Xi(t) are

poorly observed (measurement error, sparse observation) or unobserved (multilevel). Fur-

ther, by expressing our method in terms of a GLMM, we take advantage of well-researched

and computationally efficient machinery for fitting the model.

We tested our method tested in each of the settings we describe, with good results. We

note that our simulation highlighted a case in which our method (as well as the others we

examined) performed poorly. It is inherently difficult to detect peaks in β(t) when those

peaks occur in areas of low variability in the Xi(t). Another interesting case is that of

sparsely observed functions in the absence of measurement error. When the measurement

error variance is treated as unknown, it is estimated with bias and can result in poor estimates

of β(t); however, fixing σ2
ε = .05 generally resolves this issue. We note that another possible

solution could be fully Bayesian treatment of the functional regression.

Several directions for future work are apparent. Handling several functional regressors,

especially when those regressors are correlated, will be important as larger and larger data

sets become available, as will developing new methods for multilevel functional data. More

generally, examining the effectiveness of functional methods compared to less sophisticated

techniques is necessary to establish the practical justification for these methods.
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